Coverage Report

Created: 2025-07-12 06:29

/src/unbound/util/storage/dnstree.c
Line
Count
Source (jump to first uncovered line)
1
/*
2
 * util/storage/dnstree.c - support for rbtree types suitable for DNS code.
3
 *
4
 * Copyright (c) 2008, NLnet Labs. All rights reserved.
5
 *
6
 * This software is open source.
7
 * 
8
 * Redistribution and use in source and binary forms, with or without
9
 * modification, are permitted provided that the following conditions
10
 * are met:
11
 * 
12
 * Redistributions of source code must retain the above copyright notice,
13
 * this list of conditions and the following disclaimer.
14
 * 
15
 * Redistributions in binary form must reproduce the above copyright notice,
16
 * this list of conditions and the following disclaimer in the documentation
17
 * and/or other materials provided with the distribution.
18
 * 
19
 * Neither the name of the NLNET LABS nor the names of its contributors may
20
 * be used to endorse or promote products derived from this software without
21
 * specific prior written permission.
22
 * 
23
 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
24
 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
25
 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
26
 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
27
 * HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
28
 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED
29
 * TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
30
 * PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
31
 * LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
32
 * NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
33
 * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
34
 */
35
36
/**
37
 * \file
38
 *
39
 * This file contains structures combining types and functions to
40
 * manipulate those structures that help building DNS lookup trees.
41
 */
42
#include "config.h"
43
#include "util/storage/dnstree.h"
44
#include "util/data/dname.h"
45
#include "util/net_help.h"
46
47
int name_tree_compare(const void* k1, const void* k2)
48
0
{
49
0
        struct name_tree_node* x = (struct name_tree_node*)k1;
50
0
        struct name_tree_node* y = (struct name_tree_node*)k2;
51
0
        int m;
52
0
        if(x->dclass != y->dclass) {
53
0
                if(x->dclass < y->dclass)
54
0
                        return -1;
55
0
                return 1;
56
0
        }
57
0
        return dname_lab_cmp(x->name, x->labs, y->name, y->labs, &m);
58
0
}
59
60
int addr_tree_compare(const void* k1, const void* k2)
61
0
{
62
0
        struct addr_tree_node* n1 = (struct addr_tree_node*)k1;
63
0
        struct addr_tree_node* n2 = (struct addr_tree_node*)k2;
64
0
        int r = sockaddr_cmp_addr(&n1->addr, n1->addrlen, &n2->addr,
65
0
                n2->addrlen);
66
0
        if(r != 0) return r;
67
0
        if(n1->net < n2->net)
68
0
                return -1;
69
0
        if(n1->net > n2->net)
70
0
                return 1;
71
0
        return 0;
72
0
}
73
74
int addr_tree_addrport_compare(const void* k1, const void* k2)
75
0
{
76
0
  struct addr_tree_node* n1 = (struct addr_tree_node*)k1;
77
0
  struct addr_tree_node* n2 = (struct addr_tree_node*)k2;
78
0
  return sockaddr_cmp_scopeid(&n1->addr, n1->addrlen, &n2->addr,
79
0
    n2->addrlen);
80
0
}
81
82
void name_tree_init(rbtree_type* tree)
83
0
{
84
0
  rbtree_init(tree, &name_tree_compare);
85
0
}
86
87
void addr_tree_init(rbtree_type* tree)
88
0
{
89
0
  rbtree_init(tree, &addr_tree_compare);
90
0
}
91
92
void addr_tree_addrport_init(rbtree_type* tree)
93
0
{
94
0
  rbtree_init(tree, &addr_tree_addrport_compare);
95
0
}
96
97
int name_tree_insert(rbtree_type* tree, struct name_tree_node* node, 
98
        uint8_t* name, size_t len, int labs, uint16_t dclass)
99
0
{
100
0
  node->node.key = node;
101
0
  node->name = name;
102
0
  node->len = len;
103
0
  node->labs = labs;
104
0
  node->dclass = dclass;
105
0
  node->parent = NULL;
106
0
  return rbtree_insert(tree, &node->node) != NULL;
107
0
}
108
109
int addr_tree_insert(rbtree_type* tree, struct addr_tree_node* node,
110
        struct sockaddr_storage* addr, socklen_t addrlen, int net)
111
0
{
112
0
  node->node.key = node;
113
0
  memcpy(&node->addr, addr, addrlen);
114
0
  node->addrlen = addrlen;
115
0
  node->net = net;
116
0
  node->parent = NULL;
117
0
  return rbtree_insert(tree, &node->node) != NULL;
118
0
}
119
120
void addr_tree_init_parents_node(struct addr_tree_node* node)
121
0
{
122
0
  struct addr_tree_node* prev = NULL, *p;
123
0
        int m;
124
0
  for(; (rbnode_type*)node != RBTREE_NULL;
125
0
    node = (struct addr_tree_node*)rbtree_next((rbnode_type*)node)) {
126
0
                node->parent = NULL;
127
0
                if(!prev || prev->addrlen != node->addrlen) {
128
0
                        prev = node;
129
0
                        continue;
130
0
                }
131
0
                m = addr_in_common(&prev->addr, prev->net, &node->addr,
132
0
                        node->net, node->addrlen);
133
                /* sort order like: ::/0, 1::/2, 1::/4, ... 2::/2 */
134
                /* find the previous, or parent-parent-parent */
135
0
                for(p = prev; p; p = p->parent)
136
0
                        if(p->net <= m) {
137
                                /* ==: since prev matched m, this is closest*/
138
                                /* <: prev matches more, but is not a parent,
139
         * this one is a (grand)parent */
140
0
                                node->parent = p;
141
0
                                break;
142
0
                        }
143
0
                prev = node;
144
0
        }
145
0
}
146
147
void addr_tree_init_parents(rbtree_type* tree)
148
0
{
149
0
  addr_tree_init_parents_node(
150
0
      (struct addr_tree_node*)rbtree_first(tree));
151
0
}
152
153
void name_tree_init_parents(rbtree_type* tree)
154
0
{
155
0
        struct name_tree_node* node, *prev = NULL, *p;
156
0
        int m;
157
0
        RBTREE_FOR(node, struct name_tree_node*, tree) {
158
0
                node->parent = NULL;
159
0
                if(!prev || prev->dclass != node->dclass) {
160
0
                        prev = node;
161
0
                        continue;
162
0
                }
163
0
                (void)dname_lab_cmp(prev->name, prev->labs, node->name,
164
0
                        node->labs, &m); /* we know prev is smaller */
165
    /* sort order like: . com. bla.com. zwb.com. net. */
166
                /* find the previous, or parent-parent-parent */
167
0
                for(p = prev; p; p = p->parent)
168
0
                        if(p->labs <= m) {
169
                                /* ==: since prev matched m, this is closest*/
170
                                /* <: prev matches more, but is not a parent,
171
         * this one is a (grand)parent */
172
0
                                node->parent = p;
173
0
                                break;
174
0
                        }
175
0
                prev = node;
176
0
        }
177
0
}
178
179
struct name_tree_node* name_tree_find(rbtree_type* tree, uint8_t* name, 
180
        size_t len, int labs, uint16_t dclass)
181
0
{
182
0
  struct name_tree_node key;
183
0
  key.node.key = &key;
184
0
  key.name = name;
185
0
  key.len = len;
186
0
  key.labs = labs;
187
0
  key.dclass = dclass;
188
0
  return (struct name_tree_node*)rbtree_search(tree, &key);
189
0
}
190
191
struct name_tree_node* name_tree_lookup(rbtree_type* tree, uint8_t* name,
192
        size_t len, int labs, uint16_t dclass)
193
0
{
194
0
        rbnode_type* res = NULL;
195
0
        struct name_tree_node *result;
196
0
        struct name_tree_node key;
197
0
        key.node.key = &key;
198
0
        key.name = name;
199
0
        key.len = len;
200
0
        key.labs = labs;
201
0
        key.dclass = dclass;
202
0
        if(rbtree_find_less_equal(tree, &key, &res)) {
203
                /* exact */
204
0
                result = (struct name_tree_node*)res;
205
0
        } else {
206
                /* smaller element (or no element) */
207
0
                int m;
208
0
                result = (struct name_tree_node*)res;
209
0
                if(!result || result->dclass != dclass)
210
0
                        return NULL;
211
                /* count number of labels matched */
212
0
                (void)dname_lab_cmp(result->name, result->labs, key.name,
213
0
                        key.labs, &m);
214
0
                while(result) { /* go up until qname is subdomain of stub */
215
0
                        if(result->labs <= m)
216
0
                                break;
217
0
                        result = result->parent;
218
0
                }
219
0
        }
220
0
  return result;
221
0
}
222
223
struct addr_tree_node* addr_tree_lookup(rbtree_type* tree, 
224
        struct sockaddr_storage* addr, socklen_t addrlen)
225
0
{
226
0
        rbnode_type* res = NULL;
227
0
        struct addr_tree_node* result;
228
0
        struct addr_tree_node key;
229
0
        key.node.key = &key;
230
0
        memcpy(&key.addr, addr, addrlen);
231
0
        key.addrlen = addrlen;
232
0
        key.net = (addr_is_ip6(addr, addrlen)?128:32);
233
0
        if(rbtree_find_less_equal(tree, &key, &res)) {
234
                /* exact */
235
0
                return (struct addr_tree_node*)res;
236
0
        } else {
237
                /* smaller element (or no element) */
238
0
                int m;
239
0
                result = (struct addr_tree_node*)res;
240
0
                if(!result || result->addrlen != addrlen)
241
0
                        return 0;
242
                /* count number of bits matched */
243
0
                m = addr_in_common(&result->addr, result->net, addr,
244
0
                        key.net, addrlen);
245
0
                while(result) { /* go up until addr is inside netblock */
246
0
                        if(result->net <= m)
247
0
                                break;
248
0
                        result = result->parent;
249
0
                }
250
0
        }
251
0
        return result;
252
0
}
253
254
struct addr_tree_node* addr_tree_find(rbtree_type* tree,
255
        struct sockaddr_storage* addr, socklen_t addrlen, int net)
256
0
{
257
0
        rbnode_type* res = NULL;
258
0
        struct addr_tree_node key;
259
0
        key.node.key = &key;
260
0
        memcpy(&key.addr, addr, addrlen);
261
0
        key.addrlen = addrlen;
262
0
        key.net = net;
263
0
  res = rbtree_search(tree, &key);
264
0
  return (struct addr_tree_node*)res;
265
0
}
266
267
int
268
name_tree_next_root(rbtree_type* tree, uint16_t* dclass)
269
0
{
270
0
  struct name_tree_node key;
271
0
  rbnode_type* n;
272
0
  struct name_tree_node* p;
273
0
  if(*dclass == 0) {
274
    /* first root item is first item in tree */
275
0
    n = rbtree_first(tree);
276
0
    if(n == RBTREE_NULL)
277
0
      return 0;
278
0
    p = (struct name_tree_node*)n;
279
0
    if(dname_is_root(p->name)) {
280
0
      *dclass = p->dclass;
281
0
      return 1;
282
0
    }
283
    /* root not first item? search for higher items */
284
0
    *dclass = p->dclass + 1;
285
0
    return name_tree_next_root(tree, dclass);
286
0
  }
287
  /* find class n in tree, we may get a direct hit, or if we don't
288
   * this is the last item of the previous class so rbtree_next() takes
289
   * us to the next root (if any) */
290
0
  key.node.key = &key;
291
0
  key.name = (uint8_t*)"\000";
292
0
  key.len = 1;
293
0
  key.labs = 0;
294
0
  key.dclass = *dclass;
295
0
  n = NULL;
296
0
  if(rbtree_find_less_equal(tree, &key, &n)) {
297
    /* exact */
298
0
    return 1;
299
0
  } else {
300
    /* smaller element */
301
0
    if(!n || n == RBTREE_NULL)
302
0
      return 0; /* nothing found */
303
0
    n = rbtree_next(n);
304
0
    if(n == RBTREE_NULL)
305
0
      return 0; /* no higher */
306
0
    p = (struct name_tree_node*)n;
307
0
    if(dname_is_root(p->name)) {
308
0
      *dclass = p->dclass;
309
0
      return 1;
310
0
    }
311
    /* not a root node, return next higher item */
312
0
    *dclass = p->dclass+1;
313
0
    return name_tree_next_root(tree, dclass);
314
0
  }
315
0
}