Coverage Report

Created: 2025-11-16 06:35

next uncovered line (L), next uncovered region (R), next uncovered branch (B)
/rust/registry/src/index.crates.io-1949cf8c6b5b557f/aws-lc-sys-0.32.2/aws-lc/crypto/mem.c
Line
Count
Source
1
/* Copyright (C) 1995-1998 Eric Young (eay@cryptsoft.com)
2
 * All rights reserved.
3
 *
4
 * This package is an SSL implementation written
5
 * by Eric Young (eay@cryptsoft.com).
6
 * The implementation was written so as to conform with Netscapes SSL.
7
 *
8
 * This library is free for commercial and non-commercial use as long as
9
 * the following conditions are aheared to.  The following conditions
10
 * apply to all code found in this distribution, be it the RC4, RSA,
11
 * lhash, DES, etc., code; not just the SSL code.  The SSL documentation
12
 * included with this distribution is covered by the same copyright terms
13
 * except that the holder is Tim Hudson (tjh@cryptsoft.com).
14
 *
15
 * Copyright remains Eric Young's, and as such any Copyright notices in
16
 * the code are not to be removed.
17
 * If this package is used in a product, Eric Young should be given attribution
18
 * as the author of the parts of the library used.
19
 * This can be in the form of a textual message at program startup or
20
 * in documentation (online or textual) provided with the package.
21
 *
22
 * Redistribution and use in source and binary forms, with or without
23
 * modification, are permitted provided that the following conditions
24
 * are met:
25
 * 1. Redistributions of source code must retain the copyright
26
 *    notice, this list of conditions and the following disclaimer.
27
 * 2. Redistributions in binary form must reproduce the above copyright
28
 *    notice, this list of conditions and the following disclaimer in the
29
 *    documentation and/or other materials provided with the distribution.
30
 * 3. All advertising materials mentioning features or use of this software
31
 *    must display the following acknowledgement:
32
 *    "This product includes cryptographic software written by
33
 *     Eric Young (eay@cryptsoft.com)"
34
 *    The word 'cryptographic' can be left out if the rouines from the library
35
 *    being used are not cryptographic related :-).
36
 * 4. If you include any Windows specific code (or a derivative thereof) from
37
 *    the apps directory (application code) you must include an acknowledgement:
38
 *    "This product includes software written by Tim Hudson (tjh@cryptsoft.com)"
39
 *
40
 * THIS SOFTWARE IS PROVIDED BY ERIC YOUNG ``AS IS'' AND
41
 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
42
 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
43
 * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
44
 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
45
 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
46
 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
47
 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
48
 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
49
 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
50
 * SUCH DAMAGE.
51
 *
52
 * The licence and distribution terms for any publically available version or
53
 * derivative of this code cannot be changed.  i.e. this code cannot simply be
54
 * copied and put under another distribution licence
55
 * [including the GNU Public Licence.] */
56
57
#include <openssl/mem.h>
58
59
#include <assert.h>
60
#include <errno.h>
61
#include <limits.h>
62
#include <stdarg.h>
63
#include <stdio.h>
64
#include <stdlib.h>
65
66
#include <openssl/err.h>
67
68
#if defined(OPENSSL_WINDOWS)
69
OPENSSL_MSVC_PRAGMA(warning(push, 3))
70
#include <windows.h>
71
OPENSSL_MSVC_PRAGMA(warning(pop))
72
#endif
73
74
#include "internal.h"
75
76
77
0
#define OPENSSL_MALLOC_PREFIX 8
78
OPENSSL_STATIC_ASSERT(OPENSSL_MALLOC_PREFIX >= sizeof(size_t),
79
                      size_t_too_large)
80
81
#if defined(OPENSSL_ASAN)
82
void __asan_poison_memory_region(const volatile void *addr, size_t size);
83
void __asan_unpoison_memory_region(const volatile void *addr, size_t size);
84
#else
85
0
static void __asan_poison_memory_region(const void *addr, size_t size) {}
86
0
static void __asan_unpoison_memory_region(const void *addr, size_t size) {}
87
#endif
88
89
0
#define AWSLC_FILE ""
90
0
#define AWSLC_LINE 0
91
92
// sdallocx is a sized |free| function. By passing the size (which we happen to
93
// always know in BoringSSL), the malloc implementation can save work. We cannot
94
// depend on |sdallocx| being available, however, so it's a weak symbol.
95
//
96
// This will always be safe, but will only be overridden if the malloc
97
// implementation is statically linked with BoringSSL. So, if |sdallocx| is
98
// provided in, say, libc.so, we still won't use it because that's dynamically
99
// linked. This isn't an ideal result, but its helps in some cases.
100
WEAK_SYMBOL_FUNC(void, sdallocx, (void *ptr, size_t size, int flags))
101
102
// The following four functions can be defined to override default heap
103
// allocation and freeing. If defined, it is the responsibility of
104
// |OPENSSL_memory_free| to zero out the memory before returning it to the
105
// system. |OPENSSL_memory_free| will not be passed NULL pointers.
106
//
107
// WARNING: These functions are called on every allocation and free in
108
// BoringSSL across the entire process. They may be called by any code in the
109
// process which calls BoringSSL, including in process initializers and thread
110
// destructors. When called, BoringSSL may hold pthreads locks. Any other code
111
// in the process which, directly or indirectly, calls BoringSSL may be on the
112
// call stack and may itself be using arbitrary synchronization primitives.
113
//
114
// As a result, these functions may not have the usual programming environment
115
// available to most C or C++ code. In particular, they may not call into
116
// BoringSSL, or any library which depends on BoringSSL. Any synchronization
117
// primitives used must tolerate every other synchronization primitive linked
118
// into the process, including pthreads locks. Failing to meet these constraints
119
// may result in deadlocks, crashes, or memory corruption.
120
WEAK_SYMBOL_FUNC(void *, OPENSSL_memory_alloc, (size_t size))
121
WEAK_SYMBOL_FUNC(void, OPENSSL_memory_free, (void *ptr))
122
WEAK_SYMBOL_FUNC(size_t, OPENSSL_memory_get_size, (void *ptr))
123
WEAK_SYMBOL_FUNC(void *, OPENSSL_memory_realloc, (void *ptr, size_t size))
124
125
// Control function for crypto memory debugging Always returns 0 in AWS-LC
126
// |mode| Unused parameter AWS-LC doesn't support |CRYPTO_MDEBUG|
127
// Always returns 0
128
0
int CRYPTO_mem_ctrl(int mode) {
129
0
  #if defined (OPENSSL_NO_CRYPTO_MDEBUG)
130
0
    (void)mode;  // Silence unused parameter warning
131
0
    return 0;
132
  #else
133
    #error "Must compile with OPENSSL_NO_CRYPTO_MDEBUG defined."
134
  #endif
135
0
}
136
137
// Below can be customized by |CRYPTO_set_mem_functions| only once.
138
static void *(*malloc_impl)(size_t, const char *, int) = NULL;
139
static void *(*realloc_impl)(void *, size_t, const char *, int) = NULL;
140
static void (*free_impl)(void *, const char *, int) = NULL;
141
142
int CRYPTO_set_mem_functions(
143
  void *(*m)(size_t, const char *, int),
144
  void *(*r)(void *, size_t, const char *, int),
145
0
  void (*f)(void *, const char *, int)) {
146
0
  if (m == NULL || r == NULL || f == NULL) {
147
0
    return 0;
148
0
  }
149
  // |malloc_impl|, |realloc_impl| and |free_impl| can be set only once.
150
0
  if (malloc_impl != NULL || realloc_impl != NULL || free_impl != NULL) {
151
0
    return 0;
152
0
  }
153
0
  if (OPENSSL_memory_alloc != NULL ||
154
0
      OPENSSL_memory_free != NULL ||
155
0
      OPENSSL_memory_get_size != NULL ||
156
0
      OPENSSL_memory_realloc != NULL) {
157
    // |OPENSSL_malloc/free/realloc| are customized by overriding the symbols.
158
0
    OPENSSL_PUT_ERROR(CRYPTO, ERR_R_SHOULD_NOT_HAVE_BEEN_CALLED);
159
0
    return 0;
160
0
  }
161
0
  malloc_impl = m;
162
0
  realloc_impl = r;
163
0
  free_impl = f;
164
0
  return 1;
165
0
}
166
167
0
void *OPENSSL_malloc(size_t size) {
168
0
  if (malloc_impl != NULL) {
169
0
    assert(OPENSSL_memory_alloc == NULL);
170
0
    assert(OPENSSL_memory_realloc == NULL);
171
0
    assert(OPENSSL_memory_free == NULL);
172
0
    assert(OPENSSL_memory_get_size == NULL);
173
0
    assert(realloc_impl != NULL);
174
0
    assert(free_impl != NULL);
175
0
    return malloc_impl(size, AWSLC_FILE, AWSLC_LINE);
176
0
  }
177
0
  if (OPENSSL_memory_alloc != NULL) {
178
0
    assert(OPENSSL_memory_free != NULL);
179
0
    assert(OPENSSL_memory_get_size != NULL);
180
0
    void *ptr = OPENSSL_memory_alloc(size);
181
0
    if (ptr == NULL && size != 0) {
182
0
      goto err;
183
0
    }
184
0
    return ptr;
185
0
  }
186
187
0
  if (size + OPENSSL_MALLOC_PREFIX < size) {
188
0
    goto err;
189
0
  }
190
191
0
  void *ptr = malloc(size + OPENSSL_MALLOC_PREFIX);
192
0
  if (ptr == NULL) {
193
0
    goto err;
194
0
  }
195
196
0
  *(size_t *)ptr = size;
197
198
0
  __asan_poison_memory_region(ptr, OPENSSL_MALLOC_PREFIX);
199
0
  return ((uint8_t *)ptr) + OPENSSL_MALLOC_PREFIX;
200
201
0
 err:
202
  // This only works because ERR does not call OPENSSL_malloc.
203
0
  OPENSSL_PUT_ERROR(CRYPTO, ERR_R_MALLOC_FAILURE);
204
0
  return NULL;
205
0
}
206
207
0
void *OPENSSL_zalloc(size_t size) {
208
0
  void *ret = OPENSSL_malloc(size);
209
0
  if (ret != NULL) {
210
0
    OPENSSL_memset(ret, 0, size);
211
0
  }
212
0
  return ret;
213
0
}
214
215
0
void *OPENSSL_calloc(size_t num, size_t size) {
216
0
  if (size != 0 && num > SIZE_MAX / size) {
217
0
    OPENSSL_PUT_ERROR(CRYPTO, ERR_R_OVERFLOW);
218
0
    return NULL;
219
0
  }
220
221
0
  return OPENSSL_zalloc(num * size);
222
0
}
223
224
0
void OPENSSL_free(void *orig_ptr) {
225
0
  if (orig_ptr == NULL) {
226
0
    return;
227
0
  }
228
0
  if (free_impl != NULL) {
229
0
    assert(OPENSSL_memory_alloc == NULL);
230
0
    assert(OPENSSL_memory_realloc == NULL);
231
0
    assert(OPENSSL_memory_free == NULL);
232
0
    assert(OPENSSL_memory_get_size == NULL);
233
0
    assert(malloc_impl != NULL);
234
0
    assert(realloc_impl != NULL);
235
0
    free_impl(orig_ptr, AWSLC_FILE, AWSLC_LINE);
236
0
    return;
237
0
  }
238
239
0
  if (OPENSSL_memory_free != NULL) {
240
0
    OPENSSL_memory_free(orig_ptr);
241
0
    return;
242
0
  }
243
244
0
  void *ptr = ((uint8_t *)orig_ptr) - OPENSSL_MALLOC_PREFIX;
245
0
  __asan_unpoison_memory_region(ptr, OPENSSL_MALLOC_PREFIX);
246
247
0
  size_t size = *(size_t *)ptr;
248
0
  OPENSSL_cleanse(ptr, size + OPENSSL_MALLOC_PREFIX);
249
250
// ASan knows to intercept malloc and free, but not sdallocx.
251
#if defined(OPENSSL_ASAN)
252
  (void)sdallocx;
253
  free(ptr);
254
  (void) sdallocx;
255
#else
256
0
  if (sdallocx) {
257
0
    sdallocx(ptr, size + OPENSSL_MALLOC_PREFIX, 0 /* flags */);
258
0
  } else {
259
0
    free(ptr);
260
0
  }
261
0
#endif
262
0
}
263
264
0
void *OPENSSL_realloc(void *orig_ptr, size_t new_size) {
265
0
  if (orig_ptr == NULL) {
266
0
    return OPENSSL_malloc(new_size);
267
0
  }
268
0
  if (realloc_impl != NULL) {
269
0
    assert(OPENSSL_memory_alloc == NULL);
270
0
    assert(OPENSSL_memory_realloc == NULL);
271
0
    assert(OPENSSL_memory_free == NULL);
272
0
    assert(OPENSSL_memory_get_size == NULL);
273
0
    assert(malloc_impl != NULL);
274
0
    assert(free_impl != NULL);
275
0
    return realloc_impl(orig_ptr, new_size, AWSLC_FILE, AWSLC_LINE);
276
0
  }
277
0
  if (OPENSSL_memory_realloc != NULL) {
278
0
    assert(OPENSSL_memory_alloc != NULL);
279
0
    assert(OPENSSL_memory_free != NULL);
280
0
    assert(OPENSSL_memory_get_size != NULL);
281
0
    return OPENSSL_memory_realloc(orig_ptr, new_size);
282
0
  }
283
0
  size_t old_size;
284
0
  if (OPENSSL_memory_get_size != NULL) {
285
0
    old_size = OPENSSL_memory_get_size(orig_ptr);
286
0
  } else {
287
0
    void *ptr = ((uint8_t *)orig_ptr) - OPENSSL_MALLOC_PREFIX;
288
0
    __asan_unpoison_memory_region(ptr, OPENSSL_MALLOC_PREFIX);
289
0
    old_size = *(size_t *)ptr;
290
0
    __asan_poison_memory_region(ptr, OPENSSL_MALLOC_PREFIX);
291
0
  }
292
293
0
  void *ret = OPENSSL_malloc(new_size);
294
0
  if (ret == NULL) {
295
0
    return NULL;
296
0
  }
297
298
0
  size_t to_copy = new_size;
299
0
  if (old_size < to_copy) {
300
0
    to_copy = old_size;
301
0
  }
302
303
0
  memcpy(ret, orig_ptr, to_copy);
304
0
  OPENSSL_free(orig_ptr);
305
306
0
  return ret;
307
0
}
308
309
0
void OPENSSL_cleanse(void *ptr, size_t len) {
310
311
0
  if (ptr == NULL || len == 0) {
312
0
    return;
313
0
  }
314
315
#if defined(OPENSSL_WINDOWS)
316
  SecureZeroMemory(ptr, len);
317
#else
318
0
  OPENSSL_memset(ptr, 0, len);
319
320
0
#if !defined(OPENSSL_NO_ASM)
321
  /* As best as we can tell, this is sufficient to break any optimisations that
322
     might try to eliminate "superfluous" memsets. If there's an easy way to
323
     detect memset_s, it would be better to use that. */
324
0
  __asm__ __volatile__("" : : "r"(ptr) : "memory");
325
0
#endif
326
0
#endif  // !OPENSSL_NO_ASM
327
0
}
328
329
0
void OPENSSL_clear_free(void *ptr, size_t unused) { OPENSSL_free(ptr); }
330
331
0
int CRYPTO_secure_malloc_init(size_t size, size_t min_size) { return 0; }
332
333
0
int CRYPTO_secure_malloc_initialized(void) { return 0; }
334
335
0
size_t CRYPTO_secure_used(void) { return 0; }
336
337
0
void *OPENSSL_secure_malloc(size_t size) { return OPENSSL_malloc(size); }
338
339
0
void *OPENSSL_secure_zalloc(size_t size) { return OPENSSL_zalloc(size); }
340
341
0
void OPENSSL_secure_clear_free(void *ptr, size_t len) {
342
0
  OPENSSL_clear_free(ptr, len);
343
0
}
344
345
0
int CRYPTO_memcmp(const void *in_a, const void *in_b, size_t len) {
346
0
  const uint8_t *a = in_a;
347
0
  const uint8_t *b = in_b;
348
0
  uint8_t x = 0;
349
350
0
  for (size_t i = 0; i < len; i++) {
351
0
    x |= a[i] ^ b[i];
352
0
  }
353
354
0
  return x;
355
0
}
356
357
0
uint32_t OPENSSL_hash32(const void *ptr, size_t len) {
358
  // These are the FNV-1a parameters for 32 bits.
359
0
  static const uint32_t kPrime = 16777619u;
360
0
  static const uint32_t kOffsetBasis = 2166136261u;
361
362
0
  const uint8_t *in = ptr;
363
0
  uint32_t h = kOffsetBasis;
364
365
0
  for (size_t i = 0; i < len; i++) {
366
0
    h ^= in[i];
367
0
    h *= kPrime;
368
0
  }
369
370
0
  return h;
371
0
}
372
373
0
uint32_t OPENSSL_strhash(const char *s) { return OPENSSL_hash32(s, strlen(s)); }
374
375
0
size_t OPENSSL_strnlen(const char *s, size_t len) {
376
0
  for (size_t i = 0; i < len; i++) {
377
0
    if (s[i] == 0) {
378
0
      return i;
379
0
    }
380
0
  }
381
382
0
  return len;
383
0
}
384
385
0
char *OPENSSL_strdup(const char *s) {
386
0
  if (s == NULL) {
387
0
    return NULL;
388
0
  }
389
  // Copy the NUL terminator.
390
0
  return OPENSSL_memdup(s, strlen(s) + 1);
391
0
}
392
393
0
int OPENSSL_isalpha(int c) {
394
0
  return (c >= 'a' && c <= 'z') || (c >= 'A' && c <= 'Z');
395
0
}
396
397
0
int OPENSSL_isdigit(int c) { return c >= '0' && c <= '9'; }
398
399
0
int OPENSSL_isxdigit(int c) {
400
0
  return OPENSSL_isdigit(c) || (c >= 'a' && c <= 'f') || (c >= 'A' && c <= 'F');
401
0
}
402
403
0
int OPENSSL_fromxdigit(uint8_t *out, int c) {
404
0
  if (OPENSSL_isdigit(c)) {
405
0
    *out = c - '0';
406
0
    return 1;
407
0
  }
408
0
  if ('a' <= c && c <= 'f') {
409
0
    *out = c - 'a' + 10;
410
0
    return 1;
411
0
  }
412
0
  if ('A' <= c && c <= 'F') {
413
0
    *out = c - 'A' + 10;
414
0
    return 1;
415
0
  }
416
0
  return 0;
417
0
}
418
419
0
uint8_t *OPENSSL_hexstr2buf(const char *str, size_t *len) {
420
0
  if (str == NULL || len == NULL) {
421
0
    return NULL;
422
0
  }
423
424
0
  const size_t slen = OPENSSL_strnlen(str, INT16_MAX);
425
0
  if (slen % 2 != 0) {
426
0
    return NULL;
427
0
  }
428
429
0
  const size_t buflen = slen / 2;
430
0
  uint8_t *buf = OPENSSL_zalloc(buflen);
431
0
  if (buf == NULL) {
432
0
    return NULL;
433
0
  }
434
435
0
  for (size_t i = 0; i < buflen; i++) {
436
0
    uint8_t hi, lo;
437
0
    if (!OPENSSL_fromxdigit(&hi, str[2 * i]) ||
438
0
        !OPENSSL_fromxdigit(&lo, str[2 * i + 1])) {
439
0
      OPENSSL_free(buf);
440
0
      return NULL;
441
0
    }
442
0
    buf[i] = (hi << 4) | lo;
443
0
  }
444
445
0
  *len = buflen;
446
0
  return buf;
447
0
}
448
449
0
int OPENSSL_isalnum(int c) { return OPENSSL_isalpha(c) || OPENSSL_isdigit(c); }
450
451
0
int OPENSSL_tolower(int c) {
452
0
  if (c >= 'A' && c <= 'Z') {
453
0
    return c + ('a' - 'A');
454
0
  }
455
0
  return c;
456
0
}
457
458
0
int OPENSSL_isspace(int c) {
459
0
  return c == '\t' || c == '\n' || c == '\v' || c == '\f' || c == '\r' ||
460
0
         c == ' ';
461
0
}
462
463
0
int OPENSSL_strcasecmp(const char *a, const char *b) {
464
0
  for (size_t i = 0;; i++) {
465
0
    const int aa = OPENSSL_tolower(a[i]);
466
0
    const int bb = OPENSSL_tolower(b[i]);
467
468
0
    if (aa < bb) {
469
0
      return -1;
470
0
    } else if (aa > bb) {
471
0
      return 1;
472
0
    } else if (aa == 0) {
473
0
      return 0;
474
0
    }
475
0
  }
476
0
}
477
478
0
int OPENSSL_strncasecmp(const char *a, const char *b, size_t n) {
479
0
  for (size_t i = 0; i < n; i++) {
480
0
    const int aa = OPENSSL_tolower(a[i]);
481
0
    const int bb = OPENSSL_tolower(b[i]);
482
483
0
    if (aa < bb) {
484
0
      return -1;
485
0
    } else if (aa > bb) {
486
0
      return 1;
487
0
    } else if (aa == 0) {
488
0
      return 0;
489
0
    }
490
0
  }
491
492
0
  return 0;
493
0
}
494
495
0
int BIO_snprintf(char *buf, size_t n, const char *format, ...) {
496
0
  va_list args;
497
0
  va_start(args, format);
498
0
  int ret = BIO_vsnprintf(buf, n, format, args);
499
0
  va_end(args);
500
0
  return ret;
501
0
}
502
503
0
int BIO_vsnprintf(char *buf, size_t n, const char *format, va_list args) {
504
0
  return vsnprintf(buf, n, format, args);
505
0
}
506
507
int OPENSSL_vasprintf_internal(char **str, const char *format, va_list args,
508
0
                               int system_malloc) {
509
0
  void *(*allocate)(size_t) = system_malloc ? malloc : OPENSSL_malloc;
510
0
  void (*deallocate)(void *) = system_malloc ? free : OPENSSL_free;
511
0
  void *(*reallocate)(void *, size_t) =
512
0
      system_malloc ? realloc : OPENSSL_realloc;
513
0
  char *candidate = NULL;
514
0
  size_t candidate_len = 64;  // TODO(bbe) what's the best initial size?
515
516
0
  if ((candidate = allocate(candidate_len)) == NULL) {
517
0
    goto err;
518
0
  }
519
0
  va_list args_copy;
520
0
  va_copy(args_copy, args);
521
0
  int ret = vsnprintf(candidate, candidate_len, format, args_copy);
522
0
  va_end(args_copy);
523
0
  if (ret < 0) {
524
0
    goto err;
525
0
  }
526
0
  if ((size_t)ret >= candidate_len) {
527
    // Too big to fit in allocation.
528
0
    char *tmp;
529
530
0
    candidate_len = (size_t)ret + 1;
531
0
    if ((tmp = reallocate(candidate, candidate_len)) == NULL) {
532
0
      goto err;
533
0
    }
534
0
    candidate = tmp;
535
0
    ret = vsnprintf(candidate, candidate_len, format, args);
536
0
  }
537
  // At this point this should not happen unless vsnprintf is insane.
538
0
  if (ret < 0 || (size_t)ret >= candidate_len) {
539
0
    goto err;
540
0
  }
541
0
  *str = candidate;
542
0
  return ret;
543
544
0
 err:
545
0
  deallocate(candidate);
546
0
  *str = NULL;
547
0
  errno = ENOMEM;
548
0
  return -1;
549
0
}
550
551
0
int OPENSSL_vasprintf(char **str, const char *format, va_list args) {
552
0
  return OPENSSL_vasprintf_internal(str, format, args, /*system_malloc=*/0);
553
0
}
554
555
0
int OPENSSL_asprintf(char **str, const char *format, ...) {
556
0
  va_list args;
557
0
  va_start(args, format);
558
0
  int ret = OPENSSL_vasprintf(str, format, args);
559
0
  va_end(args);
560
0
  return ret;
561
0
}
562
563
0
char *OPENSSL_strndup(const char *str, size_t size) {
564
0
  size = OPENSSL_strnlen(str, size);
565
566
0
  size_t alloc_size = size + 1;
567
0
  if (alloc_size < size) {
568
    // overflow
569
0
    OPENSSL_PUT_ERROR(CRYPTO, ERR_R_MALLOC_FAILURE);
570
0
    return NULL;
571
0
  }
572
0
  char *ret = OPENSSL_malloc(alloc_size);
573
0
  if (ret == NULL) {
574
0
    return NULL;
575
0
  }
576
577
0
  OPENSSL_memcpy(ret, str, size);
578
0
  ret[size] = '\0';
579
0
  return ret;
580
0
}
581
582
0
size_t OPENSSL_strlcpy(char *dst, const char *src, size_t dst_size) {
583
0
  size_t l = 0;
584
585
0
  for (; dst_size > 1 && *src; dst_size--) {
586
0
    *dst++ = *src++;
587
0
    l++;
588
0
  }
589
590
0
  if (dst_size) {
591
0
    *dst = 0;
592
0
  }
593
594
0
  return l + strlen(src);
595
0
}
596
597
0
size_t OPENSSL_strlcat(char *dst, const char *src, size_t dst_size) {
598
0
  size_t l = 0;
599
0
  for (; dst_size > 0 && *dst; dst_size--, dst++) {
600
0
    l++;
601
0
  }
602
0
  return l + OPENSSL_strlcpy(dst, src, dst_size);
603
0
}
604
605
0
void *OPENSSL_memdup(const void *data, size_t size) {
606
0
  if (size == 0) {
607
0
    return NULL;
608
0
  }
609
610
0
  void *ret = OPENSSL_malloc(size);
611
0
  if (ret == NULL) {
612
0
    return NULL;
613
0
  }
614
615
0
  OPENSSL_memcpy(ret, data, size);
616
0
  return ret;
617
0
}
618
619
0
void *CRYPTO_malloc(size_t size, const char *file, int line) {
620
0
  return OPENSSL_malloc(size);
621
0
}
622
623
0
void *CRYPTO_realloc(void *ptr, size_t new_size, const char *file, int line) {
624
0
  return OPENSSL_realloc(ptr, new_size);
625
0
}
626
627
0
void CRYPTO_free(void *ptr, const char *file, int line) { OPENSSL_free(ptr); }