/rust/registry/src/index.crates.io-6f17d22bba15001f/tokio-1.44.2/src/task/spawn.rs
Line | Count | Source (jump to first uncovered line) |
1 | | use crate::runtime::BOX_FUTURE_THRESHOLD; |
2 | | use crate::task::JoinHandle; |
3 | | use crate::util::trace::SpawnMeta; |
4 | | |
5 | | use std::future::Future; |
6 | | |
7 | | cfg_rt! { |
8 | | /// Spawns a new asynchronous task, returning a |
9 | | /// [`JoinHandle`](JoinHandle) for it. |
10 | | /// |
11 | | /// The provided future will start running in the background immediately |
12 | | /// when `spawn` is called, even if you don't await the returned |
13 | | /// `JoinHandle`. |
14 | | /// |
15 | | /// Spawning a task enables the task to execute concurrently to other tasks. The |
16 | | /// spawned task may execute on the current thread, or it may be sent to a |
17 | | /// different thread to be executed. The specifics depend on the current |
18 | | /// [`Runtime`](crate::runtime::Runtime) configuration. |
19 | | /// |
20 | | /// It is guaranteed that spawn will not synchronously poll the task being spawned. |
21 | | /// This means that calling spawn while holding a lock does not pose a risk of |
22 | | /// deadlocking with the spawned task. |
23 | | /// |
24 | | /// There is no guarantee that a spawned task will execute to completion. |
25 | | /// When a runtime is shutdown, all outstanding tasks are dropped, |
26 | | /// regardless of the lifecycle of that task. |
27 | | /// |
28 | | /// This function must be called from the context of a Tokio runtime. Tasks running on |
29 | | /// the Tokio runtime are always inside its context, but you can also enter the context |
30 | | /// using the [`Runtime::enter`](crate::runtime::Runtime::enter()) method. |
31 | | /// |
32 | | /// # Examples |
33 | | /// |
34 | | /// In this example, a server is started and `spawn` is used to start a new task |
35 | | /// that processes each received connection. |
36 | | /// |
37 | | /// ```no_run |
38 | | /// use tokio::net::{TcpListener, TcpStream}; |
39 | | /// |
40 | | /// use std::io; |
41 | | /// |
42 | | /// async fn process(socket: TcpStream) { |
43 | | /// // ... |
44 | | /// # drop(socket); |
45 | | /// } |
46 | | /// |
47 | | /// #[tokio::main] |
48 | | /// async fn main() -> io::Result<()> { |
49 | | /// let listener = TcpListener::bind("127.0.0.1:8080").await?; |
50 | | /// |
51 | | /// loop { |
52 | | /// let (socket, _) = listener.accept().await?; |
53 | | /// |
54 | | /// tokio::spawn(async move { |
55 | | /// // Process each socket concurrently. |
56 | | /// process(socket).await |
57 | | /// }); |
58 | | /// } |
59 | | /// } |
60 | | /// ``` |
61 | | /// |
62 | | /// To run multiple tasks in parallel and receive their results, join |
63 | | /// handles can be stored in a vector. |
64 | | /// ``` |
65 | | /// # #[tokio::main(flavor = "current_thread")] async fn main() { |
66 | | /// async fn my_background_op(id: i32) -> String { |
67 | | /// let s = format!("Starting background task {}.", id); |
68 | | /// println!("{}", s); |
69 | | /// s |
70 | | /// } |
71 | | /// |
72 | | /// let ops = vec![1, 2, 3]; |
73 | | /// let mut tasks = Vec::with_capacity(ops.len()); |
74 | | /// for op in ops { |
75 | | /// // This call will make them start running in the background |
76 | | /// // immediately. |
77 | | /// tasks.push(tokio::spawn(my_background_op(op))); |
78 | | /// } |
79 | | /// |
80 | | /// let mut outputs = Vec::with_capacity(tasks.len()); |
81 | | /// for task in tasks { |
82 | | /// outputs.push(task.await.unwrap()); |
83 | | /// } |
84 | | /// println!("{:?}", outputs); |
85 | | /// # } |
86 | | /// ``` |
87 | | /// This example pushes the tasks to `outputs` in the order they were |
88 | | /// started in. If you do not care about the ordering of the outputs, then |
89 | | /// you can also use a [`JoinSet`]. |
90 | | /// |
91 | | /// [`JoinSet`]: struct@crate::task::JoinSet |
92 | | /// |
93 | | /// # Panics |
94 | | /// |
95 | | /// Panics if called from **outside** of the Tokio runtime. |
96 | | /// |
97 | | /// # Using `!Send` values from a task |
98 | | /// |
99 | | /// The task supplied to `spawn` must implement `Send`. However, it is |
100 | | /// possible to **use** `!Send` values from the task as long as they only |
101 | | /// exist between calls to `.await`. |
102 | | /// |
103 | | /// For example, this will work: |
104 | | /// |
105 | | /// ``` |
106 | | /// use tokio::task; |
107 | | /// |
108 | | /// use std::rc::Rc; |
109 | | /// |
110 | | /// fn use_rc(rc: Rc<()>) { |
111 | | /// // Do stuff w/ rc |
112 | | /// # drop(rc); |
113 | | /// } |
114 | | /// |
115 | | /// #[tokio::main] |
116 | | /// async fn main() { |
117 | | /// tokio::spawn(async { |
118 | | /// // Force the `Rc` to stay in a scope with no `.await` |
119 | | /// { |
120 | | /// let rc = Rc::new(()); |
121 | | /// use_rc(rc.clone()); |
122 | | /// } |
123 | | /// |
124 | | /// task::yield_now().await; |
125 | | /// }).await.unwrap(); |
126 | | /// } |
127 | | /// ``` |
128 | | /// |
129 | | /// This will **not** work: |
130 | | /// |
131 | | /// ```compile_fail |
132 | | /// use tokio::task; |
133 | | /// |
134 | | /// use std::rc::Rc; |
135 | | /// |
136 | | /// fn use_rc(rc: Rc<()>) { |
137 | | /// // Do stuff w/ rc |
138 | | /// # drop(rc); |
139 | | /// } |
140 | | /// |
141 | | /// #[tokio::main] |
142 | | /// async fn main() { |
143 | | /// tokio::spawn(async { |
144 | | /// let rc = Rc::new(()); |
145 | | /// |
146 | | /// task::yield_now().await; |
147 | | /// |
148 | | /// use_rc(rc.clone()); |
149 | | /// }).await.unwrap(); |
150 | | /// } |
151 | | /// ``` |
152 | | /// |
153 | | /// Holding on to a `!Send` value across calls to `.await` will result in |
154 | | /// an unfriendly compile error message similar to: |
155 | | /// |
156 | | /// ```text |
157 | | /// `[... some type ...]` cannot be sent between threads safely |
158 | | /// ``` |
159 | | /// |
160 | | /// or: |
161 | | /// |
162 | | /// ```text |
163 | | /// error[E0391]: cycle detected when processing `main` |
164 | | /// ``` |
165 | | #[track_caller] |
166 | 0 | pub fn spawn<F>(future: F) -> JoinHandle<F::Output> |
167 | 0 | where |
168 | 0 | F: Future + Send + 'static, |
169 | 0 | F::Output: Send + 'static, |
170 | 0 | { |
171 | 0 | let fut_size = std::mem::size_of::<F>(); |
172 | 0 | if fut_size > BOX_FUTURE_THRESHOLD { |
173 | 0 | spawn_inner(Box::pin(future), SpawnMeta::new_unnamed(fut_size)) |
174 | | } else { |
175 | 0 | spawn_inner(future, SpawnMeta::new_unnamed(fut_size)) |
176 | | } |
177 | 0 | } |
178 | | |
179 | | #[track_caller] |
180 | 0 | pub(super) fn spawn_inner<T>(future: T, meta: SpawnMeta<'_>) -> JoinHandle<T::Output> |
181 | 0 | where |
182 | 0 | T: Future + Send + 'static, |
183 | 0 | T::Output: Send + 'static, |
184 | 0 | { |
185 | | use crate::runtime::{context, task}; |
186 | | |
187 | | #[cfg(all( |
188 | | tokio_unstable, |
189 | | tokio_taskdump, |
190 | | feature = "rt", |
191 | | target_os = "linux", |
192 | | any( |
193 | | target_arch = "aarch64", |
194 | | target_arch = "x86", |
195 | | target_arch = "x86_64" |
196 | | ) |
197 | | ))] |
198 | | let future = task::trace::Trace::root(future); |
199 | 0 | let id = task::Id::next(); |
200 | 0 | let task = crate::util::trace::task(future, "task", meta, id.as_u64()); |
201 | 0 |
|
202 | 0 | match context::with_current(|handle| handle.spawn(task, id)) { |
203 | 0 | Ok(join_handle) => join_handle, |
204 | 0 | Err(e) => panic!("{}", e), |
205 | | } |
206 | 0 | } |
207 | | } |