/rust/registry/src/index.crates.io-6f17d22bba15001f/ipnet-2.11.0/src/ipext.rs
Line | Count | Source (jump to first uncovered line) |
1 | | //! Extensions to the standard IP address types for common operations. |
2 | | //! |
3 | | //! The [`IpAdd`], [`IpSub`], [`IpBitAnd`], [`IpBitOr`] traits extend |
4 | | //! the `Ipv4Addr` and `Ipv6Addr` types with methods to perform these |
5 | | //! operations. |
6 | | |
7 | | use core::cmp::Ordering::{Less, Equal}; |
8 | | use core::iter::{FusedIterator, DoubleEndedIterator}; |
9 | | use core::mem; |
10 | | #[cfg(not(feature = "std"))] |
11 | | use core::net::{IpAddr, Ipv4Addr, Ipv6Addr}; |
12 | | #[cfg(feature = "std")] |
13 | | use std::net::{IpAddr, Ipv4Addr, Ipv6Addr}; |
14 | | |
15 | | /// Provides a `saturating_add()` method for `Ipv4Addr` and `Ipv6Addr`. |
16 | | /// |
17 | | /// Adding an integer to an IP address returns the modified IP address. |
18 | | /// A `u32` may added to an IPv4 address and a `u128` may be added to |
19 | | /// an IPv6 address. |
20 | | /// |
21 | | /// # Examples |
22 | | /// |
23 | | /// ``` |
24 | | /// # #[cfg(not(feature = "std"))] |
25 | | /// # use core::net::{Ipv4Addr, Ipv6Addr}; |
26 | | /// # #[cfg(feature = "std")] |
27 | | /// use std::net::{Ipv4Addr, Ipv6Addr}; |
28 | | /// use ipnet::IpAdd; |
29 | | /// |
30 | | /// let ip0: Ipv4Addr = "192.168.0.0".parse().unwrap(); |
31 | | /// let ip1: Ipv4Addr = "192.168.0.5".parse().unwrap(); |
32 | | /// let ip2: Ipv4Addr = "255.255.255.254".parse().unwrap(); |
33 | | /// let max: Ipv4Addr = "255.255.255.255".parse().unwrap(); |
34 | | /// |
35 | | /// assert_eq!(ip0.saturating_add(5), ip1); |
36 | | /// assert_eq!(ip2.saturating_add(1), max); |
37 | | /// assert_eq!(ip2.saturating_add(5), max); |
38 | | /// |
39 | | /// let ip0: Ipv6Addr = "fd00::".parse().unwrap(); |
40 | | /// let ip1: Ipv6Addr = "fd00::5".parse().unwrap(); |
41 | | /// let ip2: Ipv6Addr = "ffff:ffff:ffff:ffff:ffff:ffff:ffff:fffe".parse().unwrap(); |
42 | | /// let max: Ipv6Addr = "ffff:ffff:ffff:ffff:ffff:ffff:ffff:ffff".parse().unwrap(); |
43 | | /// |
44 | | /// assert_eq!(ip0.saturating_add(5), ip1); |
45 | | /// assert_eq!(ip2.saturating_add(1), max); |
46 | | /// assert_eq!(ip2.saturating_add(5), max); |
47 | | /// ``` |
48 | | pub trait IpAdd<RHS = Self> { |
49 | | type Output; |
50 | | fn saturating_add(self, rhs: RHS) -> Self::Output; |
51 | | } |
52 | | |
53 | | /// Provides a `saturating_sub()` method for `Ipv4Addr` and `Ipv6Addr`. |
54 | | /// |
55 | | /// Subtracting an integer from an IP address returns the modified IP |
56 | | /// address. A `u32` may be subtracted from an IPv4 address and a `u128` |
57 | | /// may be subtracted from an IPv6 address. |
58 | | /// |
59 | | /// Subtracting an IP address from another IP address of the same type |
60 | | /// returns an integer of the appropriate width. A `u32` for IPv4 and a |
61 | | /// `u128` for IPv6. Subtracting IP addresses is useful for getting |
62 | | /// the range between two IP addresses. |
63 | | /// |
64 | | /// # Examples |
65 | | /// |
66 | | /// ``` |
67 | | /// # #[cfg(not(feature = "std"))] |
68 | | /// # use core::net::{Ipv4Addr, Ipv6Addr}; |
69 | | /// # #[cfg(feature = "std")] |
70 | | /// use std::net::{Ipv4Addr, Ipv6Addr}; |
71 | | /// use ipnet::IpSub; |
72 | | /// |
73 | | /// let min: Ipv4Addr = "0.0.0.0".parse().unwrap(); |
74 | | /// let ip1: Ipv4Addr = "192.168.1.5".parse().unwrap(); |
75 | | /// let ip2: Ipv4Addr = "192.168.1.100".parse().unwrap(); |
76 | | /// |
77 | | /// assert_eq!(min.saturating_sub(ip1), 0); |
78 | | /// assert_eq!(ip2.saturating_sub(ip1), 95); |
79 | | /// assert_eq!(min.saturating_sub(5), min); |
80 | | /// assert_eq!(ip2.saturating_sub(95), ip1); |
81 | | /// |
82 | | /// let min: Ipv6Addr = "::".parse().unwrap(); |
83 | | /// let ip1: Ipv6Addr = "fd00::5".parse().unwrap(); |
84 | | /// let ip2: Ipv6Addr = "fd00::64".parse().unwrap(); |
85 | | /// |
86 | | /// assert_eq!(min.saturating_sub(ip1), 0); |
87 | | /// assert_eq!(ip2.saturating_sub(ip1), 95); |
88 | | /// assert_eq!(min.saturating_sub(5u128), min); |
89 | | /// assert_eq!(ip2.saturating_sub(95u128), ip1); |
90 | | /// ``` |
91 | | pub trait IpSub<RHS = Self> { |
92 | | type Output; |
93 | | fn saturating_sub(self, rhs: RHS) -> Self::Output; |
94 | | } |
95 | | |
96 | | /// Provides a `bitand()` method for `Ipv4Addr` and `Ipv6Addr`. |
97 | | /// |
98 | | /// # Examples |
99 | | /// |
100 | | /// ``` |
101 | | /// # #[cfg(not(feature = "std"))] |
102 | | /// # use core::net::{Ipv4Addr, Ipv6Addr}; |
103 | | /// # #[cfg(feature = "std")] |
104 | | /// use std::net::{Ipv4Addr, Ipv6Addr}; |
105 | | /// use ipnet::IpBitAnd; |
106 | | /// |
107 | | /// let ip: Ipv4Addr = "192.168.1.1".parse().unwrap(); |
108 | | /// let mask: Ipv4Addr = "255.255.0.0".parse().unwrap(); |
109 | | /// let res: Ipv4Addr = "192.168.0.0".parse().unwrap(); |
110 | | /// |
111 | | /// assert_eq!(ip.bitand(mask), res); |
112 | | /// assert_eq!(ip.bitand(0xffff0000), res); |
113 | | /// |
114 | | /// let ip: Ipv6Addr = "fd00:1234::1".parse().unwrap(); |
115 | | /// let mask: Ipv6Addr = "ffff::".parse().unwrap(); |
116 | | /// let res: Ipv6Addr = "fd00::".parse().unwrap(); |
117 | | /// |
118 | | /// assert_eq!(ip.bitand(mask), res); |
119 | | /// assert_eq!(ip.bitand(0xffff_0000_0000_0000_0000_0000_0000_0000u128), res); |
120 | | /// ``` |
121 | | pub trait IpBitAnd<RHS = Self> { |
122 | | type Output; |
123 | | fn bitand(self, rhs: RHS) -> Self::Output; |
124 | | } |
125 | | |
126 | | /// Provides a `bitor()` method for `Ipv4Addr` and `Ipv6Addr`. |
127 | | /// |
128 | | /// # Examples |
129 | | /// |
130 | | /// ``` |
131 | | /// # #[cfg(not(feature = "std"))] |
132 | | /// # use core::net::{Ipv4Addr, Ipv6Addr}; |
133 | | /// # #[cfg(feature = "std")] |
134 | | /// use std::net::{Ipv4Addr, Ipv6Addr}; |
135 | | /// use ipnet::IpBitOr; |
136 | | /// |
137 | | /// let ip: Ipv4Addr = "10.1.1.1".parse().unwrap(); |
138 | | /// let mask: Ipv4Addr = "0.0.0.255".parse().unwrap(); |
139 | | /// let res: Ipv4Addr = "10.1.1.255".parse().unwrap(); |
140 | | /// |
141 | | /// assert_eq!(ip.bitor(mask), res); |
142 | | /// assert_eq!(ip.bitor(0x000000ff), res); |
143 | | /// |
144 | | /// let ip: Ipv6Addr = "fd00::1".parse().unwrap(); |
145 | | /// let mask: Ipv6Addr = "::ffff:ffff".parse().unwrap(); |
146 | | /// let res: Ipv6Addr = "fd00::ffff:ffff".parse().unwrap(); |
147 | | /// |
148 | | /// assert_eq!(ip.bitor(mask), res); |
149 | | /// assert_eq!(ip.bitor(u128::from(0xffffffffu32)), res); |
150 | | /// ``` |
151 | | pub trait IpBitOr<RHS = Self> { |
152 | | type Output; |
153 | | fn bitor(self, rhs: RHS) -> Self::Output; |
154 | | } |
155 | | |
156 | | macro_rules! ip_add_impl { |
157 | | ($lhs:ty, $rhs:ty, $output:ty, $inner:ty) => ( |
158 | | impl IpAdd<$rhs> for $lhs { |
159 | | type Output = $output; |
160 | | |
161 | 0 | fn saturating_add(self, rhs: $rhs) -> $output { |
162 | 0 | let lhs: $inner = self.into(); |
163 | 0 | let rhs: $inner = rhs.into(); |
164 | 0 | (lhs.saturating_add(rhs.into())).into() |
165 | 0 | } Unexecuted instantiation: <core::net::ip_addr::Ipv4Addr as ipnet::ipext::IpAdd<u32>>::saturating_add Unexecuted instantiation: <core::net::ip_addr::Ipv6Addr as ipnet::ipext::IpAdd<u128>>::saturating_add |
166 | | } |
167 | | ) |
168 | | } |
169 | | |
170 | | macro_rules! ip_sub_impl { |
171 | | ($lhs:ty, $rhs:ty, $output:ty, $inner:ty) => ( |
172 | | impl IpSub<$rhs> for $lhs { |
173 | | type Output = $output; |
174 | | |
175 | 0 | fn saturating_sub(self, rhs: $rhs) -> $output { |
176 | 0 | let lhs: $inner = self.into(); |
177 | 0 | let rhs: $inner = rhs.into(); |
178 | 0 | (lhs.saturating_sub(rhs.into())).into() |
179 | 0 | } Unexecuted instantiation: <core::net::ip_addr::Ipv4Addr as ipnet::ipext::IpSub>::saturating_sub Unexecuted instantiation: <core::net::ip_addr::Ipv4Addr as ipnet::ipext::IpSub<u32>>::saturating_sub Unexecuted instantiation: <core::net::ip_addr::Ipv6Addr as ipnet::ipext::IpSub>::saturating_sub Unexecuted instantiation: <core::net::ip_addr::Ipv6Addr as ipnet::ipext::IpSub<u128>>::saturating_sub |
180 | | } |
181 | | ) |
182 | | } |
183 | | |
184 | | ip_add_impl!(Ipv4Addr, u32, Ipv4Addr, u32); |
185 | | ip_add_impl!(Ipv6Addr, u128, Ipv6Addr, u128); |
186 | | |
187 | | ip_sub_impl!(Ipv4Addr, Ipv4Addr, u32, u32); |
188 | | ip_sub_impl!(Ipv4Addr, u32, Ipv4Addr, u32); |
189 | | ip_sub_impl!(Ipv6Addr, Ipv6Addr, u128, u128); |
190 | | ip_sub_impl!(Ipv6Addr, u128, Ipv6Addr, u128); |
191 | | |
192 | | macro_rules! ip_bitops_impl { |
193 | | ($(($lhs:ty, $rhs:ty, $t:ty),)*) => { |
194 | | $( |
195 | | impl IpBitAnd<$rhs> for $lhs { |
196 | | type Output = $lhs; |
197 | | |
198 | 0 | fn bitand(self, rhs: $rhs) -> $lhs { |
199 | 0 | let lhs: $t = self.into(); |
200 | 0 | let rhs: $t = rhs.into(); |
201 | 0 | (lhs & rhs).into() |
202 | 0 | } Unexecuted instantiation: <core::net::ip_addr::Ipv4Addr as ipnet::ipext::IpBitAnd>::bitand Unexecuted instantiation: <core::net::ip_addr::Ipv4Addr as ipnet::ipext::IpBitAnd<u32>>::bitand Unexecuted instantiation: <core::net::ip_addr::Ipv6Addr as ipnet::ipext::IpBitAnd>::bitand Unexecuted instantiation: <core::net::ip_addr::Ipv6Addr as ipnet::ipext::IpBitAnd<u128>>::bitand |
203 | | } |
204 | | |
205 | | impl IpBitOr<$rhs> for $lhs { |
206 | | type Output = $lhs; |
207 | | |
208 | 0 | fn bitor(self, rhs: $rhs) -> $lhs { |
209 | 0 | let lhs: $t = self.into(); |
210 | 0 | let rhs: $t = rhs.into(); |
211 | 0 | (lhs | rhs).into() |
212 | 0 | } Unexecuted instantiation: <core::net::ip_addr::Ipv4Addr as ipnet::ipext::IpBitOr>::bitor Unexecuted instantiation: <core::net::ip_addr::Ipv4Addr as ipnet::ipext::IpBitOr<u32>>::bitor Unexecuted instantiation: <core::net::ip_addr::Ipv6Addr as ipnet::ipext::IpBitOr>::bitor Unexecuted instantiation: <core::net::ip_addr::Ipv6Addr as ipnet::ipext::IpBitOr<u128>>::bitor |
213 | | } |
214 | | )* |
215 | | } |
216 | | } |
217 | | |
218 | | ip_bitops_impl! { |
219 | | (Ipv4Addr, Ipv4Addr, u32), |
220 | | (Ipv4Addr, u32, u32), |
221 | | (Ipv6Addr, Ipv6Addr, u128), |
222 | | (Ipv6Addr, u128, u128), |
223 | | } |
224 | | |
225 | | // A barebones copy of the current unstable Step trait used by the |
226 | | // IpAddrRange, Ipv4AddrRange, and Ipv6AddrRange types below, and the |
227 | | // Subnets types in ipnet. |
228 | | pub trait IpStep { |
229 | | fn replace_one(&mut self) -> Self; |
230 | | fn replace_zero(&mut self) -> Self; |
231 | | fn add_one(&self) -> Self; |
232 | | fn sub_one(&self) -> Self; |
233 | | } |
234 | | |
235 | | impl IpStep for Ipv4Addr { |
236 | 0 | fn replace_one(&mut self) -> Self { |
237 | 0 | mem::replace(self, Ipv4Addr::new(0, 0, 0, 1)) |
238 | 0 | } |
239 | 0 | fn replace_zero(&mut self) -> Self { |
240 | 0 | mem::replace(self, Ipv4Addr::new(0, 0, 0, 0)) |
241 | 0 | } |
242 | 0 | fn add_one(&self) -> Self { |
243 | 0 | self.saturating_add(1) |
244 | 0 | } |
245 | 0 | fn sub_one(&self) -> Self { |
246 | 0 | self.saturating_sub(1) |
247 | 0 | } |
248 | | } |
249 | | |
250 | | impl IpStep for Ipv6Addr { |
251 | 0 | fn replace_one(&mut self) -> Self { |
252 | 0 | mem::replace(self, Ipv6Addr::new(0, 0, 0, 0, 0, 0, 0, 1)) |
253 | 0 | } |
254 | 0 | fn replace_zero(&mut self) -> Self { |
255 | 0 | mem::replace(self, Ipv6Addr::new(0, 0, 0, 0, 0, 0, 0, 0)) |
256 | 0 | } |
257 | 0 | fn add_one(&self) -> Self { |
258 | 0 | self.saturating_add(1) |
259 | 0 | } |
260 | 0 | fn sub_one(&self) -> Self { |
261 | 0 | self.saturating_sub(1) |
262 | 0 | } |
263 | | } |
264 | | |
265 | | /// An `Iterator` over a range of IP addresses, either IPv4 or IPv6. |
266 | | /// |
267 | | /// # Examples |
268 | | /// |
269 | | /// ``` |
270 | | /// use std::net::IpAddr; |
271 | | /// use ipnet::{IpAddrRange, Ipv4AddrRange, Ipv6AddrRange}; |
272 | | /// |
273 | | /// let hosts = IpAddrRange::from(Ipv4AddrRange::new( |
274 | | /// "10.0.0.0".parse().unwrap(), |
275 | | /// "10.0.0.3".parse().unwrap(), |
276 | | /// )); |
277 | | /// |
278 | | /// assert_eq!(hosts.collect::<Vec<IpAddr>>(), vec![ |
279 | | /// "10.0.0.0".parse::<IpAddr>().unwrap(), |
280 | | /// "10.0.0.1".parse().unwrap(), |
281 | | /// "10.0.0.2".parse().unwrap(), |
282 | | /// "10.0.0.3".parse().unwrap(), |
283 | | /// ]); |
284 | | /// |
285 | | /// let hosts = IpAddrRange::from(Ipv6AddrRange::new( |
286 | | /// "fd00::".parse().unwrap(), |
287 | | /// "fd00::3".parse().unwrap(), |
288 | | /// )); |
289 | | /// |
290 | | /// assert_eq!(hosts.collect::<Vec<IpAddr>>(), vec![ |
291 | | /// "fd00::0".parse::<IpAddr>().unwrap(), |
292 | | /// "fd00::1".parse().unwrap(), |
293 | | /// "fd00::2".parse().unwrap(), |
294 | | /// "fd00::3".parse().unwrap(), |
295 | | /// ]); |
296 | | /// ``` |
297 | | #[derive(Copy, Clone, Eq, PartialEq, Ord, PartialOrd, Hash, Debug)] |
298 | | pub enum IpAddrRange { |
299 | | V4(Ipv4AddrRange), |
300 | | V6(Ipv6AddrRange), |
301 | | } |
302 | | |
303 | | /// An `Iterator` over a range of IPv4 addresses. |
304 | | /// |
305 | | /// # Examples |
306 | | /// |
307 | | /// ``` |
308 | | /// # #[cfg(not(feature = "std"))] |
309 | | /// # use core::net::Ipv4Addr; |
310 | | /// # #[cfg(feature = "std")] |
311 | | /// use std::net::Ipv4Addr; |
312 | | /// use ipnet::Ipv4AddrRange; |
313 | | /// |
314 | | /// let hosts = Ipv4AddrRange::new( |
315 | | /// "10.0.0.0".parse().unwrap(), |
316 | | /// "10.0.0.3".parse().unwrap(), |
317 | | /// ); |
318 | | /// |
319 | | /// assert_eq!(hosts.collect::<Vec<Ipv4Addr>>(), vec![ |
320 | | /// "10.0.0.0".parse::<Ipv4Addr>().unwrap(), |
321 | | /// "10.0.0.1".parse().unwrap(), |
322 | | /// "10.0.0.2".parse().unwrap(), |
323 | | /// "10.0.0.3".parse().unwrap(), |
324 | | /// ]); |
325 | | /// ``` |
326 | | #[derive(Copy, Clone, Eq, PartialEq, Ord, PartialOrd, Hash, Debug)] |
327 | | pub struct Ipv4AddrRange { |
328 | | start: Ipv4Addr, |
329 | | end: Ipv4Addr, |
330 | | } |
331 | | |
332 | | /// An `Iterator` over a range of IPv6 addresses. |
333 | | /// |
334 | | /// # Examples |
335 | | /// |
336 | | /// ``` |
337 | | /// # #[cfg(not(feature = "std"))] |
338 | | /// # use core::net::Ipv6Addr; |
339 | | /// # #[cfg(feature = "std")] |
340 | | /// use std::net::Ipv6Addr; |
341 | | /// use ipnet::Ipv6AddrRange; |
342 | | /// |
343 | | /// let hosts = Ipv6AddrRange::new( |
344 | | /// "fd00::".parse().unwrap(), |
345 | | /// "fd00::3".parse().unwrap(), |
346 | | /// ); |
347 | | /// |
348 | | /// assert_eq!(hosts.collect::<Vec<Ipv6Addr>>(), vec![ |
349 | | /// "fd00::".parse::<Ipv6Addr>().unwrap(), |
350 | | /// "fd00::1".parse().unwrap(), |
351 | | /// "fd00::2".parse().unwrap(), |
352 | | /// "fd00::3".parse().unwrap(), |
353 | | /// ]); |
354 | | /// ``` |
355 | | #[derive(Copy, Clone, Eq, PartialEq, Ord, PartialOrd, Hash, Debug)] |
356 | | pub struct Ipv6AddrRange { |
357 | | start: Ipv6Addr, |
358 | | end: Ipv6Addr, |
359 | | } |
360 | | |
361 | | impl From<Ipv4AddrRange> for IpAddrRange { |
362 | 0 | fn from(i: Ipv4AddrRange) -> IpAddrRange { |
363 | 0 | IpAddrRange::V4(i) |
364 | 0 | } |
365 | | } |
366 | | |
367 | | impl From<Ipv6AddrRange> for IpAddrRange { |
368 | 0 | fn from(i: Ipv6AddrRange) -> IpAddrRange { |
369 | 0 | IpAddrRange::V6(i) |
370 | 0 | } |
371 | | } |
372 | | |
373 | | impl Ipv4AddrRange { |
374 | 0 | pub fn new(start: Ipv4Addr, end: Ipv4Addr) -> Self { |
375 | 0 | Ipv4AddrRange { |
376 | 0 | start: start, |
377 | 0 | end: end, |
378 | 0 | } |
379 | 0 | } |
380 | | /// Counts the number of Ipv4Addr in this range. |
381 | | /// This method will never overflow or panic. |
382 | 0 | fn count_u64(&self) -> u64 { |
383 | 0 | match self.start.partial_cmp(&self.end) { |
384 | | Some(Less) => { |
385 | 0 | let count: u32 = self.end.saturating_sub(self.start); |
386 | 0 | let count = count as u64 + 1; // Never overflows |
387 | 0 | count |
388 | | }, |
389 | 0 | Some(Equal) => 1, |
390 | 0 | _ => 0, |
391 | | } |
392 | 0 | } |
393 | | } |
394 | | |
395 | | impl Ipv6AddrRange { |
396 | 0 | pub fn new(start: Ipv6Addr, end: Ipv6Addr) -> Self { |
397 | 0 | Ipv6AddrRange { |
398 | 0 | start: start, |
399 | 0 | end: end, |
400 | 0 | } |
401 | 0 | } |
402 | | /// Counts the number of Ipv6Addr in this range. |
403 | | /// This method may overflow or panic if start |
404 | | /// is 0 and end is u128::MAX |
405 | 0 | fn count_u128(&self) -> u128 { |
406 | 0 | match self.start.partial_cmp(&self.end) { |
407 | | Some(Less) => { |
408 | 0 | let count = self.end.saturating_sub(self.start); |
409 | 0 | // May overflow or panic |
410 | 0 | count + 1 |
411 | | }, |
412 | 0 | Some(Equal) => 1, |
413 | 0 | _ => 0, |
414 | | } |
415 | 0 | } |
416 | | /// True only if count_u128 does not overflow |
417 | 0 | fn can_count_u128(&self) -> bool { |
418 | 0 | self.start != Ipv6Addr::new(0, 0, 0, 0, 0, 0, 0, 0) |
419 | 0 | || self.end != Ipv6Addr::new(0xffff, 0xffff, 0xffff, 0xffff, 0xffff, 0xffff, 0xffff, 0xffff) |
420 | 0 | } |
421 | | } |
422 | | |
423 | | impl Iterator for IpAddrRange { |
424 | | type Item = IpAddr; |
425 | | |
426 | 0 | fn next(&mut self) -> Option<Self::Item> { |
427 | 0 | match *self { |
428 | 0 | IpAddrRange::V4(ref mut a) => a.next().map(IpAddr::V4), |
429 | 0 | IpAddrRange::V6(ref mut a) => a.next().map(IpAddr::V6), |
430 | | } |
431 | 0 | } |
432 | | |
433 | 0 | fn count(self) -> usize { |
434 | 0 | match self { |
435 | 0 | IpAddrRange::V4(a) => a.count(), |
436 | 0 | IpAddrRange::V6(a) => a.count(), |
437 | | } |
438 | 0 | } |
439 | | |
440 | 0 | fn last(self) -> Option<Self::Item> { |
441 | 0 | match self { |
442 | 0 | IpAddrRange::V4(a) => a.last().map(IpAddr::V4), |
443 | 0 | IpAddrRange::V6(a) => a.last().map(IpAddr::V6), |
444 | | } |
445 | 0 | } |
446 | | |
447 | 0 | fn max(self) -> Option<Self::Item> { |
448 | 0 | match self { |
449 | 0 | IpAddrRange::V4(a) => Iterator::max(a).map(IpAddr::V4), |
450 | 0 | IpAddrRange::V6(a) => Iterator::max(a).map(IpAddr::V6), |
451 | | } |
452 | 0 | } |
453 | | |
454 | 0 | fn min(self) -> Option<Self::Item> { |
455 | 0 | match self { |
456 | 0 | IpAddrRange::V4(a) => Iterator::min(a).map(IpAddr::V4), |
457 | 0 | IpAddrRange::V6(a) => Iterator::min(a).map(IpAddr::V6), |
458 | | } |
459 | 0 | } |
460 | | |
461 | 0 | fn nth(&mut self, n: usize) -> Option<Self::Item> { |
462 | 0 | match *self { |
463 | 0 | IpAddrRange::V4(ref mut a) => a.nth(n).map(IpAddr::V4), |
464 | 0 | IpAddrRange::V6(ref mut a) => a.nth(n).map(IpAddr::V6), |
465 | | } |
466 | 0 | } |
467 | | |
468 | 0 | fn size_hint(&self) -> (usize, Option<usize>) { |
469 | 0 | match *self { |
470 | 0 | IpAddrRange::V4(ref a) => a.size_hint(), |
471 | 0 | IpAddrRange::V6(ref a) => a.size_hint(), |
472 | | } |
473 | 0 | } |
474 | | } |
475 | | |
476 | | impl Iterator for Ipv4AddrRange { |
477 | | type Item = Ipv4Addr; |
478 | | |
479 | 0 | fn next(&mut self) -> Option<Self::Item> { |
480 | 0 | match self.start.partial_cmp(&self.end) { |
481 | | Some(Less) => { |
482 | 0 | let next = self.start.add_one(); |
483 | 0 | Some(mem::replace(&mut self.start, next)) |
484 | | }, |
485 | | Some(Equal) => { |
486 | 0 | self.end.replace_zero(); |
487 | 0 | Some(self.start.replace_one()) |
488 | | }, |
489 | 0 | _ => None, |
490 | | } |
491 | 0 | } |
492 | | |
493 | | #[allow(arithmetic_overflow)] |
494 | 0 | fn count(self) -> usize { |
495 | 0 | match self.start.partial_cmp(&self.end) { |
496 | | Some(Less) => { |
497 | | // Adding one here might overflow u32. |
498 | | // Instead, wait until after converted to usize |
499 | 0 | let count: u32 = self.end.saturating_sub(self.start); |
500 | 0 |
|
501 | 0 | // usize might only be 16 bits, |
502 | 0 | // so need to explicitly check for overflow. |
503 | 0 | // 'usize::MAX as u32' is okay here - if usize is 64 bits, |
504 | 0 | // value truncates to u32::MAX |
505 | 0 | if count <= core::usize::MAX as u32 { |
506 | 0 | count as usize + 1 |
507 | | // count overflows usize |
508 | | } else { |
509 | | // emulate standard overflow/panic behavior |
510 | 0 | core::usize::MAX + 2 + count as usize |
511 | | } |
512 | | }, |
513 | 0 | Some(Equal) => 1, |
514 | 0 | _ => 0 |
515 | | } |
516 | 0 | } |
517 | | |
518 | 0 | fn last(self) -> Option<Self::Item> { |
519 | 0 | match self.start.partial_cmp(&self.end) { |
520 | 0 | Some(Less) | Some(Equal) => Some(self.end), |
521 | 0 | _ => None, |
522 | | } |
523 | 0 | } |
524 | | |
525 | 0 | fn max(self) -> Option<Self::Item> { |
526 | 0 | self.last() |
527 | 0 | } |
528 | | |
529 | 0 | fn min(self) -> Option<Self::Item> { |
530 | 0 | match self.start.partial_cmp(&self.end) { |
531 | 0 | Some(Less) | Some(Equal) => Some(self.start), |
532 | 0 | _ => None |
533 | | } |
534 | 0 | } |
535 | | |
536 | 0 | fn nth(&mut self, n: usize) -> Option<Self::Item> { |
537 | 0 | let n = n as u64; |
538 | 0 | let count = self.count_u64(); |
539 | 0 | if n >= count { |
540 | 0 | self.end.replace_zero(); |
541 | 0 | self.start.replace_one(); |
542 | 0 | None |
543 | 0 | } else if n == count - 1 { |
544 | 0 | self.start.replace_one(); |
545 | 0 | Some(self.end.replace_zero()) |
546 | | } else { |
547 | 0 | let nth = self.start.saturating_add(n as u32); |
548 | 0 | self.start = nth.add_one(); |
549 | 0 | Some(nth) |
550 | | } |
551 | 0 | } |
552 | | |
553 | 0 | fn size_hint(&self) -> (usize, Option<usize>) { |
554 | 0 | let count = self.count_u64(); |
555 | 0 | if count > core::usize::MAX as u64 { |
556 | 0 | (core::usize::MAX, None) |
557 | | } else { |
558 | 0 | let count = count as usize; |
559 | 0 | (count, Some(count)) |
560 | | } |
561 | 0 | } |
562 | | } |
563 | | |
564 | | impl Iterator for Ipv6AddrRange { |
565 | | type Item = Ipv6Addr; |
566 | | |
567 | 0 | fn next(&mut self) -> Option<Self::Item> { |
568 | 0 | match self.start.partial_cmp(&self.end) { |
569 | | Some(Less) => { |
570 | 0 | let next = self.start.add_one(); |
571 | 0 | Some(mem::replace(&mut self.start, next)) |
572 | | }, |
573 | | Some(Equal) => { |
574 | 0 | self.end.replace_zero(); |
575 | 0 | Some(self.start.replace_one()) |
576 | | }, |
577 | 0 | _ => None, |
578 | | } |
579 | 0 | } |
580 | | |
581 | | #[allow(arithmetic_overflow)] |
582 | 0 | fn count(self) -> usize { |
583 | 0 | let count = self.count_u128(); |
584 | 0 | // count fits in usize |
585 | 0 | if count <= core::usize::MAX as u128 { |
586 | 0 | count as usize |
587 | | // count does not fit in usize |
588 | | } else { |
589 | | // emulate standard overflow/panic behavior |
590 | 0 | core::usize::MAX + 1 + count as usize |
591 | | } |
592 | 0 | } |
593 | | |
594 | 0 | fn last(self) -> Option<Self::Item> { |
595 | 0 | match self.start.partial_cmp(&self.end) { |
596 | 0 | Some(Less) | Some(Equal) => Some(self.end), |
597 | 0 | _ => None, |
598 | | } |
599 | 0 | } |
600 | | |
601 | 0 | fn max(self) -> Option<Self::Item> { |
602 | 0 | self.last() |
603 | 0 | } |
604 | | |
605 | 0 | fn min(self) -> Option<Self::Item> { |
606 | 0 | match self.start.partial_cmp(&self.end) { |
607 | 0 | Some(Less) | Some(Equal) => Some(self.start), |
608 | 0 | _ => None |
609 | | } |
610 | 0 | } |
611 | | |
612 | 0 | fn nth(&mut self, n: usize) -> Option<Self::Item> { |
613 | 0 | let n = n as u128; |
614 | 0 | if self.can_count_u128() { |
615 | 0 | let count = self.count_u128(); |
616 | 0 | if n >= count { |
617 | 0 | self.end.replace_zero(); |
618 | 0 | self.start.replace_one(); |
619 | 0 | None |
620 | 0 | } else if n == count - 1 { |
621 | 0 | self.start.replace_one(); |
622 | 0 | Some(self.end.replace_zero()) |
623 | | } else { |
624 | 0 | let nth = self.start.saturating_add(n); |
625 | 0 | self.start = nth.add_one(); |
626 | 0 | Some(nth) |
627 | | } |
628 | | // count overflows u128; n is 64-bits at most. |
629 | | // therefore, n can never exceed count |
630 | | } else { |
631 | 0 | let nth = self.start.saturating_add(n); |
632 | 0 | self.start = nth.add_one(); |
633 | 0 | Some(nth) |
634 | | } |
635 | 0 | } |
636 | | |
637 | 0 | fn size_hint(&self) -> (usize, Option<usize>) { |
638 | 0 | if self.can_count_u128() { |
639 | 0 | let count = self.count_u128(); |
640 | 0 | if count > core::usize::MAX as u128 { |
641 | 0 | (core::usize::MAX, None) |
642 | | } else { |
643 | 0 | let count = count as usize; |
644 | 0 | (count, Some(count)) |
645 | | } |
646 | | } else { |
647 | 0 | (core::usize::MAX, None) |
648 | | } |
649 | 0 | } |
650 | | } |
651 | | |
652 | | impl DoubleEndedIterator for IpAddrRange { |
653 | 0 | fn next_back(&mut self) -> Option<Self::Item> { |
654 | 0 | match *self { |
655 | 0 | IpAddrRange::V4(ref mut a) => a.next_back().map(IpAddr::V4), |
656 | 0 | IpAddrRange::V6(ref mut a) => a.next_back().map(IpAddr::V6), |
657 | | } |
658 | 0 | } |
659 | 0 | fn nth_back(&mut self, n: usize) -> Option<Self::Item> { |
660 | 0 | match *self { |
661 | 0 | IpAddrRange::V4(ref mut a) => a.nth_back(n).map(IpAddr::V4), |
662 | 0 | IpAddrRange::V6(ref mut a) => a.nth_back(n).map(IpAddr::V6), |
663 | | } |
664 | 0 | } |
665 | | } |
666 | | |
667 | | impl DoubleEndedIterator for Ipv4AddrRange { |
668 | 0 | fn next_back(&mut self) -> Option<Self::Item> { |
669 | 0 | match self.start.partial_cmp(&self.end) { |
670 | | Some(Less) => { |
671 | 0 | let next_back = self.end.sub_one(); |
672 | 0 | Some(mem::replace(&mut self.end, next_back)) |
673 | | }, |
674 | | Some(Equal) => { |
675 | 0 | self.end.replace_zero(); |
676 | 0 | Some(self.start.replace_one()) |
677 | | }, |
678 | 0 | _ => None |
679 | | } |
680 | 0 | } |
681 | 0 | fn nth_back(&mut self, n: usize) -> Option<Self::Item> { |
682 | 0 | let n = n as u64; |
683 | 0 | let count = self.count_u64(); |
684 | 0 | if n >= count { |
685 | 0 | self.end.replace_zero(); |
686 | 0 | self.start.replace_one(); |
687 | 0 | None |
688 | 0 | } else if n == count - 1 { |
689 | 0 | self.end.replace_zero(); |
690 | 0 | Some(self.start.replace_one()) |
691 | | } else { |
692 | 0 | let nth_back = self.end.saturating_sub(n as u32); |
693 | 0 | self.end = nth_back.sub_one(); |
694 | 0 | Some(nth_back) |
695 | | } |
696 | 0 | } |
697 | | } |
698 | | |
699 | | impl DoubleEndedIterator for Ipv6AddrRange { |
700 | 0 | fn next_back(&mut self) -> Option<Self::Item> { |
701 | 0 | match self.start.partial_cmp(&self.end) { |
702 | | Some(Less) => { |
703 | 0 | let next_back = self.end.sub_one(); |
704 | 0 | Some(mem::replace(&mut self.end, next_back)) |
705 | | }, |
706 | | Some(Equal) => { |
707 | 0 | self.end.replace_zero(); |
708 | 0 | Some(self.start.replace_one()) |
709 | | }, |
710 | 0 | _ => None |
711 | | } |
712 | 0 | } |
713 | 0 | fn nth_back(&mut self, n: usize) -> Option<Self::Item> { |
714 | 0 | let n = n as u128; |
715 | 0 | if self.can_count_u128() { |
716 | 0 | let count = self.count_u128(); |
717 | 0 | if n >= count { |
718 | 0 | self.end.replace_zero(); |
719 | 0 | self.start.replace_one(); |
720 | 0 | None |
721 | | } |
722 | 0 | else if n == count - 1 { |
723 | 0 | self.end.replace_zero(); |
724 | 0 | Some(self.start.replace_one()) |
725 | | } else { |
726 | 0 | let nth_back = self.end.saturating_sub(n); |
727 | 0 | self.end = nth_back.sub_one(); |
728 | 0 | Some(nth_back) |
729 | | } |
730 | | // count overflows u128; n is 64-bits at most. |
731 | | // therefore, n can never exceed count |
732 | | } else { |
733 | 0 | let nth_back = self.end.saturating_sub(n); |
734 | 0 | self.end = nth_back.sub_one(); |
735 | 0 | Some(nth_back) |
736 | | } |
737 | 0 | } |
738 | | } |
739 | | |
740 | | impl FusedIterator for IpAddrRange {} |
741 | | impl FusedIterator for Ipv4AddrRange {} |
742 | | impl FusedIterator for Ipv6AddrRange {} |
743 | | |
744 | | #[cfg(test)] |
745 | | mod tests { |
746 | | use alloc::vec::Vec; |
747 | | use core::str::FromStr; |
748 | | #[cfg(not(feature = "std"))] |
749 | | use core::net::{IpAddr, Ipv4Addr, Ipv6Addr}; |
750 | | #[cfg(feature = "std")] |
751 | | use std::net::{IpAddr, Ipv4Addr, Ipv6Addr}; |
752 | | use super::*; |
753 | | |
754 | | #[test] |
755 | | fn test_ipaddrrange() { |
756 | | // Next, Next-Back |
757 | | let i = Ipv4AddrRange::new( |
758 | | Ipv4Addr::from_str("10.0.0.0").unwrap(), |
759 | | Ipv4Addr::from_str("10.0.0.3").unwrap() |
760 | | ); |
761 | | |
762 | | assert_eq!(i.collect::<Vec<Ipv4Addr>>(), vec![ |
763 | | Ipv4Addr::from_str("10.0.0.0").unwrap(), |
764 | | Ipv4Addr::from_str("10.0.0.1").unwrap(), |
765 | | Ipv4Addr::from_str("10.0.0.2").unwrap(), |
766 | | Ipv4Addr::from_str("10.0.0.3").unwrap(), |
767 | | ]); |
768 | | |
769 | | let mut v = i.collect::<Vec<_>>(); |
770 | | v.reverse(); |
771 | | assert_eq!(v, i.rev().collect::<Vec<_>>()); |
772 | | |
773 | | let i = Ipv4AddrRange::new( |
774 | | Ipv4Addr::from_str("255.255.255.254").unwrap(), |
775 | | Ipv4Addr::from_str("255.255.255.255").unwrap() |
776 | | ); |
777 | | |
778 | | assert_eq!(i.collect::<Vec<Ipv4Addr>>(), vec![ |
779 | | Ipv4Addr::from_str("255.255.255.254").unwrap(), |
780 | | Ipv4Addr::from_str("255.255.255.255").unwrap(), |
781 | | ]); |
782 | | |
783 | | let i = Ipv6AddrRange::new( |
784 | | Ipv6Addr::from_str("fd00::").unwrap(), |
785 | | Ipv6Addr::from_str("fd00::3").unwrap(), |
786 | | ); |
787 | | |
788 | | assert_eq!(i.collect::<Vec<Ipv6Addr>>(), vec![ |
789 | | Ipv6Addr::from_str("fd00::").unwrap(), |
790 | | Ipv6Addr::from_str("fd00::1").unwrap(), |
791 | | Ipv6Addr::from_str("fd00::2").unwrap(), |
792 | | Ipv6Addr::from_str("fd00::3").unwrap(), |
793 | | ]); |
794 | | |
795 | | let mut v = i.collect::<Vec<_>>(); |
796 | | v.reverse(); |
797 | | assert_eq!(v, i.rev().collect::<Vec<_>>()); |
798 | | |
799 | | let i = Ipv6AddrRange::new( |
800 | | Ipv6Addr::from_str("ffff:ffff:ffff:ffff:ffff:ffff:ffff:fffe").unwrap(), |
801 | | Ipv6Addr::from_str("ffff:ffff:ffff:ffff:ffff:ffff:ffff:ffff").unwrap(), |
802 | | ); |
803 | | |
804 | | assert_eq!(i.collect::<Vec<Ipv6Addr>>(), vec![ |
805 | | Ipv6Addr::from_str("ffff:ffff:ffff:ffff:ffff:ffff:ffff:fffe").unwrap(), |
806 | | Ipv6Addr::from_str("ffff:ffff:ffff:ffff:ffff:ffff:ffff:ffff").unwrap(), |
807 | | ]); |
808 | | |
809 | | let i = IpAddrRange::from(Ipv4AddrRange::new( |
810 | | Ipv4Addr::from_str("10.0.0.0").unwrap(), |
811 | | Ipv4Addr::from_str("10.0.0.3").unwrap(), |
812 | | )); |
813 | | |
814 | | assert_eq!(i.collect::<Vec<IpAddr>>(), vec![ |
815 | | IpAddr::from_str("10.0.0.0").unwrap(), |
816 | | IpAddr::from_str("10.0.0.1").unwrap(), |
817 | | IpAddr::from_str("10.0.0.2").unwrap(), |
818 | | IpAddr::from_str("10.0.0.3").unwrap(), |
819 | | ]); |
820 | | |
821 | | let mut v = i.collect::<Vec<_>>(); |
822 | | v.reverse(); |
823 | | assert_eq!(v, i.rev().collect::<Vec<_>>()); |
824 | | |
825 | | let i = IpAddrRange::from(Ipv4AddrRange::new( |
826 | | Ipv4Addr::from_str("255.255.255.254").unwrap(), |
827 | | Ipv4Addr::from_str("255.255.255.255").unwrap() |
828 | | )); |
829 | | |
830 | | assert_eq!(i.collect::<Vec<IpAddr>>(), vec![ |
831 | | IpAddr::from_str("255.255.255.254").unwrap(), |
832 | | IpAddr::from_str("255.255.255.255").unwrap(), |
833 | | ]); |
834 | | |
835 | | let i = IpAddrRange::from(Ipv6AddrRange::new( |
836 | | Ipv6Addr::from_str("fd00::").unwrap(), |
837 | | Ipv6Addr::from_str("fd00::3").unwrap(), |
838 | | )); |
839 | | |
840 | | assert_eq!(i.collect::<Vec<IpAddr>>(), vec![ |
841 | | IpAddr::from_str("fd00::").unwrap(), |
842 | | IpAddr::from_str("fd00::1").unwrap(), |
843 | | IpAddr::from_str("fd00::2").unwrap(), |
844 | | IpAddr::from_str("fd00::3").unwrap(), |
845 | | ]); |
846 | | |
847 | | let mut v = i.collect::<Vec<_>>(); |
848 | | v.reverse(); |
849 | | assert_eq!(v, i.rev().collect::<Vec<_>>()); |
850 | | |
851 | | let i = IpAddrRange::from(Ipv6AddrRange::new( |
852 | | Ipv6Addr::from_str("ffff:ffff:ffff:ffff:ffff:ffff:ffff:fffe").unwrap(), |
853 | | Ipv6Addr::from_str("ffff:ffff:ffff:ffff:ffff:ffff:ffff:ffff").unwrap(), |
854 | | )); |
855 | | |
856 | | assert_eq!(i.collect::<Vec<IpAddr>>(), vec![ |
857 | | IpAddr::from_str("ffff:ffff:ffff:ffff:ffff:ffff:ffff:fffe").unwrap(), |
858 | | IpAddr::from_str("ffff:ffff:ffff:ffff:ffff:ffff:ffff:ffff").unwrap(), |
859 | | ]); |
860 | | |
861 | | // #11 (infinite iterator when start and stop are 0) |
862 | | let zero4 = Ipv4Addr::from_str("0.0.0.0").unwrap(); |
863 | | let zero6 = Ipv6Addr::from_str("::").unwrap(); |
864 | | |
865 | | let mut i = Ipv4AddrRange::new(zero4, zero4); |
866 | | assert_eq!(Some(zero4), i.next()); |
867 | | assert_eq!(None, i.next()); |
868 | | |
869 | | let mut i = Ipv6AddrRange::new(zero6, zero6); |
870 | | assert_eq!(Some(zero6), i.next()); |
871 | | assert_eq!(None, i.next()); |
872 | | |
873 | | // Count |
874 | | let i = Ipv4AddrRange::new( |
875 | | Ipv4Addr::from_str("10.0.0.0").unwrap(), |
876 | | Ipv4Addr::from_str("10.0.0.3").unwrap() |
877 | | ); |
878 | | assert_eq!(i.count(), 4); |
879 | | |
880 | | let i = Ipv6AddrRange::new( |
881 | | Ipv6Addr::from_str("fd00::").unwrap(), |
882 | | Ipv6Addr::from_str("fd00::3").unwrap(), |
883 | | ); |
884 | | assert_eq!(i.count(), 4); |
885 | | |
886 | | // Size Hint |
887 | | let i = Ipv4AddrRange::new( |
888 | | Ipv4Addr::from_str("10.0.0.0").unwrap(), |
889 | | Ipv4Addr::from_str("10.0.0.3").unwrap() |
890 | | ); |
891 | | assert_eq!(i.size_hint(), (4, Some(4))); |
892 | | |
893 | | let i = Ipv6AddrRange::new( |
894 | | Ipv6Addr::from_str("fd00::").unwrap(), |
895 | | Ipv6Addr::from_str("fd00::3").unwrap(), |
896 | | ); |
897 | | assert_eq!(i.size_hint(), (4, Some(4))); |
898 | | |
899 | | // Size Hint: a range where size clearly overflows usize |
900 | | let i = Ipv6AddrRange::new( |
901 | | Ipv6Addr::from_str("::").unwrap(), |
902 | | Ipv6Addr::from_str("8000::").unwrap(), |
903 | | ); |
904 | | assert_eq!(i.size_hint(), (core::usize::MAX, None)); |
905 | | |
906 | | // Min, Max, Last |
907 | | let i = Ipv4AddrRange::new( |
908 | | Ipv4Addr::from_str("10.0.0.0").unwrap(), |
909 | | Ipv4Addr::from_str("10.0.0.3").unwrap() |
910 | | ); |
911 | | assert_eq!(Iterator::min(i), Some(Ipv4Addr::from_str("10.0.0.0").unwrap())); |
912 | | assert_eq!(Iterator::max(i), Some(Ipv4Addr::from_str("10.0.0.3").unwrap())); |
913 | | assert_eq!(i.last(), Some(Ipv4Addr::from_str("10.0.0.3").unwrap())); |
914 | | |
915 | | let i = Ipv6AddrRange::new( |
916 | | Ipv6Addr::from_str("fd00::").unwrap(), |
917 | | Ipv6Addr::from_str("fd00::3").unwrap(), |
918 | | ); |
919 | | assert_eq!(Iterator::min(i), Some(Ipv6Addr::from_str("fd00::").unwrap())); |
920 | | assert_eq!(Iterator::max(i), Some(Ipv6Addr::from_str("fd00::3").unwrap())); |
921 | | assert_eq!(i.last(), Some(Ipv6Addr::from_str("fd00::3").unwrap())); |
922 | | |
923 | | // Nth |
924 | | let i = Ipv4AddrRange::new( |
925 | | Ipv4Addr::from_str("10.0.0.0").unwrap(), |
926 | | Ipv4Addr::from_str("10.0.0.3").unwrap() |
927 | | ); |
928 | | assert_eq!(i.clone().nth(0), Some(Ipv4Addr::from_str("10.0.0.0").unwrap())); |
929 | | assert_eq!(i.clone().nth(3), Some(Ipv4Addr::from_str("10.0.0.3").unwrap())); |
930 | | assert_eq!(i.clone().nth(4), None); |
931 | | assert_eq!(i.clone().nth(99), None); |
932 | | let mut i2 = i.clone(); |
933 | | assert_eq!(i2.nth(1), Some(Ipv4Addr::from_str("10.0.0.1").unwrap())); |
934 | | assert_eq!(i2.nth(1), Some(Ipv4Addr::from_str("10.0.0.3").unwrap())); |
935 | | assert_eq!(i2.nth(0), None); |
936 | | let mut i3 = i.clone(); |
937 | | assert_eq!(i3.nth(99), None); |
938 | | assert_eq!(i3.next(), None); |
939 | | |
940 | | let i = Ipv6AddrRange::new( |
941 | | Ipv6Addr::from_str("fd00::").unwrap(), |
942 | | Ipv6Addr::from_str("fd00::3").unwrap(), |
943 | | ); |
944 | | assert_eq!(i.clone().nth(0), Some(Ipv6Addr::from_str("fd00::").unwrap())); |
945 | | assert_eq!(i.clone().nth(3), Some(Ipv6Addr::from_str("fd00::3").unwrap())); |
946 | | assert_eq!(i.clone().nth(4), None); |
947 | | assert_eq!(i.clone().nth(99), None); |
948 | | let mut i2 = i.clone(); |
949 | | assert_eq!(i2.nth(1), Some(Ipv6Addr::from_str("fd00::1").unwrap())); |
950 | | assert_eq!(i2.nth(1), Some(Ipv6Addr::from_str("fd00::3").unwrap())); |
951 | | assert_eq!(i2.nth(0), None); |
952 | | let mut i3 = i.clone(); |
953 | | assert_eq!(i3.nth(99), None); |
954 | | assert_eq!(i3.next(), None); |
955 | | |
956 | | // Nth Back |
957 | | let i = Ipv4AddrRange::new( |
958 | | Ipv4Addr::from_str("10.0.0.0").unwrap(), |
959 | | Ipv4Addr::from_str("10.0.0.3").unwrap() |
960 | | ); |
961 | | assert_eq!(i.clone().nth_back(0), Some(Ipv4Addr::from_str("10.0.0.3").unwrap())); |
962 | | assert_eq!(i.clone().nth_back(3), Some(Ipv4Addr::from_str("10.0.0.0").unwrap())); |
963 | | assert_eq!(i.clone().nth_back(4), None); |
964 | | assert_eq!(i.clone().nth_back(99), None); |
965 | | let mut i2 = i.clone(); |
966 | | assert_eq!(i2.nth_back(1), Some(Ipv4Addr::from_str("10.0.0.2").unwrap())); |
967 | | assert_eq!(i2.nth_back(1), Some(Ipv4Addr::from_str("10.0.0.0").unwrap())); |
968 | | assert_eq!(i2.nth_back(0), None); |
969 | | let mut i3 = i.clone(); |
970 | | assert_eq!(i3.nth_back(99), None); |
971 | | assert_eq!(i3.next(), None); |
972 | | |
973 | | let i = Ipv6AddrRange::new( |
974 | | Ipv6Addr::from_str("fd00::").unwrap(), |
975 | | Ipv6Addr::from_str("fd00::3").unwrap(), |
976 | | ); |
977 | | assert_eq!(i.clone().nth_back(0), Some(Ipv6Addr::from_str("fd00::3").unwrap())); |
978 | | assert_eq!(i.clone().nth_back(3), Some(Ipv6Addr::from_str("fd00::").unwrap())); |
979 | | assert_eq!(i.clone().nth_back(4), None); |
980 | | assert_eq!(i.clone().nth_back(99), None); |
981 | | let mut i2 = i.clone(); |
982 | | assert_eq!(i2.nth_back(1), Some(Ipv6Addr::from_str("fd00::2").unwrap())); |
983 | | assert_eq!(i2.nth_back(1), Some(Ipv6Addr::from_str("fd00::").unwrap())); |
984 | | assert_eq!(i2.nth_back(0), None); |
985 | | let mut i3 = i.clone(); |
986 | | assert_eq!(i3.nth_back(99), None); |
987 | | assert_eq!(i3.next(), None); |
988 | | } |
989 | | } |