Coverage Report

Created: 2023-06-07 06:25

/src/unbound/util/rbtree.c
Line
Count
Source (jump to first uncovered line)
1
/*
2
 * rbtree.c -- generic red black tree
3
 *
4
 * Copyright (c) 2001-2007, NLnet Labs. All rights reserved.
5
 * 
6
 * This software is open source.
7
 * 
8
 * Redistribution and use in source and binary forms, with or without
9
 * modification, are permitted provided that the following conditions
10
 * are met:
11
 * 
12
 * Redistributions of source code must retain the above copyright notice,
13
 * this list of conditions and the following disclaimer.
14
 * 
15
 * Redistributions in binary form must reproduce the above copyright notice,
16
 * this list of conditions and the following disclaimer in the documentation
17
 * and/or other materials provided with the distribution.
18
 * 
19
 * Neither the name of the NLNET LABS nor the names of its contributors may
20
 * be used to endorse or promote products derived from this software without
21
 * specific prior written permission.
22
 * 
23
 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
24
 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
25
 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
26
 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
27
 * HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
28
 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED
29
 * TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
30
 * PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
31
 * LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
32
 * NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
33
 * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
34
 *
35
 */
36
37
/**
38
 * \file
39
 * Implementation of a redblack tree.
40
 */
41
42
#include "config.h"
43
#include "log.h"
44
#include "fptr_wlist.h"
45
#include "util/rbtree.h"
46
47
/** Node colour black */
48
0
#define BLACK 0
49
/** Node colour red */
50
0
#define RED 1
51
52
/** the NULL node, global alloc */
53
rbnode_type rbtree_null_node = {
54
  RBTREE_NULL,    /* Parent.  */
55
  RBTREE_NULL,    /* Left.  */
56
  RBTREE_NULL,    /* Right.  */
57
  NULL,     /* Key.  */
58
  BLACK     /* Color.  */
59
};
60
61
/** rotate subtree left (to preserve redblack property) */
62
static void rbtree_rotate_left(rbtree_type *rbtree, rbnode_type *node);
63
/** rotate subtree right (to preserve redblack property) */
64
static void rbtree_rotate_right(rbtree_type *rbtree, rbnode_type *node);
65
/** Fixup node colours when insert happened */
66
static void rbtree_insert_fixup(rbtree_type *rbtree, rbnode_type *node);
67
/** Fixup node colours when delete happened */
68
static void rbtree_delete_fixup(rbtree_type* rbtree, rbnode_type* child,
69
  rbnode_type* child_parent);
70
71
/*
72
 * Creates a new red black tree, initializes and returns a pointer to it.
73
 *
74
 * Return NULL on failure.
75
 *
76
 */
77
rbtree_type *
78
rbtree_create (int (*cmpf)(const void *, const void *))
79
4.66k
{
80
4.66k
  rbtree_type *rbtree;
81
82
  /* Allocate memory for it */
83
4.66k
  rbtree = (rbtree_type *) malloc(sizeof(rbtree_type));
84
4.66k
  if (!rbtree) {
85
0
    return NULL;
86
0
  }
87
88
  /* Initialize it */
89
4.66k
  rbtree_init(rbtree, cmpf);
90
91
4.66k
  return rbtree;
92
4.66k
}
93
94
void 
95
rbtree_init(rbtree_type *rbtree, int (*cmpf)(const void *, const void *))
96
4.66k
{
97
  /* Initialize it */
98
4.66k
  rbtree->root = RBTREE_NULL;
99
4.66k
  rbtree->count = 0;
100
4.66k
  rbtree->cmp = cmpf;
101
4.66k
}
102
103
/*
104
 * Rotates the node to the left.
105
 *
106
 */
107
static void
108
rbtree_rotate_left(rbtree_type *rbtree, rbnode_type *node)
109
0
{
110
0
  rbnode_type *right = node->right;
111
0
  node->right = right->left;
112
0
  if (right->left != RBTREE_NULL)
113
0
    right->left->parent = node;
114
115
0
  right->parent = node->parent;
116
117
0
  if (node->parent != RBTREE_NULL) {
118
0
    if (node == node->parent->left) {
119
0
      node->parent->left = right;
120
0
    } else  {
121
0
      node->parent->right = right;
122
0
    }
123
0
  } else {
124
0
    rbtree->root = right;
125
0
  }
126
0
  right->left = node;
127
0
  node->parent = right;
128
0
}
129
130
/*
131
 * Rotates the node to the right.
132
 *
133
 */
134
static void
135
rbtree_rotate_right(rbtree_type *rbtree, rbnode_type *node)
136
0
{
137
0
  rbnode_type *left = node->left;
138
0
  node->left = left->right;
139
0
  if (left->right != RBTREE_NULL)
140
0
    left->right->parent = node;
141
142
0
  left->parent = node->parent;
143
144
0
  if (node->parent != RBTREE_NULL) {
145
0
    if (node == node->parent->right) {
146
0
      node->parent->right = left;
147
0
    } else  {
148
0
      node->parent->left = left;
149
0
    }
150
0
  } else {
151
0
    rbtree->root = left;
152
0
  }
153
0
  left->right = node;
154
0
  node->parent = left;
155
0
}
156
157
static void
158
rbtree_insert_fixup(rbtree_type *rbtree, rbnode_type *node)
159
0
{
160
0
  rbnode_type *uncle;
161
162
  /* While not at the root and need fixing... */
163
0
  while (node != rbtree->root && node->parent->color == RED) {
164
    /* If our parent is left child of our grandparent... */
165
0
    if (node->parent == node->parent->parent->left) {
166
0
      uncle = node->parent->parent->right;
167
168
      /* If our uncle is red... */
169
0
      if (uncle->color == RED) {
170
        /* Paint the parent and the uncle black... */
171
0
        node->parent->color = BLACK;
172
0
        uncle->color = BLACK;
173
174
        /* And the grandparent red... */
175
0
        node->parent->parent->color = RED;
176
177
        /* And continue fixing the grandparent */
178
0
        node = node->parent->parent;
179
0
      } else {       /* Our uncle is black... */
180
        /* Are we the right child? */
181
0
        if (node == node->parent->right) {
182
0
          node = node->parent;
183
0
          rbtree_rotate_left(rbtree, node);
184
0
        }
185
        /* Now we're the left child, repaint and rotate... */
186
0
        node->parent->color = BLACK;
187
0
        node->parent->parent->color = RED;
188
0
        rbtree_rotate_right(rbtree, node->parent->parent);
189
0
      }
190
0
    } else {
191
0
      uncle = node->parent->parent->left;
192
193
      /* If our uncle is red... */
194
0
      if (uncle->color == RED) {
195
        /* Paint the parent and the uncle black... */
196
0
        node->parent->color = BLACK;
197
0
        uncle->color = BLACK;
198
199
        /* And the grandparent red... */
200
0
        node->parent->parent->color = RED;
201
202
        /* And continue fixing the grandparent */
203
0
        node = node->parent->parent;
204
0
      } else {       /* Our uncle is black... */
205
        /* Are we the right child? */
206
0
        if (node == node->parent->left) {
207
0
          node = node->parent;
208
0
          rbtree_rotate_right(rbtree, node);
209
0
        }
210
        /* Now we're the right child, repaint and rotate... */
211
0
        node->parent->color = BLACK;
212
0
        node->parent->parent->color = RED;
213
0
        rbtree_rotate_left(rbtree, node->parent->parent);
214
0
      }
215
0
    }
216
0
  }
217
0
  rbtree->root->color = BLACK;
218
0
}
219
220
221
/*
222
 * Inserts a node into a red black tree.
223
 *
224
 * Returns NULL on failure or the pointer to the newly added node
225
 * otherwise.
226
 */
227
rbnode_type *
228
rbtree_insert (rbtree_type *rbtree, rbnode_type *data)
229
0
{
230
  /* XXX Not necessary, but keeps compiler quiet... */
231
0
  int r = 0;
232
233
  /* We start at the root of the tree */
234
0
  rbnode_type *node = rbtree->root;
235
0
  rbnode_type *parent = RBTREE_NULL;
236
237
0
  fptr_ok(fptr_whitelist_rbtree_cmp(rbtree->cmp));
238
  /* Lets find the new parent... */
239
0
  while (node != RBTREE_NULL) {
240
    /* Compare two keys, do we have a duplicate? */
241
0
    if ((r = rbtree->cmp(data->key, node->key)) == 0) {
242
0
      return NULL;
243
0
    }
244
0
    parent = node;
245
246
0
    if (r < 0) {
247
0
      node = node->left;
248
0
    } else {
249
0
      node = node->right;
250
0
    }
251
0
  }
252
253
  /* Initialize the new node */
254
0
  data->parent = parent;
255
0
  data->left = data->right = RBTREE_NULL;
256
0
  data->color = RED;
257
0
  rbtree->count++;
258
259
  /* Insert it into the tree... */
260
0
  if (parent != RBTREE_NULL) {
261
0
    if (r < 0) {
262
0
      parent->left = data;
263
0
    } else {
264
0
      parent->right = data;
265
0
    }
266
0
  } else {
267
0
    rbtree->root = data;
268
0
  }
269
270
  /* Fix up the red-black properties... */
271
0
  rbtree_insert_fixup(rbtree, data);
272
273
0
  return data;
274
0
}
275
276
/*
277
 * Searches the red black tree, returns the data if key is found or NULL otherwise.
278
 *
279
 */
280
rbnode_type *
281
rbtree_search (rbtree_type *rbtree, const void *key)
282
0
{
283
0
  rbnode_type *node;
284
285
0
  if (rbtree_find_less_equal(rbtree, key, &node)) {
286
0
    return node;
287
0
  } else {
288
0
    return NULL;
289
0
  }
290
0
}
291
292
/** helpers for delete: swap node colours */
293
static void swap_int8(uint8_t* x, uint8_t* y) 
294
0
{ 
295
0
  uint8_t t = *x; *x = *y; *y = t; 
296
0
}
297
298
/** helpers for delete: swap node pointers */
299
static void swap_np(rbnode_type** x, rbnode_type** y) 
300
0
{
301
0
  rbnode_type* t = *x; *x = *y; *y = t; 
302
0
}
303
304
/** Update parent pointers of child trees of 'parent' */
305
static void change_parent_ptr(rbtree_type* rbtree, rbnode_type* parent,
306
  rbnode_type* old, rbnode_type* new)
307
0
{
308
0
  if(parent == RBTREE_NULL)
309
0
  {
310
0
    log_assert(rbtree->root == old);
311
0
    if(rbtree->root == old) rbtree->root = new;
312
0
    return;
313
0
  }
314
0
  log_assert(parent->left == old || parent->right == old
315
0
    || parent->left == new || parent->right == new);
316
0
  if(parent->left == old) parent->left = new;
317
0
  if(parent->right == old) parent->right = new;
318
0
}
319
/** Update parent pointer of a node 'child' */
320
static void change_child_ptr(rbnode_type* child, rbnode_type* old,
321
  rbnode_type* new)
322
0
{
323
0
  if(child == RBTREE_NULL) return;
324
0
  log_assert(child->parent == old || child->parent == new);
325
0
  if(child->parent == old) child->parent = new;
326
0
}
327
328
rbnode_type* 
329
rbtree_delete(rbtree_type *rbtree, const void *key)
330
0
{
331
0
  rbnode_type *to_delete;
332
0
  rbnode_type *child;
333
0
  if((to_delete = rbtree_search(rbtree, key)) == 0) return 0;
334
0
  rbtree->count--;
335
336
  /* make sure we have at most one non-leaf child */
337
0
  if(to_delete->left != RBTREE_NULL && to_delete->right != RBTREE_NULL)
338
0
  {
339
    /* swap with smallest from right subtree (or largest from left) */
340
0
    rbnode_type *smright = to_delete->right;
341
0
    while(smright->left != RBTREE_NULL)
342
0
      smright = smright->left;
343
    /* swap the smright and to_delete elements in the tree,
344
     * but the rbnode_type is first part of user data struct
345
     * so cannot just swap the keys and data pointers. Instead
346
     * readjust the pointers left,right,parent */
347
348
    /* swap colors - colors are tied to the position in the tree */
349
0
    swap_int8(&to_delete->color, &smright->color);
350
351
    /* swap child pointers in parents of smright/to_delete */
352
0
    change_parent_ptr(rbtree, to_delete->parent, to_delete, smright);
353
0
    if(to_delete->right != smright)
354
0
      change_parent_ptr(rbtree, smright->parent, smright, to_delete);
355
356
    /* swap parent pointers in children of smright/to_delete */
357
0
    change_child_ptr(smright->left, smright, to_delete);
358
0
    change_child_ptr(smright->left, smright, to_delete);
359
0
    change_child_ptr(smright->right, smright, to_delete);
360
0
    change_child_ptr(smright->right, smright, to_delete);
361
0
    change_child_ptr(to_delete->left, to_delete, smright);
362
0
    if(to_delete->right != smright)
363
0
      change_child_ptr(to_delete->right, to_delete, smright);
364
0
    if(to_delete->right == smright)
365
0
    {
366
      /* set up so after swap they work */
367
0
      to_delete->right = to_delete;
368
0
      smright->parent = smright;
369
0
    }
370
371
    /* swap pointers in to_delete/smright nodes */
372
0
    swap_np(&to_delete->parent, &smright->parent);
373
0
    swap_np(&to_delete->left, &smright->left);
374
0
    swap_np(&to_delete->right, &smright->right);
375
376
    /* now delete to_delete (which is at the location where the smright previously was) */
377
0
  }
378
0
  log_assert(to_delete->left == RBTREE_NULL || to_delete->right == RBTREE_NULL);
379
380
0
  if(to_delete->left != RBTREE_NULL) child = to_delete->left;
381
0
  else child = to_delete->right;
382
383
  /* unlink to_delete from the tree, replace to_delete with child */
384
0
  change_parent_ptr(rbtree, to_delete->parent, to_delete, child);
385
0
  change_child_ptr(child, to_delete, to_delete->parent);
386
387
0
  if(to_delete->color == RED)
388
0
  {
389
    /* if node is red then the child (black) can be swapped in */
390
0
  }
391
0
  else if(child->color == RED)
392
0
  {
393
    /* change child to BLACK, removing a RED node is no problem */
394
0
    if(child!=RBTREE_NULL) child->color = BLACK;
395
0
  }
396
0
  else rbtree_delete_fixup(rbtree, child, to_delete->parent);
397
398
  /* unlink completely */
399
0
  to_delete->parent = RBTREE_NULL;
400
0
  to_delete->left = RBTREE_NULL;
401
0
  to_delete->right = RBTREE_NULL;
402
0
  to_delete->color = BLACK;
403
0
  return to_delete;
404
0
}
405
406
static void rbtree_delete_fixup(rbtree_type* rbtree, rbnode_type* child,
407
  rbnode_type* child_parent)
408
0
{
409
0
  rbnode_type* sibling;
410
0
  int go_up = 1;
411
412
  /* determine sibling to the node that is one-black short */
413
0
  if(child_parent->right == child) sibling = child_parent->left;
414
0
  else sibling = child_parent->right;
415
416
0
  while(go_up)
417
0
  {
418
0
    if(child_parent == RBTREE_NULL)
419
0
    {
420
      /* removed parent==black from root, every path, so ok */
421
0
      return;
422
0
    }
423
424
0
    if(sibling->color == RED)
425
0
    { /* rotate to get a black sibling */
426
0
      child_parent->color = RED;
427
0
      sibling->color = BLACK;
428
0
      if(child_parent->right == child)
429
0
        rbtree_rotate_right(rbtree, child_parent);
430
0
      else  rbtree_rotate_left(rbtree, child_parent);
431
      /* new sibling after rotation */
432
0
      if(child_parent->right == child) sibling = child_parent->left;
433
0
      else sibling = child_parent->right;
434
0
    }
435
436
0
    if(child_parent->color == BLACK 
437
0
      && sibling->color == BLACK
438
0
      && sibling->left->color == BLACK
439
0
      && sibling->right->color == BLACK)
440
0
    { /* fixup local with recolor of sibling */
441
0
      if(sibling != RBTREE_NULL)
442
0
        sibling->color = RED;
443
444
0
      child = child_parent;
445
0
      child_parent = child_parent->parent;
446
      /* prepare to go up, new sibling */
447
0
      if(child_parent->right == child) sibling = child_parent->left;
448
0
      else sibling = child_parent->right;
449
0
    }
450
0
    else go_up = 0;
451
0
  }
452
453
0
  if(child_parent->color == RED
454
0
    && sibling->color == BLACK
455
0
    && sibling->left->color == BLACK
456
0
    && sibling->right->color == BLACK) 
457
0
  {
458
    /* move red to sibling to rebalance */
459
0
    if(sibling != RBTREE_NULL)
460
0
      sibling->color = RED;
461
0
    child_parent->color = BLACK;
462
0
    return;
463
0
  }
464
0
  log_assert(sibling != RBTREE_NULL);
465
466
  /* get a new sibling, by rotating at sibling. See which child
467
     of sibling is red */
468
0
  if(child_parent->right == child
469
0
    && sibling->color == BLACK
470
0
    && sibling->right->color == RED
471
0
    && sibling->left->color == BLACK)
472
0
  {
473
0
    sibling->color = RED;
474
0
    sibling->right->color = BLACK;
475
0
    rbtree_rotate_left(rbtree, sibling);
476
    /* new sibling after rotation */
477
0
    if(child_parent->right == child) sibling = child_parent->left;
478
0
    else sibling = child_parent->right;
479
0
  }
480
0
  else if(child_parent->left == child
481
0
    && sibling->color == BLACK
482
0
    && sibling->left->color == RED
483
0
    && sibling->right->color == BLACK)
484
0
  {
485
0
    sibling->color = RED;
486
0
    sibling->left->color = BLACK;
487
0
    rbtree_rotate_right(rbtree, sibling);
488
    /* new sibling after rotation */
489
0
    if(child_parent->right == child) sibling = child_parent->left;
490
0
    else sibling = child_parent->right;
491
0
  }
492
493
  /* now we have a black sibling with a red child. rotate and exchange colors. */
494
0
  sibling->color = child_parent->color;
495
0
  child_parent->color = BLACK;
496
0
  if(child_parent->right == child)
497
0
  {
498
0
    log_assert(sibling->left->color == RED);
499
0
    sibling->left->color = BLACK;
500
0
    rbtree_rotate_right(rbtree, child_parent);
501
0
  }
502
0
  else
503
0
  {
504
0
    log_assert(sibling->right->color == RED);
505
0
    sibling->right->color = BLACK;
506
0
    rbtree_rotate_left(rbtree, child_parent);
507
0
  }
508
0
}
509
510
int
511
rbtree_find_less_equal(rbtree_type *rbtree, const void *key,
512
  rbnode_type **result)
513
0
{
514
0
  int r;
515
0
  rbnode_type *node;
516
517
0
  log_assert(result);
518
  
519
  /* We start at root... */
520
0
  node = rbtree->root;
521
522
0
  *result = NULL;
523
0
  fptr_ok(fptr_whitelist_rbtree_cmp(rbtree->cmp));
524
525
  /* While there are children... */
526
0
  while (node != RBTREE_NULL) {
527
0
    r = rbtree->cmp(key, node->key);
528
0
    if (r == 0) {
529
      /* Exact match */
530
0
      *result = node;
531
0
      return 1;
532
0
    } 
533
0
    if (r < 0) {
534
0
      node = node->left;
535
0
    } else {
536
      /* Temporary match */
537
0
      *result = node;
538
0
      node = node->right;
539
0
    }
540
0
  }
541
0
  return 0;
542
0
}
543
544
/*
545
 * Finds the first element in the red black tree
546
 *
547
 */
548
rbnode_type *
549
rbtree_first (rbtree_type *rbtree)
550
0
{
551
0
  rbnode_type *node;
552
553
0
  for (node = rbtree->root; node->left != RBTREE_NULL; node = node->left);
554
0
  return node;
555
0
}
556
557
rbnode_type *
558
rbtree_last (rbtree_type *rbtree)
559
0
{
560
0
  rbnode_type *node;
561
562
0
  for (node = rbtree->root; node->right != RBTREE_NULL; node = node->right);
563
0
  return node;
564
0
}
565
566
/*
567
 * Returns the next node...
568
 *
569
 */
570
rbnode_type *
571
rbtree_next (rbnode_type *node)
572
0
{
573
0
  rbnode_type *parent;
574
575
0
  if (node->right != RBTREE_NULL) {
576
    /* One right, then keep on going left... */
577
0
    for (node = node->right; node->left != RBTREE_NULL; node = node->left);
578
0
  } else {
579
0
    parent = node->parent;
580
0
    while (parent != RBTREE_NULL && node == parent->right) {
581
0
      node = parent;
582
0
      parent = parent->parent;
583
0
    }
584
0
    node = parent;
585
0
  }
586
0
  return node;
587
0
}
588
589
rbnode_type *
590
rbtree_previous(rbnode_type *node)
591
0
{
592
0
  rbnode_type *parent;
593
594
0
  if (node->left != RBTREE_NULL) {
595
    /* One left, then keep on going right... */
596
0
    for (node = node->left; node->right != RBTREE_NULL; node = node->right);
597
0
  } else {
598
0
    parent = node->parent;
599
0
    while (parent != RBTREE_NULL && node == parent->left) {
600
0
      node = parent;
601
0
      parent = parent->parent;
602
0
    }
603
0
    node = parent;
604
0
  }
605
0
  return node;
606
0
}
607
608
/** recursive descent traverse */
609
static void 
610
traverse_post(void (*func)(rbnode_type*, void*), void* arg, rbnode_type* node)
611
0
{
612
0
  if(!node || node == RBTREE_NULL)
613
0
    return;
614
  /* recurse */
615
0
  traverse_post(func, arg, node->left);
616
0
  traverse_post(func, arg, node->right);
617
  /* call user func */
618
0
  (*func)(node, arg);
619
0
}
620
621
void 
622
traverse_postorder(rbtree_type* tree, void (*func)(rbnode_type*, void*),
623
  void* arg)
624
0
{
625
0
  traverse_post(func, arg, tree->root);
626
0
}