1# This file is part of Hypothesis, which may be found at
2# https://github.com/HypothesisWorks/hypothesis/
3#
4# Copyright the Hypothesis Authors.
5# Individual contributors are listed in AUTHORS.rst and the git log.
6#
7# This Source Code Form is subject to the terms of the Mozilla Public License,
8# v. 2.0. If a copy of the MPL was not distributed with this file, You can
9# obtain one at https://mozilla.org/MPL/2.0/.
10
11import sys
12import threading
13import warnings
14from collections import abc, defaultdict
15from collections.abc import Sequence
16from functools import lru_cache
17from random import shuffle
18from threading import RLock
19from typing import (
20 TYPE_CHECKING,
21 Any,
22 Callable,
23 ClassVar,
24 Generic,
25 Literal,
26 Optional,
27 TypeVar,
28 Union,
29 cast,
30 overload,
31)
32
33from hypothesis._settings import HealthCheck, Phase, Verbosity, settings
34from hypothesis.control import _current_build_context, current_build_context
35from hypothesis.errors import (
36 HypothesisException,
37 HypothesisWarning,
38 InvalidArgument,
39 NonInteractiveExampleWarning,
40 UnsatisfiedAssumption,
41)
42from hypothesis.internal.conjecture import utils as cu
43from hypothesis.internal.conjecture.data import ConjectureData
44from hypothesis.internal.conjecture.utils import (
45 calc_label_from_cls,
46 calc_label_from_hash,
47 calc_label_from_name,
48 combine_labels,
49)
50from hypothesis.internal.coverage import check_function
51from hypothesis.internal.reflection import (
52 get_pretty_function_description,
53 is_identity_function,
54)
55from hypothesis.strategies._internal.utils import defines_strategy
56from hypothesis.utils.conventions import UniqueIdentifier
57
58if TYPE_CHECKING:
59 from typing import TypeAlias
60
61 Ex = TypeVar("Ex", covariant=True, default=Any)
62else:
63 Ex = TypeVar("Ex", covariant=True)
64
65T = TypeVar("T")
66T3 = TypeVar("T3")
67T4 = TypeVar("T4")
68T5 = TypeVar("T5")
69MappedFrom = TypeVar("MappedFrom")
70MappedTo = TypeVar("MappedTo")
71RecurT: "TypeAlias" = Callable[["SearchStrategy"], bool]
72calculating = UniqueIdentifier("calculating")
73
74MAPPED_SEARCH_STRATEGY_DO_DRAW_LABEL = calc_label_from_name(
75 "another attempted draw in MappedStrategy"
76)
77
78FILTERED_SEARCH_STRATEGY_DO_DRAW_LABEL = calc_label_from_name(
79 "single loop iteration in FilteredStrategy"
80)
81
82label_lock = RLock()
83
84
85def recursive_property(strategy: "SearchStrategy", name: str, default: object) -> Any:
86 """Handle properties which may be mutually recursive among a set of
87 strategies.
88
89 These are essentially lazily cached properties, with the ability to set
90 an override: If the property has not been explicitly set, we calculate
91 it on first access and memoize the result for later.
92
93 The problem is that for properties that depend on each other, a naive
94 calculation strategy may hit infinite recursion. Consider for example
95 the property is_empty. A strategy defined as x = st.deferred(lambda: x)
96 is certainly empty (in order to draw a value from x we would have to
97 draw a value from x, for which we would have to draw a value from x,
98 ...), but in order to calculate it the naive approach would end up
99 calling x.is_empty in order to calculate x.is_empty in order to etc.
100
101 The solution is one of fixed point calculation. We start with a default
102 value that is the value of the property in the absence of evidence to
103 the contrary, and then update the values of the property for all
104 dependent strategies until we reach a fixed point.
105
106 The approach taken roughly follows that in section 4.2 of Adams,
107 Michael D., Celeste Hollenbeck, and Matthew Might. "On the complexity
108 and performance of parsing with derivatives." ACM SIGPLAN Notices 51.6
109 (2016): 224-236.
110 """
111 assert name in {"is_empty", "has_reusable_values", "is_cacheable"}
112 cache_key = "cached_" + name
113 calculation = "calc_" + name
114 force_key = "force_" + name
115
116 def forced_value(target: SearchStrategy) -> Any:
117 try:
118 return getattr(target, force_key)
119 except AttributeError:
120 return getattr(target, cache_key)
121
122 try:
123 return forced_value(strategy)
124 except AttributeError:
125 pass
126
127 mapping: dict[SearchStrategy, Any] = {}
128 sentinel = object()
129 hit_recursion = False
130
131 # For a first pass we do a direct recursive calculation of the
132 # property, but we block recursively visiting a value in the
133 # computation of its property: When that happens, we simply
134 # note that it happened and return the default value.
135 def recur(strat: SearchStrategy) -> Any:
136 nonlocal hit_recursion
137 try:
138 return forced_value(strat)
139 except AttributeError:
140 pass
141 result = mapping.get(strat, sentinel)
142 if result is calculating:
143 hit_recursion = True
144 return default
145 elif result is sentinel:
146 mapping[strat] = calculating
147 mapping[strat] = getattr(strat, calculation)(recur)
148 return mapping[strat]
149 return result
150
151 recur(strategy)
152
153 # If we hit self-recursion in the computation of any strategy
154 # value, our mapping at the end is imprecise - it may or may
155 # not have the right values in it. We now need to proceed with
156 # a more careful fixed point calculation to get the exact
157 # values. Hopefully our mapping is still pretty good and it
158 # won't take a large number of updates to reach a fixed point.
159 if hit_recursion:
160 needs_update = set(mapping)
161
162 # We track which strategies use which in the course of
163 # calculating their property value. If A ever uses B in
164 # the course of calculating its value, then whenever the
165 # value of B changes we might need to update the value of
166 # A.
167 listeners: dict[SearchStrategy, set[SearchStrategy]] = defaultdict(set)
168 else:
169 needs_update = None
170
171 def recur2(strat: SearchStrategy) -> Any:
172 def recur_inner(other: SearchStrategy) -> Any:
173 try:
174 return forced_value(other)
175 except AttributeError:
176 pass
177 listeners[other].add(strat)
178 result = mapping.get(other, sentinel)
179 if result is sentinel:
180 assert needs_update is not None
181 needs_update.add(other)
182 mapping[other] = default
183 return default
184 return result
185
186 return recur_inner
187
188 count = 0
189 seen = set()
190 while needs_update:
191 count += 1
192 # If we seem to be taking a really long time to stabilize we
193 # start tracking seen values to attempt to detect an infinite
194 # loop. This should be impossible, and most code will never
195 # hit the count, but having an assertion for it means that
196 # testing is easier to debug and we don't just have a hung
197 # test.
198 # Note: This is actually covered, by test_very_deep_deferral
199 # in tests/cover/test_deferred_strategies.py. Unfortunately it
200 # runs into a coverage bug. See
201 # https://github.com/nedbat/coveragepy/issues/605
202 # for details.
203 if count > 50: # pragma: no cover
204 key = frozenset(mapping.items())
205 assert key not in seen, (key, name)
206 seen.add(key)
207 to_update = needs_update
208 needs_update = set()
209 for strat in to_update:
210 new_value = getattr(strat, calculation)(recur2(strat))
211 if new_value != mapping[strat]:
212 needs_update.update(listeners[strat])
213 mapping[strat] = new_value
214
215 # We now have a complete and accurate calculation of the
216 # property values for everything we have seen in the course of
217 # running this calculation. We simultaneously update all of
218 # them (not just the strategy we started out with).
219 for k, v in mapping.items():
220 setattr(k, cache_key, v)
221 return getattr(strategy, cache_key)
222
223
224class SearchStrategy(Generic[Ex]):
225 """A ``SearchStrategy`` tells Hypothesis how to generate that kind of input.
226
227 This class is only part of the public API for use in type annotations, so that
228 you can write e.g. ``-> SearchStrategy[Foo]`` for your function which returns
229 ``builds(Foo, ...)``. Do not inherit from or directly instantiate this class.
230 """
231
232 __module__: str = "hypothesis.strategies"
233 LABELS: ClassVar[dict[type, int]] = {}
234 # triggers `assert isinstance(label, int)` under threading when setting this
235 # in init instead of a classvar. I'm not sure why, init should be safe. But
236 # this works so I'm not looking into it further atm.
237 __label: Union[int, UniqueIdentifier, None] = None
238
239 def __init__(self):
240 self.validate_called: dict[int, bool] = {}
241
242 def is_currently_empty(self, data: ConjectureData) -> bool:
243 """
244 Returns whether this strategy is currently empty. Unlike ``empty``,
245 which is computed based on static information and cannot change,
246 ``is_currently_empty`` may change over time based on choices made
247 during the test case.
248
249 This is currently only used for stateful testing, where |Bundle| grows a
250 list of values to choose from over the course of a test case.
251
252 ``data`` will only be used for introspection. No values will be drawn
253 from it in a way that modifies the choice sequence.
254 """
255 return self.is_empty
256
257 @property
258 def is_empty(self) -> Any:
259 # Returns True if this strategy can never draw a value and will always
260 # result in the data being marked invalid.
261 # The fact that this returns False does not guarantee that a valid value
262 # can be drawn - this is not intended to be perfect, and is primarily
263 # intended to be an optimisation for some cases.
264 return recursive_property(self, "is_empty", True)
265
266 # Returns True if values from this strategy can safely be reused without
267 # this causing unexpected behaviour.
268
269 # True if values from this strategy can be implicitly reused (e.g. as
270 # background values in a numpy array) without causing surprising
271 # user-visible behaviour. Should be false for built-in strategies that
272 # produce mutable values, and for strategies that have been mapped/filtered
273 # by arbitrary user-provided functions.
274 @property
275 def has_reusable_values(self) -> Any:
276 return recursive_property(self, "has_reusable_values", True)
277
278 # Whether this strategy is suitable for holding onto in a cache.
279 @property
280 def is_cacheable(self) -> Any:
281 return recursive_property(self, "is_cacheable", True)
282
283 def calc_is_cacheable(self, recur: RecurT) -> bool:
284 return True
285
286 def calc_is_empty(self, recur: RecurT) -> bool:
287 # Note: It is correct and significant that the default return value
288 # from calc_is_empty is False despite the default value for is_empty
289 # being true. The reason for this is that strategies should be treated
290 # as empty absent evidence to the contrary, but most basic strategies
291 # are trivially non-empty and it would be annoying to have to override
292 # this method to show that.
293 return False
294
295 def calc_has_reusable_values(self, recur: RecurT) -> bool:
296 return False
297
298 def example(self) -> Ex: # FIXME
299 """Provide an example of the sort of value that this strategy generates.
300
301 This method is designed for use in a REPL, and will raise an error if
302 called from inside |@given| or a strategy definition. For serious use,
303 see |@composite| or |st.data|.
304 """
305 if getattr(sys, "ps1", None) is None: # pragma: no branch
306 # The other branch *is* covered in cover/test_examples.py; but as that
307 # uses `pexpect` for an interactive session `coverage` doesn't see it.
308 warnings.warn(
309 "The `.example()` method is good for exploring strategies, but should "
310 "only be used interactively. We recommend using `@given` for tests - "
311 "it performs better, saves and replays failures to avoid flakiness, "
312 f"and reports minimal examples. (strategy: {self!r})",
313 NonInteractiveExampleWarning,
314 stacklevel=2,
315 )
316
317 context = _current_build_context.value
318 if context is not None:
319 if context.data is not None and context.data.depth > 0:
320 raise HypothesisException(
321 "Using example() inside a strategy definition is a bad "
322 "idea. Instead consider using hypothesis.strategies.builds() "
323 "or @hypothesis.strategies.composite to define your strategy."
324 " See https://hypothesis.readthedocs.io/en/latest/data.html"
325 "#hypothesis.strategies.builds or "
326 "https://hypothesis.readthedocs.io/en/latest/data.html"
327 "#composite-strategies for more details."
328 )
329 else:
330 raise HypothesisException(
331 "Using example() inside a test function is a bad "
332 "idea. Instead consider using hypothesis.strategies.data() "
333 "to draw more examples during testing. See "
334 "https://hypothesis.readthedocs.io/en/latest/data.html"
335 "#drawing-interactively-in-tests for more details."
336 )
337
338 try:
339 return self.__examples.pop()
340 except (AttributeError, IndexError):
341 self.__examples: list[Ex] = []
342
343 from hypothesis.core import given
344
345 # Note: this function has a weird name because it might appear in
346 # tracebacks, and we want users to know that they can ignore it.
347 @given(self)
348 @settings(
349 database=None,
350 # generate only a few examples at a time to avoid slow interactivity
351 # for large strategies. The overhead of @given is very small relative
352 # to generation, so a small batch size is fine.
353 max_examples=10,
354 deadline=None,
355 verbosity=Verbosity.quiet,
356 phases=(Phase.generate,),
357 suppress_health_check=list(HealthCheck),
358 )
359 def example_generating_inner_function(
360 ex: Ex, # type: ignore # mypy is overzealous in preventing covariant params
361 ) -> None:
362 self.__examples.append(ex)
363
364 example_generating_inner_function()
365 shuffle(self.__examples)
366 return self.__examples.pop()
367
368 def map(self, pack: Callable[[Ex], T]) -> "SearchStrategy[T]":
369 """Returns a new strategy which generates a value from this one, and
370 then returns ``pack(value)``. For example, ``integers().map(str)``
371 could generate ``str(5)`` == ``"5"``.
372 """
373 if is_identity_function(pack):
374 return self # type: ignore # Mypy has no way to know that `Ex == T`
375 return MappedStrategy(self, pack=pack)
376
377 def flatmap(
378 self, expand: Callable[[Ex], "SearchStrategy[T]"]
379 ) -> "SearchStrategy[T]": # FIXME
380 """Old syntax for a special case of |@composite|:
381
382 .. code-block:: python
383
384 @st.composite
385 def flatmap_like(draw, base_strategy, expand):
386 value = draw(base_strategy)
387 new_strategy = expand(value)
388 return draw(new_strategy)
389
390 We find that the greater readability of |@composite| usually outweighs
391 the verbosity, with a few exceptions for simple cases or recipes like
392 ``from_type(type).flatmap(from_type)`` ("pick a type, get a strategy for
393 any instance of that type, and then generate one of those").
394 """
395 from hypothesis.strategies._internal.flatmapped import FlatMapStrategy
396
397 return FlatMapStrategy(self, expand=expand)
398
399 # Note that we previously had condition extracted to a type alias as
400 # PredicateT. However, that was only useful when not specifying a relationship
401 # between the generic Ts and some other function param / return value.
402 # If we do want to - like here, where we want to say that the Ex arg to condition
403 # is of the same type as the strategy's Ex - then you need to write out the
404 # entire Callable[[Ex], Any] expression rather than use a type alias.
405 # TypeAlias is *not* simply a macro that inserts the text. TypeAlias will not
406 # reference the local TypeVar context.
407 def filter(self, condition: Callable[[Ex], Any]) -> "SearchStrategy[Ex]":
408 """Returns a new strategy that generates values from this strategy
409 which satisfy the provided condition.
410
411 Note that if the condition is too hard to satisfy this might result
412 in your tests failing with an Unsatisfiable exception.
413 A basic version of the filtering logic would look something like:
414
415 .. code-block:: python
416
417 @st.composite
418 def filter_like(draw, strategy, condition):
419 for _ in range(3):
420 value = draw(strategy)
421 if condition(value):
422 return value
423 assume(False)
424 """
425 return FilteredStrategy(self, conditions=(condition,))
426
427 @property
428 def branches(self) -> Sequence["SearchStrategy[Ex]"]:
429 return [self]
430
431 def __or__(self, other: "SearchStrategy[T]") -> "SearchStrategy[Union[Ex, T]]":
432 """Return a strategy which produces values by randomly drawing from one
433 of this strategy or the other strategy.
434
435 This method is part of the public API.
436 """
437 if not isinstance(other, SearchStrategy):
438 raise ValueError(f"Cannot | a SearchStrategy with {other!r}")
439
440 # Unwrap explicitly or'd strategies. This turns the
441 # common case of e.g. st.integers() | st.integers() | st.integers() from
442 #
443 # one_of(one_of(integers(), integers()), integers())
444 #
445 # into
446 #
447 # one_of(integers(), integers(), integers())
448 #
449 # This is purely an aesthetic unwrapping, for e.g. reprs. In practice
450 # we use .branches / .element_strategies to get the list of possible
451 # strategies, so this unwrapping is *not* necessary for correctness.
452 strategies: list[SearchStrategy] = []
453 strategies.extend(
454 self.original_strategies if isinstance(self, OneOfStrategy) else [self]
455 )
456 strategies.extend(
457 other.original_strategies if isinstance(other, OneOfStrategy) else [other]
458 )
459 return OneOfStrategy(strategies)
460
461 def __bool__(self) -> bool:
462 warnings.warn(
463 f"bool({self!r}) is always True, did you mean to draw a value?",
464 HypothesisWarning,
465 stacklevel=2,
466 )
467 return True
468
469 def validate(self) -> None:
470 """Throw an exception if the strategy is not valid.
471
472 Strategies should implement ``do_validate``, which is called by this
473 method. They should not override ``validate``.
474
475 This can happen due to invalid arguments, or lazy construction.
476 """
477 thread_id = threading.get_ident()
478 if self.validate_called.get(thread_id, False):
479 return
480 # we need to set validate_called before calling do_validate, for
481 # recursive / deferred strategies. But if a thread switches after
482 # validate_called but before do_validate, we might have a strategy
483 # which does weird things like drawing when do_validate would error but
484 # its params are technically valid (e.g. a param was passed as 1.0
485 # instead of 1) and get into weird internal states.
486 #
487 # There are two ways to fix this.
488 # (1) The first is a per-strategy lock around do_validate. Even though we
489 # expect near-zero lock contention, this still adds the lock overhead.
490 # (2) The second is allowing concurrent .validate calls. Since validation
491 # is (assumed to be) deterministic, both threads will produce the same
492 # end state, so the validation order or race conditions does not matter.
493 #
494 # In order to avoid the lock overhead of (1), we use (2) here. See also
495 # discussion in https://github.com/HypothesisWorks/hypothesis/pull/4473.
496 try:
497 self.validate_called[thread_id] = True
498 self.do_validate()
499 self.is_empty
500 self.has_reusable_values
501 except Exception:
502 self.validate_called[thread_id] = False
503 raise
504
505 @property
506 def class_label(self) -> int:
507 cls = self.__class__
508 try:
509 return cls.LABELS[cls]
510 except KeyError:
511 pass
512 result = calc_label_from_cls(cls)
513 cls.LABELS[cls] = result
514 return result
515
516 @property
517 def label(self) -> int:
518 if isinstance((label := self.__label), int):
519 # avoid locking if we've already completely computed the label.
520 return label
521
522 with label_lock:
523 if self.__label is calculating:
524 return 0
525 self.__label = calculating
526 self.__label = self.calc_label()
527 return self.__label
528
529 def calc_label(self) -> int:
530 return self.class_label
531
532 def do_validate(self) -> None:
533 pass
534
535 def do_draw(self, data: ConjectureData) -> Ex:
536 raise NotImplementedError(f"{type(self).__name__}.do_draw")
537
538
539def _is_hashable(value: object) -> tuple[bool, Optional[int]]:
540 # hashing can be expensive; return the hash value if we compute it, so that
541 # callers don't have to recompute.
542 try:
543 return (True, hash(value))
544 except TypeError:
545 return (False, None)
546
547
548def is_hashable(value: object) -> bool:
549 return _is_hashable(value)[0]
550
551
552class SampledFromStrategy(SearchStrategy[Ex]):
553 """A strategy which samples from a set of elements. This is essentially
554 equivalent to using a OneOfStrategy over Just strategies but may be more
555 efficient and convenient.
556 """
557
558 _MAX_FILTER_CALLS: ClassVar[int] = 10_000
559
560 def __init__(
561 self,
562 elements: Sequence[Ex],
563 *,
564 force_repr: Optional[str] = None,
565 force_repr_braces: Optional[tuple[str, str]] = None,
566 transformations: tuple[
567 tuple[Literal["filter", "map"], Callable[[Ex], Any]],
568 ...,
569 ] = (),
570 ):
571 super().__init__()
572 self.elements = cu.check_sample(elements, "sampled_from")
573 assert self.elements
574 self.force_repr = force_repr
575 self.force_repr_braces = force_repr_braces
576 self._transformations = transformations
577
578 self._cached_repr: Optional[str] = None
579
580 def map(self, pack: Callable[[Ex], T]) -> SearchStrategy[T]:
581 s = type(self)(
582 self.elements,
583 force_repr=self.force_repr,
584 force_repr_braces=self.force_repr_braces,
585 transformations=(*self._transformations, ("map", pack)),
586 )
587 # guaranteed by the ("map", pack) transformation
588 return cast(SearchStrategy[T], s)
589
590 def filter(self, condition: Callable[[Ex], Any]) -> SearchStrategy[Ex]:
591 return type(self)(
592 self.elements,
593 force_repr=self.force_repr,
594 force_repr_braces=self.force_repr_braces,
595 transformations=(*self._transformations, ("filter", condition)),
596 )
597
598 def __repr__(self):
599 if self._cached_repr is None:
600 rep = get_pretty_function_description
601 elements_s = (
602 ", ".join(rep(v) for v in self.elements[:512]) + ", ..."
603 if len(self.elements) > 512
604 else ", ".join(rep(v) for v in self.elements)
605 )
606 braces = self.force_repr_braces or ("(", ")")
607 instance_s = (
608 self.force_repr or f"sampled_from({braces[0]}{elements_s}{braces[1]})"
609 )
610 transforms_s = "".join(
611 f".{name}({get_pretty_function_description(f)})"
612 for name, f in self._transformations
613 )
614 repr_s = instance_s + transforms_s
615 self._cached_repr = repr_s
616 return self._cached_repr
617
618 def calc_label(self) -> int:
619 # strategy.label is effectively an under-approximation of structural
620 # equality (i.e., some strategies may have the same label when they are not
621 # structurally identical). More importantly for calculating the
622 # SampledFromStrategy label, we might have hash(s1) != hash(s2) even
623 # when s1 and s2 are structurally identical. For instance:
624 #
625 # s1 = st.sampled_from([st.none()])
626 # s2 = st.sampled_from([st.none()])
627 # assert hash(s1) != hash(s2)
628 #
629 # (see also test cases in test_labels.py).
630 #
631 # We therefore use the labels of any component strategies when calculating
632 # our label, and only use the hash if it is not a strategy.
633 #
634 # That's the ideal, anyway. In reality the logic is more complicated than
635 # necessary in order to be efficient in the presence of (very) large sequences:
636 # * add an unabashed special case for range, to avoid iteration over an
637 # enormous range when we know it is entirely integers.
638 # * if there is at least one strategy in self.elements, use strategy label,
639 # and the element hash otherwise.
640 # * if there are no strategies in self.elements, take the hash of the
641 # entire sequence. This prevents worst-case performance of hashing each
642 # element when a hash of the entire sequence would have sufficed.
643 #
644 # The worst case performance of this scheme is
645 # itertools.chain(range(2**100), [st.none()]), where it degrades to
646 # hashing every int in the range.
647 (elements_is_hashable, hash_value) = _is_hashable(self.elements)
648 if isinstance(self.elements, range) or (
649 elements_is_hashable
650 and not any(isinstance(e, SearchStrategy) for e in self.elements)
651 ):
652 return combine_labels(
653 self.class_label, calc_label_from_name(str(hash_value))
654 )
655
656 labels = [self.class_label]
657 for element in self.elements:
658 if not is_hashable(element):
659 continue
660
661 labels.append(
662 element.label
663 if isinstance(element, SearchStrategy)
664 else calc_label_from_hash(element)
665 )
666
667 return combine_labels(*labels)
668
669 def calc_has_reusable_values(self, recur: RecurT) -> bool:
670 # Because our custom .map/.filter implementations skip the normal
671 # wrapper strategies (which would automatically return False for us),
672 # we need to manually return False here if any transformations have
673 # been applied.
674 return not self._transformations
675
676 def calc_is_cacheable(self, recur: RecurT) -> bool:
677 return is_hashable(self.elements)
678
679 def _transform(
680 self,
681 # https://github.com/python/mypy/issues/7049, we're not writing `element`
682 # anywhere in the class so this is still type-safe. mypy is being more
683 # conservative than necessary
684 element: Ex, # type: ignore
685 ) -> Union[Ex, UniqueIdentifier]:
686 # Used in UniqueSampledListStrategy
687 for name, f in self._transformations:
688 if name == "map":
689 result = f(element)
690 if build_context := _current_build_context.value:
691 build_context.record_call(result, f, args=[element], kwargs={})
692 element = result
693 else:
694 assert name == "filter"
695 if not f(element):
696 return filter_not_satisfied
697 return element
698
699 def do_draw(self, data: ConjectureData) -> Ex:
700 result = self.do_filtered_draw(data)
701 if isinstance(result, SearchStrategy) and all(
702 isinstance(x, SearchStrategy) for x in self.elements
703 ):
704 data._sampled_from_all_strategies_elements_message = (
705 "sample_from was given a collection of strategies: "
706 "{!r}. Was one_of intended?",
707 self.elements,
708 )
709 if result is filter_not_satisfied:
710 data.mark_invalid(f"Aborted test because unable to satisfy {self!r}")
711 assert not isinstance(result, UniqueIdentifier)
712 return result
713
714 def get_element(self, i: int) -> Union[Ex, UniqueIdentifier]:
715 return self._transform(self.elements[i])
716
717 def do_filtered_draw(self, data: ConjectureData) -> Union[Ex, UniqueIdentifier]:
718 # Set of indices that have been tried so far, so that we never test
719 # the same element twice during a draw.
720 known_bad_indices: set[int] = set()
721
722 # Start with ordinary rejection sampling. It's fast if it works, and
723 # if it doesn't work then it was only a small amount of overhead.
724 for _ in range(3):
725 i = data.draw_integer(0, len(self.elements) - 1)
726 if i not in known_bad_indices:
727 element = self.get_element(i)
728 if element is not filter_not_satisfied:
729 return element
730 if not known_bad_indices:
731 data.events[f"Retried draw from {self!r} to satisfy filter"] = ""
732 known_bad_indices.add(i)
733
734 # If we've tried all the possible elements, give up now.
735 max_good_indices = len(self.elements) - len(known_bad_indices)
736 if not max_good_indices:
737 return filter_not_satisfied
738
739 # Impose an arbitrary cutoff to prevent us from wasting too much time
740 # on very large element lists.
741 max_good_indices = min(max_good_indices, self._MAX_FILTER_CALLS - 3)
742
743 # Before building the list of allowed indices, speculatively choose
744 # one of them. We don't yet know how many allowed indices there will be,
745 # so this choice might be out-of-bounds, but that's OK.
746 speculative_index = data.draw_integer(0, max_good_indices - 1)
747
748 # Calculate the indices of allowed values, so that we can choose one
749 # of them at random. But if we encounter the speculatively-chosen one,
750 # just use that and return immediately. Note that we also track the
751 # allowed elements, in case of .map(some_stateful_function)
752 allowed: list[tuple[int, Ex]] = []
753 for i in range(min(len(self.elements), self._MAX_FILTER_CALLS - 3)):
754 if i not in known_bad_indices:
755 element = self.get_element(i)
756 if element is not filter_not_satisfied:
757 assert not isinstance(element, UniqueIdentifier)
758 allowed.append((i, element))
759 if len(allowed) > speculative_index:
760 # Early-exit case: We reached the speculative index, so
761 # we just return the corresponding element.
762 data.draw_integer(0, len(self.elements) - 1, forced=i)
763 return element
764
765 # The speculative index didn't work out, but at this point we've built
766 # and can choose from the complete list of allowed indices and elements.
767 if allowed:
768 i, element = data.choice(allowed)
769 data.draw_integer(0, len(self.elements) - 1, forced=i)
770 return element
771 # If there are no allowed indices, the filter couldn't be satisfied.
772 return filter_not_satisfied
773
774
775class OneOfStrategy(SearchStrategy[Ex]):
776 """Implements a union of strategies. Given a number of strategies this
777 generates values which could have come from any of them.
778
779 The conditional distribution draws uniformly at random from some
780 non-empty subset of these strategies and then draws from the
781 conditional distribution of that strategy.
782 """
783
784 def __init__(self, strategies: Sequence[SearchStrategy[Ex]]):
785 super().__init__()
786 self.original_strategies = tuple(strategies)
787 self.__element_strategies: Optional[Sequence[SearchStrategy[Ex]]] = None
788 self.__in_branches = False
789 self._branches_lock = RLock()
790
791 def calc_is_empty(self, recur: RecurT) -> bool:
792 return all(recur(e) for e in self.original_strategies)
793
794 def calc_has_reusable_values(self, recur: RecurT) -> bool:
795 return all(recur(e) for e in self.original_strategies)
796
797 def calc_is_cacheable(self, recur: RecurT) -> bool:
798 return all(recur(e) for e in self.original_strategies)
799
800 @property
801 def element_strategies(self) -> Sequence[SearchStrategy[Ex]]:
802 if self.__element_strategies is None:
803 # While strategies are hashable, they use object.__hash__ and are
804 # therefore distinguished only by identity.
805 #
806 # In principle we could "just" define a __hash__ method
807 # (and __eq__, but that's easy in terms of type() and hash())
808 # to make this more powerful, but this is harder than it sounds:
809 #
810 # 1. Strategies are often distinguished by non-hashable attributes,
811 # or by attributes that have the same hash value ("^.+" / b"^.+").
812 # 2. LazyStrategy: can't reify the wrapped strategy without breaking
813 # laziness, so there's a hash each for the lazy and the nonlazy.
814 #
815 # Having made several attempts, the minor benefits of making strategies
816 # hashable are simply not worth the engineering effort it would take.
817 # See also issues #2291 and #2327.
818 seen: set[SearchStrategy] = {self}
819 strategies: list[SearchStrategy] = []
820 for arg in self.original_strategies:
821 check_strategy(arg)
822 if not arg.is_empty:
823 for s in arg.branches:
824 if s not in seen and not s.is_empty:
825 seen.add(s)
826 strategies.append(s)
827 self.__element_strategies = strategies
828 return self.__element_strategies
829
830 def calc_label(self) -> int:
831 return combine_labels(
832 self.class_label, *(p.label for p in self.original_strategies)
833 )
834
835 def do_draw(self, data: ConjectureData) -> Ex:
836 strategy = data.draw(
837 SampledFromStrategy(self.element_strategies).filter(
838 lambda s: not s.is_currently_empty(data)
839 )
840 )
841 return data.draw(strategy)
842
843 def __repr__(self) -> str:
844 return "one_of({})".format(", ".join(map(repr, self.original_strategies)))
845
846 def do_validate(self) -> None:
847 for e in self.element_strategies:
848 e.validate()
849
850 @property
851 def branches(self) -> Sequence[SearchStrategy[Ex]]:
852 if self.__element_strategies is not None:
853 # common fast path which avoids the lock
854 return self.element_strategies
855
856 with self._branches_lock:
857 if not self.__in_branches:
858 try:
859 self.__in_branches = True
860 return self.element_strategies
861 finally:
862 self.__in_branches = False
863 else:
864 return [self]
865
866 def filter(self, condition: Callable[[Ex], Any]) -> SearchStrategy[Ex]:
867 return FilteredStrategy(
868 OneOfStrategy([s.filter(condition) for s in self.original_strategies]),
869 conditions=(),
870 )
871
872
873@overload
874def one_of(
875 __args: Sequence[SearchStrategy[Ex]],
876) -> SearchStrategy[Ex]: # pragma: no cover
877 ...
878
879
880@overload
881def one_of(__a1: SearchStrategy[Ex]) -> SearchStrategy[Ex]: # pragma: no cover
882 ...
883
884
885@overload
886def one_of(
887 __a1: SearchStrategy[Ex], __a2: SearchStrategy[T]
888) -> SearchStrategy[Union[Ex, T]]: # pragma: no cover
889 ...
890
891
892@overload
893def one_of(
894 __a1: SearchStrategy[Ex], __a2: SearchStrategy[T], __a3: SearchStrategy[T3]
895) -> SearchStrategy[Union[Ex, T, T3]]: # pragma: no cover
896 ...
897
898
899@overload
900def one_of(
901 __a1: SearchStrategy[Ex],
902 __a2: SearchStrategy[T],
903 __a3: SearchStrategy[T3],
904 __a4: SearchStrategy[T4],
905) -> SearchStrategy[Union[Ex, T, T3, T4]]: # pragma: no cover
906 ...
907
908
909@overload
910def one_of(
911 __a1: SearchStrategy[Ex],
912 __a2: SearchStrategy[T],
913 __a3: SearchStrategy[T3],
914 __a4: SearchStrategy[T4],
915 __a5: SearchStrategy[T5],
916) -> SearchStrategy[Union[Ex, T, T3, T4, T5]]: # pragma: no cover
917 ...
918
919
920@overload
921def one_of(*args: SearchStrategy[Any]) -> SearchStrategy[Any]: # pragma: no cover
922 ...
923
924
925@defines_strategy(never_lazy=True)
926def one_of(
927 *args: Union[Sequence[SearchStrategy[Any]], SearchStrategy[Any]]
928) -> SearchStrategy[Any]:
929 # Mypy workaround alert: Any is too loose above; the return parameter
930 # should be the union of the input parameters. Unfortunately, Mypy <=0.600
931 # raises errors due to incompatible inputs instead. See #1270 for links.
932 # v0.610 doesn't error; it gets inference wrong for 2+ arguments instead.
933 """Return a strategy which generates values from any of the argument
934 strategies.
935
936 This may be called with one iterable argument instead of multiple
937 strategy arguments, in which case ``one_of(x)`` and ``one_of(*x)`` are
938 equivalent.
939
940 Examples from this strategy will generally shrink to ones that come from
941 strategies earlier in the list, then shrink according to behaviour of the
942 strategy that produced them. In order to get good shrinking behaviour,
943 try to put simpler strategies first. e.g. ``one_of(none(), text())`` is
944 better than ``one_of(text(), none())``.
945
946 This is especially important when using recursive strategies. e.g.
947 ``x = st.deferred(lambda: st.none() | st.tuples(x, x))`` will shrink well,
948 but ``x = st.deferred(lambda: st.tuples(x, x) | st.none())`` will shrink
949 very badly indeed.
950 """
951 if len(args) == 1 and not isinstance(args[0], SearchStrategy):
952 try:
953 args = tuple(args[0])
954 except TypeError:
955 pass
956 if len(args) == 1 and isinstance(args[0], SearchStrategy):
957 # This special-case means that we can one_of over lists of any size
958 # without incurring any performance overhead when there is only one
959 # strategy, and keeps our reprs simple.
960 return args[0]
961 if args and not any(isinstance(a, SearchStrategy) for a in args):
962 # And this special case is to give a more-specific error message if it
963 # seems that the user has confused `one_of()` for `sampled_from()`;
964 # the remaining validation is left to OneOfStrategy. See PR #2627.
965 raise InvalidArgument(
966 f"Did you mean st.sampled_from({list(args)!r})? st.one_of() is used "
967 "to combine strategies, but all of the arguments were of other types."
968 )
969 # we've handled the case where args is a one-element sequence [(s1, s2, ...)]
970 # above, so we can assume it's an actual sequence of strategies.
971 args = cast(Sequence[SearchStrategy], args)
972 return OneOfStrategy(args)
973
974
975class MappedStrategy(SearchStrategy[MappedTo], Generic[MappedFrom, MappedTo]):
976 """A strategy which is defined purely by conversion to and from another
977 strategy.
978
979 Its parameter and distribution come from that other strategy.
980 """
981
982 def __init__(
983 self,
984 strategy: SearchStrategy[MappedFrom],
985 pack: Callable[[MappedFrom], MappedTo],
986 ) -> None:
987 super().__init__()
988 self.mapped_strategy = strategy
989 self.pack = pack
990
991 def calc_is_empty(self, recur: RecurT) -> bool:
992 return recur(self.mapped_strategy)
993
994 def calc_is_cacheable(self, recur: RecurT) -> bool:
995 return recur(self.mapped_strategy)
996
997 def __repr__(self) -> str:
998 if not hasattr(self, "_cached_repr"):
999 self._cached_repr = f"{self.mapped_strategy!r}.map({get_pretty_function_description(self.pack)})"
1000 return self._cached_repr
1001
1002 def do_validate(self) -> None:
1003 self.mapped_strategy.validate()
1004
1005 def do_draw(self, data: ConjectureData) -> MappedTo:
1006 with warnings.catch_warnings():
1007 if isinstance(self.pack, type) and issubclass(
1008 self.pack, (abc.Mapping, abc.Set)
1009 ):
1010 warnings.simplefilter("ignore", BytesWarning)
1011 for _ in range(3):
1012 try:
1013 data.start_span(MAPPED_SEARCH_STRATEGY_DO_DRAW_LABEL)
1014 x = data.draw(self.mapped_strategy)
1015 result = self.pack(x)
1016 data.stop_span()
1017 current_build_context().record_call(
1018 result, self.pack, args=[x], kwargs={}
1019 )
1020 return result
1021 except UnsatisfiedAssumption:
1022 data.stop_span(discard=True)
1023 raise UnsatisfiedAssumption
1024
1025 @property
1026 def branches(self) -> Sequence[SearchStrategy[MappedTo]]:
1027 return [
1028 MappedStrategy(strategy, pack=self.pack)
1029 for strategy in self.mapped_strategy.branches
1030 ]
1031
1032 def filter(
1033 self, condition: Callable[[MappedTo], Any]
1034 ) -> "SearchStrategy[MappedTo]":
1035 # Includes a special case so that we can rewrite filters on collection
1036 # lengths, when most collections are `st.lists(...).map(the_type)`.
1037 ListStrategy = _list_strategy_type()
1038 if not isinstance(self.mapped_strategy, ListStrategy) or not (
1039 (isinstance(self.pack, type) and issubclass(self.pack, abc.Collection))
1040 or self.pack in _collection_ish_functions()
1041 ):
1042 return super().filter(condition)
1043
1044 # Check whether our inner list strategy can rewrite this filter condition.
1045 # If not, discard the result and _only_ apply a new outer filter.
1046 new = ListStrategy.filter(self.mapped_strategy, condition)
1047 if getattr(new, "filtered_strategy", None) is self.mapped_strategy:
1048 return super().filter(condition) # didn't rewrite
1049
1050 # Apply a new outer filter even though we rewrote the inner strategy,
1051 # because some collections can change the list length (dict, set, etc).
1052 return FilteredStrategy(type(self)(new, self.pack), conditions=(condition,))
1053
1054
1055@lru_cache
1056def _list_strategy_type() -> Any:
1057 from hypothesis.strategies._internal.collections import ListStrategy
1058
1059 return ListStrategy
1060
1061
1062def _collection_ish_functions() -> Sequence[Any]:
1063 funcs = [sorted]
1064 if np := sys.modules.get("numpy"):
1065 # c.f. https://numpy.org/doc/stable/reference/routines.array-creation.html
1066 # Probably only `np.array` and `np.asarray` will be used in practice,
1067 # but why should that stop us when we've already gone this far?
1068 funcs += [
1069 np.empty_like,
1070 np.eye,
1071 np.identity,
1072 np.ones_like,
1073 np.zeros_like,
1074 np.array,
1075 np.asarray,
1076 np.asanyarray,
1077 np.ascontiguousarray,
1078 np.asmatrix,
1079 np.copy,
1080 np.rec.array,
1081 np.rec.fromarrays,
1082 np.rec.fromrecords,
1083 np.diag,
1084 # bonus undocumented functions from tab-completion:
1085 np.asarray_chkfinite,
1086 np.asfortranarray,
1087 ]
1088
1089 return funcs
1090
1091
1092filter_not_satisfied = UniqueIdentifier("filter not satisfied")
1093
1094
1095class FilteredStrategy(SearchStrategy[Ex]):
1096 def __init__(
1097 self, strategy: SearchStrategy[Ex], conditions: tuple[Callable[[Ex], Any], ...]
1098 ):
1099 super().__init__()
1100 if isinstance(strategy, FilteredStrategy):
1101 # Flatten chained filters into a single filter with multiple conditions.
1102 self.flat_conditions: tuple[Callable[[Ex], Any], ...] = (
1103 strategy.flat_conditions + conditions
1104 )
1105 self.filtered_strategy: SearchStrategy[Ex] = strategy.filtered_strategy
1106 else:
1107 self.flat_conditions = conditions
1108 self.filtered_strategy = strategy
1109
1110 assert isinstance(self.flat_conditions, tuple)
1111 assert not isinstance(self.filtered_strategy, FilteredStrategy)
1112
1113 self.__condition: Optional[Callable[[Ex], Any]] = None
1114
1115 def calc_is_empty(self, recur: RecurT) -> bool:
1116 return recur(self.filtered_strategy)
1117
1118 def calc_is_cacheable(self, recur: RecurT) -> bool:
1119 return recur(self.filtered_strategy)
1120
1121 def __repr__(self) -> str:
1122 if not hasattr(self, "_cached_repr"):
1123 self._cached_repr = "{!r}{}".format(
1124 self.filtered_strategy,
1125 "".join(
1126 f".filter({get_pretty_function_description(cond)})"
1127 for cond in self.flat_conditions
1128 ),
1129 )
1130 return self._cached_repr
1131
1132 def do_validate(self) -> None:
1133 # Start by validating our inner filtered_strategy. If this was a LazyStrategy,
1134 # validation also reifies it so that subsequent calls to e.g. `.filter()` will
1135 # be passed through.
1136 self.filtered_strategy.validate()
1137 # So now we have a reified inner strategy, we'll replay all our saved
1138 # predicates in case some or all of them can be rewritten. Note that this
1139 # replaces the `fresh` strategy too!
1140 fresh = self.filtered_strategy
1141 for cond in self.flat_conditions:
1142 fresh = fresh.filter(cond)
1143 if isinstance(fresh, FilteredStrategy):
1144 # In this case we have at least some non-rewritten filter predicates,
1145 # so we just re-initialize the strategy.
1146 FilteredStrategy.__init__(
1147 self, fresh.filtered_strategy, fresh.flat_conditions
1148 )
1149 else:
1150 # But if *all* the predicates were rewritten... well, do_validate() is
1151 # an in-place method so we still just re-initialize the strategy!
1152 FilteredStrategy.__init__(self, fresh, ())
1153
1154 def filter(self, condition: Callable[[Ex], Any]) -> "FilteredStrategy[Ex]":
1155 # If we can, it's more efficient to rewrite our strategy to satisfy the
1156 # condition. We therefore exploit the fact that the order of predicates
1157 # doesn't matter (`f(x) and g(x) == g(x) and f(x)`) by attempting to apply
1158 # condition directly to our filtered strategy as the inner-most filter.
1159 out = self.filtered_strategy.filter(condition)
1160 # If it couldn't be rewritten, we'll get a new FilteredStrategy - and then
1161 # combine the conditions of each in our expected newest=last order.
1162 if isinstance(out, FilteredStrategy):
1163 return FilteredStrategy(
1164 out.filtered_strategy, self.flat_conditions + out.flat_conditions
1165 )
1166 # But if it *could* be rewritten, we can return the more efficient form!
1167 return FilteredStrategy(out, self.flat_conditions)
1168
1169 @property
1170 def condition(self) -> Callable[[Ex], Any]:
1171 # We write this defensively to avoid any threading race conditions
1172 # with our manual FilteredStrategy.__init__ for filter-rewriting.
1173 # See https://github.com/HypothesisWorks/hypothesis/pull/4522.
1174 if (condition := self.__condition) is not None:
1175 return condition
1176
1177 if len(self.flat_conditions) == 1:
1178 # Avoid an extra indirection in the common case of only one condition.
1179 condition = self.flat_conditions[0]
1180 elif len(self.flat_conditions) == 0:
1181 # Possible, if unlikely, due to filter predicate rewriting
1182 condition = lambda _: True # type: ignore # covariant type param
1183 else:
1184 condition = lambda x: all( # type: ignore # covariant type param
1185 cond(x) for cond in self.flat_conditions
1186 )
1187 self.__condition = condition
1188 return condition
1189
1190 def do_draw(self, data: ConjectureData) -> Ex:
1191 result = self.do_filtered_draw(data)
1192 if result is not filter_not_satisfied:
1193 return cast(Ex, result)
1194
1195 data.mark_invalid(f"Aborted test because unable to satisfy {self!r}")
1196
1197 def do_filtered_draw(self, data: ConjectureData) -> Union[Ex, UniqueIdentifier]:
1198 for i in range(3):
1199 data.start_span(FILTERED_SEARCH_STRATEGY_DO_DRAW_LABEL)
1200 value = data.draw(self.filtered_strategy)
1201 if self.condition(value):
1202 data.stop_span()
1203 return value
1204 else:
1205 data.stop_span(discard=True)
1206 if i == 0:
1207 data.events[f"Retried draw from {self!r} to satisfy filter"] = ""
1208
1209 return filter_not_satisfied
1210
1211 @property
1212 def branches(self) -> Sequence[SearchStrategy[Ex]]:
1213 return [
1214 FilteredStrategy(strategy=strategy, conditions=self.flat_conditions)
1215 for strategy in self.filtered_strategy.branches
1216 ]
1217
1218
1219@check_function
1220def check_strategy(arg: object, name: str = "") -> None:
1221 assert isinstance(name, str)
1222 if not isinstance(arg, SearchStrategy):
1223 hint = ""
1224 if isinstance(arg, (list, tuple)):
1225 hint = ", such as st.sampled_from({}),".format(name or "...")
1226 if name:
1227 name += "="
1228 raise InvalidArgument(
1229 f"Expected a SearchStrategy{hint} but got {name}{arg!r} "
1230 f"(type={type(arg).__name__})"
1231 )