Coverage Report

Created: 2025-07-12 06:12

/rust/registry/src/index.crates.io-6f17d22bba15001f/rand-0.9.1/src/distr/float.rs
Line
Count
Source (jump to first uncovered line)
1
// Copyright 2018 Developers of the Rand project.
2
//
3
// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
4
// https://www.apache.org/licenses/LICENSE-2.0> or the MIT license
5
// <LICENSE-MIT or https://opensource.org/licenses/MIT>, at your
6
// option. This file may not be copied, modified, or distributed
7
// except according to those terms.
8
9
//! Basic floating-point number distributions
10
11
use crate::distr::utils::{FloatAsSIMD, FloatSIMDUtils, IntAsSIMD};
12
use crate::distr::{Distribution, StandardUniform};
13
use crate::Rng;
14
use core::mem;
15
#[cfg(feature = "simd_support")]
16
use core::simd::prelude::*;
17
18
#[cfg(feature = "serde")]
19
use serde::{Deserialize, Serialize};
20
21
/// A distribution to sample floating point numbers uniformly in the half-open
22
/// interval `(0, 1]`, i.e. including 1 but not 0.
23
///
24
/// All values that can be generated are of the form `n * ε/2`. For `f32`
25
/// the 24 most significant random bits of a `u32` are used and for `f64` the
26
/// 53 most significant bits of a `u64` are used. The conversion uses the
27
/// multiplicative method.
28
///
29
/// See also: [`StandardUniform`] which samples from `[0, 1)`, [`Open01`]
30
/// which samples from `(0, 1)` and [`Uniform`] which samples from arbitrary
31
/// ranges.
32
///
33
/// # Example
34
/// ```
35
/// use rand::Rng;
36
/// use rand::distr::OpenClosed01;
37
///
38
/// let val: f32 = rand::rng().sample(OpenClosed01);
39
/// println!("f32 from (0, 1): {}", val);
40
/// ```
41
///
42
/// [`StandardUniform`]: crate::distr::StandardUniform
43
/// [`Open01`]: crate::distr::Open01
44
/// [`Uniform`]: crate::distr::uniform::Uniform
45
#[derive(Clone, Copy, Debug, Default)]
46
#[cfg_attr(feature = "serde", derive(Serialize, Deserialize))]
47
pub struct OpenClosed01;
48
49
/// A distribution to sample floating point numbers uniformly in the open
50
/// interval `(0, 1)`, i.e. not including either endpoint.
51
///
52
/// All values that can be generated are of the form `n * ε + ε/2`. For `f32`
53
/// the 23 most significant random bits of an `u32` are used, for `f64` 52 from
54
/// an `u64`. The conversion uses a transmute-based method.
55
///
56
/// See also: [`StandardUniform`] which samples from `[0, 1)`, [`OpenClosed01`]
57
/// which samples from `(0, 1]` and [`Uniform`] which samples from arbitrary
58
/// ranges.
59
///
60
/// # Example
61
/// ```
62
/// use rand::Rng;
63
/// use rand::distr::Open01;
64
///
65
/// let val: f32 = rand::rng().sample(Open01);
66
/// println!("f32 from (0, 1): {}", val);
67
/// ```
68
///
69
/// [`StandardUniform`]: crate::distr::StandardUniform
70
/// [`OpenClosed01`]: crate::distr::OpenClosed01
71
/// [`Uniform`]: crate::distr::uniform::Uniform
72
#[derive(Clone, Copy, Debug, Default)]
73
#[cfg_attr(feature = "serde", derive(Serialize, Deserialize))]
74
pub struct Open01;
75
76
// This trait is needed by both this lib and rand_distr hence is a hidden export
77
#[doc(hidden)]
78
pub trait IntoFloat {
79
    type F;
80
81
    /// Helper method to combine the fraction and a constant exponent into a
82
    /// float.
83
    ///
84
    /// Only the least significant bits of `self` may be set, 23 for `f32` and
85
    /// 52 for `f64`.
86
    /// The resulting value will fall in a range that depends on the exponent.
87
    /// As an example the range with exponent 0 will be
88
    /// [2<sup>0</sup>..2<sup>1</sup>), which is [1..2).
89
    fn into_float_with_exponent(self, exponent: i32) -> Self::F;
90
}
91
92
macro_rules! float_impls {
93
    ($($meta:meta)?, $ty:ident, $uty:ident, $f_scalar:ident, $u_scalar:ty,
94
     $fraction_bits:expr, $exponent_bias:expr) => {
95
        $(#[cfg($meta)])?
96
        impl IntoFloat for $uty {
97
            type F = $ty;
98
            #[inline(always)]
99
0
            fn into_float_with_exponent(self, exponent: i32) -> $ty {
100
0
                // The exponent is encoded using an offset-binary representation
101
0
                let exponent_bits: $u_scalar =
102
0
                    (($exponent_bias + exponent) as $u_scalar) << $fraction_bits;
103
0
                $ty::from_bits(self | $uty::splat(exponent_bits))
104
0
            }
Unexecuted instantiation: <u32 as rand::distr::float::IntoFloat>::into_float_with_exponent
Unexecuted instantiation: <u64 as rand::distr::float::IntoFloat>::into_float_with_exponent
105
        }
106
107
        $(#[cfg($meta)])?
108
        impl Distribution<$ty> for StandardUniform {
109
0
            fn sample<R: Rng + ?Sized>(&self, rng: &mut R) -> $ty {
110
0
                // Multiply-based method; 24/53 random bits; [0, 1) interval.
111
0
                // We use the most significant bits because for simple RNGs
112
0
                // those are usually more random.
113
0
                let float_size = mem::size_of::<$f_scalar>() as $u_scalar * 8;
114
0
                let precision = $fraction_bits + 1;
115
0
                let scale = 1.0 / ((1 as $u_scalar << precision) as $f_scalar);
116
0
117
0
                let value: $uty = rng.random();
118
0
                let value = value >> $uty::splat(float_size - precision);
119
0
                $ty::splat(scale) * $ty::cast_from_int(value)
120
0
            }
Unexecuted instantiation: <rand::distr::StandardUniform as rand::distr::distribution::Distribution<f32>>::sample::<_>
Unexecuted instantiation: <rand::distr::StandardUniform as rand::distr::distribution::Distribution<f64>>::sample::<_>
121
        }
122
123
        $(#[cfg($meta)])?
124
        impl Distribution<$ty> for OpenClosed01 {
125
0
            fn sample<R: Rng + ?Sized>(&self, rng: &mut R) -> $ty {
126
0
                // Multiply-based method; 24/53 random bits; (0, 1] interval.
127
0
                // We use the most significant bits because for simple RNGs
128
0
                // those are usually more random.
129
0
                let float_size = mem::size_of::<$f_scalar>() as $u_scalar * 8;
130
0
                let precision = $fraction_bits + 1;
131
0
                let scale = 1.0 / ((1 as $u_scalar << precision) as $f_scalar);
132
0
133
0
                let value: $uty = rng.random();
134
0
                let value = value >> $uty::splat(float_size - precision);
135
0
                // Add 1 to shift up; will not overflow because of right-shift:
136
0
                $ty::splat(scale) * $ty::cast_from_int(value + $uty::splat(1))
137
0
            }
Unexecuted instantiation: <rand::distr::float::OpenClosed01 as rand::distr::distribution::Distribution<f32>>::sample::<_>
Unexecuted instantiation: <rand::distr::float::OpenClosed01 as rand::distr::distribution::Distribution<f64>>::sample::<_>
138
        }
139
140
        $(#[cfg($meta)])?
141
        impl Distribution<$ty> for Open01 {
142
0
            fn sample<R: Rng + ?Sized>(&self, rng: &mut R) -> $ty {
143
0
                // Transmute-based method; 23/52 random bits; (0, 1) interval.
144
0
                // We use the most significant bits because for simple RNGs
145
0
                // those are usually more random.
146
0
                let float_size = mem::size_of::<$f_scalar>() as $u_scalar * 8;
147
0
148
0
                let value: $uty = rng.random();
149
0
                let fraction = value >> $uty::splat(float_size - $fraction_bits);
150
0
                fraction.into_float_with_exponent(0) - $ty::splat(1.0 - $f_scalar::EPSILON / 2.0)
151
0
            }
Unexecuted instantiation: <rand::distr::float::Open01 as rand::distr::distribution::Distribution<f32>>::sample::<_>
Unexecuted instantiation: <rand::distr::float::Open01 as rand::distr::distribution::Distribution<f64>>::sample::<_>
152
        }
153
    }
154
}
155
156
float_impls! { , f32, u32, f32, u32, 23, 127 }
157
float_impls! { , f64, u64, f64, u64, 52, 1023 }
158
159
#[cfg(feature = "simd_support")]
160
float_impls! { feature = "simd_support", f32x2, u32x2, f32, u32, 23, 127 }
161
#[cfg(feature = "simd_support")]
162
float_impls! { feature = "simd_support", f32x4, u32x4, f32, u32, 23, 127 }
163
#[cfg(feature = "simd_support")]
164
float_impls! { feature = "simd_support", f32x8, u32x8, f32, u32, 23, 127 }
165
#[cfg(feature = "simd_support")]
166
float_impls! { feature = "simd_support", f32x16, u32x16, f32, u32, 23, 127 }
167
168
#[cfg(feature = "simd_support")]
169
float_impls! { feature = "simd_support", f64x2, u64x2, f64, u64, 52, 1023 }
170
#[cfg(feature = "simd_support")]
171
float_impls! { feature = "simd_support", f64x4, u64x4, f64, u64, 52, 1023 }
172
#[cfg(feature = "simd_support")]
173
float_impls! { feature = "simd_support", f64x8, u64x8, f64, u64, 52, 1023 }
174
175
#[cfg(test)]
176
mod tests {
177
    use super::*;
178
    use crate::rngs::mock::StepRng;
179
180
    const EPSILON32: f32 = f32::EPSILON;
181
    const EPSILON64: f64 = f64::EPSILON;
182
183
    macro_rules! test_f32 {
184
        ($fnn:ident, $ty:ident, $ZERO:expr, $EPSILON:expr) => {
185
            #[test]
186
            fn $fnn() {
187
                let two = $ty::splat(2.0);
188
189
                // StandardUniform
190
                let mut zeros = StepRng::new(0, 0);
191
                assert_eq!(zeros.random::<$ty>(), $ZERO);
192
                let mut one = StepRng::new(1 << 8 | 1 << (8 + 32), 0);
193
                assert_eq!(one.random::<$ty>(), $EPSILON / two);
194
                let mut max = StepRng::new(!0, 0);
195
                assert_eq!(max.random::<$ty>(), $ty::splat(1.0) - $EPSILON / two);
196
197
                // OpenClosed01
198
                let mut zeros = StepRng::new(0, 0);
199
                assert_eq!(zeros.sample::<$ty, _>(OpenClosed01), $ZERO + $EPSILON / two);
200
                let mut one = StepRng::new(1 << 8 | 1 << (8 + 32), 0);
201
                assert_eq!(one.sample::<$ty, _>(OpenClosed01), $EPSILON);
202
                let mut max = StepRng::new(!0, 0);
203
                assert_eq!(max.sample::<$ty, _>(OpenClosed01), $ZERO + $ty::splat(1.0));
204
205
                // Open01
206
                let mut zeros = StepRng::new(0, 0);
207
                assert_eq!(zeros.sample::<$ty, _>(Open01), $ZERO + $EPSILON / two);
208
                let mut one = StepRng::new(1 << 9 | 1 << (9 + 32), 0);
209
                assert_eq!(
210
                    one.sample::<$ty, _>(Open01),
211
                    $EPSILON / two * $ty::splat(3.0)
212
                );
213
                let mut max = StepRng::new(!0, 0);
214
                assert_eq!(
215
                    max.sample::<$ty, _>(Open01),
216
                    $ty::splat(1.0) - $EPSILON / two
217
                );
218
            }
219
        };
220
    }
221
    test_f32! { f32_edge_cases, f32, 0.0, EPSILON32 }
222
    #[cfg(feature = "simd_support")]
223
    test_f32! { f32x2_edge_cases, f32x2, f32x2::splat(0.0), f32x2::splat(EPSILON32) }
224
    #[cfg(feature = "simd_support")]
225
    test_f32! { f32x4_edge_cases, f32x4, f32x4::splat(0.0), f32x4::splat(EPSILON32) }
226
    #[cfg(feature = "simd_support")]
227
    test_f32! { f32x8_edge_cases, f32x8, f32x8::splat(0.0), f32x8::splat(EPSILON32) }
228
    #[cfg(feature = "simd_support")]
229
    test_f32! { f32x16_edge_cases, f32x16, f32x16::splat(0.0), f32x16::splat(EPSILON32) }
230
231
    macro_rules! test_f64 {
232
        ($fnn:ident, $ty:ident, $ZERO:expr, $EPSILON:expr) => {
233
            #[test]
234
            fn $fnn() {
235
                let two = $ty::splat(2.0);
236
237
                // StandardUniform
238
                let mut zeros = StepRng::new(0, 0);
239
                assert_eq!(zeros.random::<$ty>(), $ZERO);
240
                let mut one = StepRng::new(1 << 11, 0);
241
                assert_eq!(one.random::<$ty>(), $EPSILON / two);
242
                let mut max = StepRng::new(!0, 0);
243
                assert_eq!(max.random::<$ty>(), $ty::splat(1.0) - $EPSILON / two);
244
245
                // OpenClosed01
246
                let mut zeros = StepRng::new(0, 0);
247
                assert_eq!(zeros.sample::<$ty, _>(OpenClosed01), $ZERO + $EPSILON / two);
248
                let mut one = StepRng::new(1 << 11, 0);
249
                assert_eq!(one.sample::<$ty, _>(OpenClosed01), $EPSILON);
250
                let mut max = StepRng::new(!0, 0);
251
                assert_eq!(max.sample::<$ty, _>(OpenClosed01), $ZERO + $ty::splat(1.0));
252
253
                // Open01
254
                let mut zeros = StepRng::new(0, 0);
255
                assert_eq!(zeros.sample::<$ty, _>(Open01), $ZERO + $EPSILON / two);
256
                let mut one = StepRng::new(1 << 12, 0);
257
                assert_eq!(
258
                    one.sample::<$ty, _>(Open01),
259
                    $EPSILON / two * $ty::splat(3.0)
260
                );
261
                let mut max = StepRng::new(!0, 0);
262
                assert_eq!(
263
                    max.sample::<$ty, _>(Open01),
264
                    $ty::splat(1.0) - $EPSILON / two
265
                );
266
            }
267
        };
268
    }
269
    test_f64! { f64_edge_cases, f64, 0.0, EPSILON64 }
270
    #[cfg(feature = "simd_support")]
271
    test_f64! { f64x2_edge_cases, f64x2, f64x2::splat(0.0), f64x2::splat(EPSILON64) }
272
    #[cfg(feature = "simd_support")]
273
    test_f64! { f64x4_edge_cases, f64x4, f64x4::splat(0.0), f64x4::splat(EPSILON64) }
274
    #[cfg(feature = "simd_support")]
275
    test_f64! { f64x8_edge_cases, f64x8, f64x8::splat(0.0), f64x8::splat(EPSILON64) }
276
277
    #[test]
278
    fn value_stability() {
279
        fn test_samples<T: Copy + core::fmt::Debug + PartialEq, D: Distribution<T>>(
280
            distr: &D,
281
            zero: T,
282
            expected: &[T],
283
        ) {
284
            let mut rng = crate::test::rng(0x6f44f5646c2a7334);
285
            let mut buf = [zero; 3];
286
            for x in &mut buf {
287
                *x = rng.sample(distr);
288
            }
289
            assert_eq!(&buf, expected);
290
        }
291
292
        test_samples(
293
            &StandardUniform,
294
            0f32,
295
            &[0.0035963655, 0.7346052, 0.09778172],
296
        );
297
        test_samples(
298
            &StandardUniform,
299
            0f64,
300
            &[0.7346051961657583, 0.20298547462974248, 0.8166436635290655],
301
        );
302
303
        test_samples(&OpenClosed01, 0f32, &[0.003596425, 0.73460525, 0.09778178]);
304
        test_samples(
305
            &OpenClosed01,
306
            0f64,
307
            &[0.7346051961657584, 0.2029854746297426, 0.8166436635290656],
308
        );
309
310
        test_samples(&Open01, 0f32, &[0.0035963655, 0.73460525, 0.09778172]);
311
        test_samples(
312
            &Open01,
313
            0f64,
314
            &[0.7346051961657584, 0.20298547462974248, 0.8166436635290656],
315
        );
316
317
        #[cfg(feature = "simd_support")]
318
        {
319
            // We only test a sub-set of types here. Values are identical to
320
            // non-SIMD types; we assume this pattern continues across all
321
            // SIMD types.
322
323
            test_samples(
324
                &StandardUniform,
325
                f32x2::from([0.0, 0.0]),
326
                &[
327
                    f32x2::from([0.0035963655, 0.7346052]),
328
                    f32x2::from([0.09778172, 0.20298547]),
329
                    f32x2::from([0.34296435, 0.81664366]),
330
                ],
331
            );
332
333
            test_samples(
334
                &StandardUniform,
335
                f64x2::from([0.0, 0.0]),
336
                &[
337
                    f64x2::from([0.7346051961657583, 0.20298547462974248]),
338
                    f64x2::from([0.8166436635290655, 0.7423708925400552]),
339
                    f64x2::from([0.16387782224016323, 0.9087068770169618]),
340
                ],
341
            );
342
        }
343
    }
344
}