1# This file is part of Hypothesis, which may be found at
2# https://github.com/HypothesisWorks/hypothesis/
3#
4# Copyright the Hypothesis Authors.
5# Individual contributors are listed in AUTHORS.rst and the git log.
6#
7# This Source Code Form is subject to the terms of the Mozilla Public License,
8# v. 2.0. If a copy of the MPL was not distributed with this file, You can
9# obtain one at https://mozilla.org/MPL/2.0/.
10
11import math
12from collections import Counter
13from collections.abc import Iterable
14from typing import TYPE_CHECKING, cast
15
16from hypothesis._settings import Phase
17from hypothesis.utils.dynamicvariables import DynamicVariable
18
19if TYPE_CHECKING:
20 from hypothesis.internal.conjecture.engine import PhaseStatistics, StatisticsDict
21
22collector = DynamicVariable(None)
23
24
25def note_statistics(stats_dict: "StatisticsDict") -> None:
26 callback = collector.value
27 if callback is not None:
28 callback(stats_dict)
29
30
31def describe_targets(best_targets: dict[str, float]) -> list[str]:
32 """Return a list of lines describing the results of `target`, if any."""
33 # These lines are included in the general statistics description below,
34 # but also printed immediately below failing examples to alleviate the
35 # "threshold problem" where shrinking can make severe bug look trivial.
36 # See https://github.com/HypothesisWorks/hypothesis/issues/2180
37 if not best_targets:
38 return []
39 elif len(best_targets) == 1:
40 label, score = next(iter(best_targets.items()))
41 return [f"Highest target score: {score:g} ({label=})"]
42 else:
43 lines = ["Highest target scores:"]
44 for label, score in sorted(best_targets.items(), key=lambda x: x[::-1]):
45 lines.append(f"{score:>16g} ({label=})")
46 return lines
47
48
49def format_ms(times: Iterable[float]) -> str:
50 """Format `times` into a string representing approximate milliseconds.
51
52 `times` is a collection of durations in seconds.
53 """
54 ordered = sorted(times)
55 n = len(ordered) - 1
56 if n < 0 or any(math.isnan(t) for t in ordered): # pragma: no cover
57 return "NaN ms"
58 lower = int(ordered[math.floor(n * 0.05)] * 1000)
59 upper = int(ordered[math.ceil(n * 0.95)] * 1000)
60 if upper == 0:
61 return "< 1ms"
62 elif lower == upper:
63 return f"~ {lower}ms"
64 else:
65 return f"~ {lower}-{upper} ms"
66
67
68def describe_statistics(stats_dict: "StatisticsDict") -> str:
69 """Return a multi-line string describing the passed run statistics.
70
71 `stats_dict` must be a dictionary of data in the format collected by
72 `hypothesis.internal.conjecture.engine.ConjectureRunner.statistics`.
73
74 We DO NOT promise that this format will be stable or supported over
75 time, but do aim to make it reasonably useful for downstream users.
76 It's also meant to support benchmarking for research purposes.
77
78 This function is responsible for the report which is printed in the
79 terminal for our pytest --hypothesis-show-statistics option.
80 """
81 lines = [stats_dict["nodeid"] + ":\n"] if "nodeid" in stats_dict else []
82 prev_failures = 0
83 for phase in (p.name for p in list(Phase)[1:]):
84 d = cast("PhaseStatistics", stats_dict.get(phase + "-phase", {}))
85 # Basic information we report for every phase
86 cases = d.get("test-cases", [])
87 if not cases:
88 continue
89 statuses = Counter(t["status"] for t in cases)
90 runtime_ms = format_ms(t["runtime"] for t in cases)
91 drawtime_ms = format_ms(t["drawtime"] for t in cases)
92 lines.append(
93 f" - during {phase} phase ({d['duration-seconds']:.2f} seconds):\n"
94 f" - Typical runtimes: {runtime_ms}, of which {drawtime_ms} in data generation\n"
95 f" - {statuses['valid']} passing examples, {statuses['interesting']} "
96 f"failing examples, {statuses['invalid'] + statuses['overrun']} invalid examples"
97 )
98 # If we've found new distinct failures in this phase, report them
99 distinct_failures = d["distinct-failures"] - prev_failures
100 if distinct_failures:
101 plural = distinct_failures > 1
102 lines.append(
103 " - Found {}{} distinct error{} in this phase".format(
104 distinct_failures, " more" * bool(prev_failures), "s" * plural
105 )
106 )
107 prev_failures = d["distinct-failures"]
108 # Report events during the generate phase, if there were any
109 if phase == "generate":
110 events = Counter(sum((t["events"] for t in cases), []))
111 if events:
112 lines.append(" - Events:")
113 lines += [
114 f" * {100 * v / len(cases):.2f}%, {k}"
115 for k, v in sorted(events.items(), key=lambda x: (-x[1], x[0]))
116 ]
117 # Some additional details on the shrinking phase
118 if phase == "shrink":
119 lines.append(
120 " - Tried {} shrinks of which {} were successful".format(
121 len(cases), d["shrinks-successful"]
122 )
123 )
124 lines.append("")
125
126 target_lines = describe_targets(stats_dict.get("targets", {}))
127 if target_lines:
128 lines.append(" - " + target_lines[0])
129 lines.extend(" " + l for l in target_lines[1:])
130 lines.append(" - Stopped because " + stats_dict["stopped-because"])
131 return "\n".join(lines)