/src/unbound/util/storage/dnstree.c
Line | Count | Source (jump to first uncovered line) |
1 | | /* |
2 | | * util/storage/dnstree.c - support for rbtree types suitable for DNS code. |
3 | | * |
4 | | * Copyright (c) 2008, NLnet Labs. All rights reserved. |
5 | | * |
6 | | * This software is open source. |
7 | | * |
8 | | * Redistribution and use in source and binary forms, with or without |
9 | | * modification, are permitted provided that the following conditions |
10 | | * are met: |
11 | | * |
12 | | * Redistributions of source code must retain the above copyright notice, |
13 | | * this list of conditions and the following disclaimer. |
14 | | * |
15 | | * Redistributions in binary form must reproduce the above copyright notice, |
16 | | * this list of conditions and the following disclaimer in the documentation |
17 | | * and/or other materials provided with the distribution. |
18 | | * |
19 | | * Neither the name of the NLNET LABS nor the names of its contributors may |
20 | | * be used to endorse or promote products derived from this software without |
21 | | * specific prior written permission. |
22 | | * |
23 | | * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS |
24 | | * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT |
25 | | * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR |
26 | | * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT |
27 | | * HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, |
28 | | * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED |
29 | | * TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR |
30 | | * PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF |
31 | | * LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING |
32 | | * NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS |
33 | | * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. |
34 | | */ |
35 | | |
36 | | /** |
37 | | * \file |
38 | | * |
39 | | * This file contains structures combining types and functions to |
40 | | * manipulate those structures that help building DNS lookup trees. |
41 | | */ |
42 | | #include "config.h" |
43 | | #include "util/storage/dnstree.h" |
44 | | #include "util/data/dname.h" |
45 | | #include "util/net_help.h" |
46 | | |
47 | | int name_tree_compare(const void* k1, const void* k2) |
48 | 0 | { |
49 | 0 | struct name_tree_node* x = (struct name_tree_node*)k1; |
50 | 0 | struct name_tree_node* y = (struct name_tree_node*)k2; |
51 | 0 | int m; |
52 | 0 | if(x->dclass != y->dclass) { |
53 | 0 | if(x->dclass < y->dclass) |
54 | 0 | return -1; |
55 | 0 | return 1; |
56 | 0 | } |
57 | 0 | return dname_lab_cmp(x->name, x->labs, y->name, y->labs, &m); |
58 | 0 | } |
59 | | |
60 | | int addr_tree_compare(const void* k1, const void* k2) |
61 | 0 | { |
62 | 0 | struct addr_tree_node* n1 = (struct addr_tree_node*)k1; |
63 | 0 | struct addr_tree_node* n2 = (struct addr_tree_node*)k2; |
64 | 0 | int r = sockaddr_cmp_addr(&n1->addr, n1->addrlen, &n2->addr, |
65 | 0 | n2->addrlen); |
66 | 0 | if(r != 0) return r; |
67 | 0 | if(n1->net < n2->net) |
68 | 0 | return -1; |
69 | 0 | if(n1->net > n2->net) |
70 | 0 | return 1; |
71 | 0 | return 0; |
72 | 0 | } |
73 | | |
74 | | int addr_tree_addrport_compare(const void* k1, const void* k2) |
75 | 0 | { |
76 | 0 | struct addr_tree_node* n1 = (struct addr_tree_node*)k1; |
77 | 0 | struct addr_tree_node* n2 = (struct addr_tree_node*)k2; |
78 | 0 | return sockaddr_cmp_scopeid(&n1->addr, n1->addrlen, &n2->addr, |
79 | 0 | n2->addrlen); |
80 | 0 | } |
81 | | |
82 | | void name_tree_init(rbtree_type* tree) |
83 | 0 | { |
84 | 0 | rbtree_init(tree, &name_tree_compare); |
85 | 0 | } |
86 | | |
87 | | void addr_tree_init(rbtree_type* tree) |
88 | 0 | { |
89 | 0 | rbtree_init(tree, &addr_tree_compare); |
90 | 0 | } |
91 | | |
92 | | void addr_tree_addrport_init(rbtree_type* tree) |
93 | 0 | { |
94 | 0 | rbtree_init(tree, &addr_tree_addrport_compare); |
95 | 0 | } |
96 | | |
97 | | int name_tree_insert(rbtree_type* tree, struct name_tree_node* node, |
98 | | uint8_t* name, size_t len, int labs, uint16_t dclass) |
99 | 0 | { |
100 | 0 | node->node.key = node; |
101 | 0 | node->name = name; |
102 | 0 | node->len = len; |
103 | 0 | node->labs = labs; |
104 | 0 | node->dclass = dclass; |
105 | 0 | node->parent = NULL; |
106 | 0 | return rbtree_insert(tree, &node->node) != NULL; |
107 | 0 | } |
108 | | |
109 | | int addr_tree_insert(rbtree_type* tree, struct addr_tree_node* node, |
110 | | struct sockaddr_storage* addr, socklen_t addrlen, int net) |
111 | 0 | { |
112 | 0 | node->node.key = node; |
113 | 0 | memcpy(&node->addr, addr, addrlen); |
114 | 0 | node->addrlen = addrlen; |
115 | 0 | node->net = net; |
116 | 0 | node->parent = NULL; |
117 | 0 | return rbtree_insert(tree, &node->node) != NULL; |
118 | 0 | } |
119 | | |
120 | | void addr_tree_init_parents_node(struct addr_tree_node* node) |
121 | 0 | { |
122 | 0 | struct addr_tree_node* prev = NULL, *p; |
123 | 0 | int m; |
124 | 0 | for(; (rbnode_type*)node != RBTREE_NULL; |
125 | 0 | node = (struct addr_tree_node*)rbtree_next((rbnode_type*)node)) { |
126 | 0 | node->parent = NULL; |
127 | 0 | if(!prev || prev->addrlen != node->addrlen) { |
128 | 0 | prev = node; |
129 | 0 | continue; |
130 | 0 | } |
131 | 0 | m = addr_in_common(&prev->addr, prev->net, &node->addr, |
132 | 0 | node->net, node->addrlen); |
133 | | /* sort order like: ::/0, 1::/2, 1::/4, ... 2::/2 */ |
134 | | /* find the previous, or parent-parent-parent */ |
135 | 0 | for(p = prev; p; p = p->parent) |
136 | 0 | if(p->net <= m) { |
137 | | /* ==: since prev matched m, this is closest*/ |
138 | | /* <: prev matches more, but is not a parent, |
139 | | * this one is a (grand)parent */ |
140 | 0 | node->parent = p; |
141 | 0 | break; |
142 | 0 | } |
143 | 0 | prev = node; |
144 | 0 | } |
145 | 0 | } |
146 | | |
147 | | void addr_tree_init_parents(rbtree_type* tree) |
148 | 0 | { |
149 | 0 | addr_tree_init_parents_node( |
150 | 0 | (struct addr_tree_node*)rbtree_first(tree)); |
151 | 0 | } |
152 | | |
153 | | void name_tree_init_parents(rbtree_type* tree) |
154 | 0 | { |
155 | 0 | struct name_tree_node* node, *prev = NULL, *p; |
156 | 0 | int m; |
157 | 0 | RBTREE_FOR(node, struct name_tree_node*, tree) { |
158 | 0 | node->parent = NULL; |
159 | 0 | if(!prev || prev->dclass != node->dclass) { |
160 | 0 | prev = node; |
161 | 0 | continue; |
162 | 0 | } |
163 | 0 | (void)dname_lab_cmp(prev->name, prev->labs, node->name, |
164 | 0 | node->labs, &m); /* we know prev is smaller */ |
165 | | /* sort order like: . com. bla.com. zwb.com. net. */ |
166 | | /* find the previous, or parent-parent-parent */ |
167 | 0 | for(p = prev; p; p = p->parent) |
168 | 0 | if(p->labs <= m) { |
169 | | /* ==: since prev matched m, this is closest*/ |
170 | | /* <: prev matches more, but is not a parent, |
171 | | * this one is a (grand)parent */ |
172 | 0 | node->parent = p; |
173 | 0 | break; |
174 | 0 | } |
175 | 0 | prev = node; |
176 | 0 | } |
177 | 0 | } |
178 | | |
179 | | struct name_tree_node* name_tree_find(rbtree_type* tree, uint8_t* name, |
180 | | size_t len, int labs, uint16_t dclass) |
181 | 0 | { |
182 | 0 | struct name_tree_node key; |
183 | 0 | key.node.key = &key; |
184 | 0 | key.name = name; |
185 | 0 | key.len = len; |
186 | 0 | key.labs = labs; |
187 | 0 | key.dclass = dclass; |
188 | 0 | return (struct name_tree_node*)rbtree_search(tree, &key); |
189 | 0 | } |
190 | | |
191 | | struct name_tree_node* name_tree_lookup(rbtree_type* tree, uint8_t* name, |
192 | | size_t len, int labs, uint16_t dclass) |
193 | 0 | { |
194 | 0 | rbnode_type* res = NULL; |
195 | 0 | struct name_tree_node *result; |
196 | 0 | struct name_tree_node key; |
197 | 0 | key.node.key = &key; |
198 | 0 | key.name = name; |
199 | 0 | key.len = len; |
200 | 0 | key.labs = labs; |
201 | 0 | key.dclass = dclass; |
202 | 0 | if(rbtree_find_less_equal(tree, &key, &res)) { |
203 | | /* exact */ |
204 | 0 | result = (struct name_tree_node*)res; |
205 | 0 | } else { |
206 | | /* smaller element (or no element) */ |
207 | 0 | int m; |
208 | 0 | result = (struct name_tree_node*)res; |
209 | 0 | if(!result || result->dclass != dclass) |
210 | 0 | return NULL; |
211 | | /* count number of labels matched */ |
212 | 0 | (void)dname_lab_cmp(result->name, result->labs, key.name, |
213 | 0 | key.labs, &m); |
214 | 0 | while(result) { /* go up until qname is subdomain of stub */ |
215 | 0 | if(result->labs <= m) |
216 | 0 | break; |
217 | 0 | result = result->parent; |
218 | 0 | } |
219 | 0 | } |
220 | 0 | return result; |
221 | 0 | } |
222 | | |
223 | | struct addr_tree_node* addr_tree_lookup(rbtree_type* tree, |
224 | | struct sockaddr_storage* addr, socklen_t addrlen) |
225 | 0 | { |
226 | 0 | rbnode_type* res = NULL; |
227 | 0 | struct addr_tree_node* result; |
228 | 0 | struct addr_tree_node key; |
229 | 0 | key.node.key = &key; |
230 | 0 | memcpy(&key.addr, addr, addrlen); |
231 | 0 | key.addrlen = addrlen; |
232 | 0 | key.net = (addr_is_ip6(addr, addrlen)?128:32); |
233 | 0 | if(rbtree_find_less_equal(tree, &key, &res)) { |
234 | | /* exact */ |
235 | 0 | return (struct addr_tree_node*)res; |
236 | 0 | } else { |
237 | | /* smaller element (or no element) */ |
238 | 0 | int m; |
239 | 0 | result = (struct addr_tree_node*)res; |
240 | 0 | if(!result || result->addrlen != addrlen) |
241 | 0 | return 0; |
242 | | /* count number of bits matched */ |
243 | 0 | m = addr_in_common(&result->addr, result->net, addr, |
244 | 0 | key.net, addrlen); |
245 | 0 | while(result) { /* go up until addr is inside netblock */ |
246 | 0 | if(result->net <= m) |
247 | 0 | break; |
248 | 0 | result = result->parent; |
249 | 0 | } |
250 | 0 | } |
251 | 0 | return result; |
252 | 0 | } |
253 | | |
254 | | struct addr_tree_node* addr_tree_find(rbtree_type* tree, |
255 | | struct sockaddr_storage* addr, socklen_t addrlen, int net) |
256 | 0 | { |
257 | 0 | rbnode_type* res = NULL; |
258 | 0 | struct addr_tree_node key; |
259 | 0 | key.node.key = &key; |
260 | 0 | memcpy(&key.addr, addr, addrlen); |
261 | 0 | key.addrlen = addrlen; |
262 | 0 | key.net = net; |
263 | 0 | res = rbtree_search(tree, &key); |
264 | 0 | return (struct addr_tree_node*)res; |
265 | 0 | } |
266 | | |
267 | | int |
268 | | name_tree_next_root(rbtree_type* tree, uint16_t* dclass) |
269 | 0 | { |
270 | 0 | struct name_tree_node key; |
271 | 0 | rbnode_type* n; |
272 | 0 | struct name_tree_node* p; |
273 | 0 | if(*dclass == 0) { |
274 | | /* first root item is first item in tree */ |
275 | 0 | n = rbtree_first(tree); |
276 | 0 | if(n == RBTREE_NULL) |
277 | 0 | return 0; |
278 | 0 | p = (struct name_tree_node*)n; |
279 | 0 | if(dname_is_root(p->name)) { |
280 | 0 | *dclass = p->dclass; |
281 | 0 | return 1; |
282 | 0 | } |
283 | | /* root not first item? search for higher items */ |
284 | 0 | *dclass = p->dclass + 1; |
285 | 0 | return name_tree_next_root(tree, dclass); |
286 | 0 | } |
287 | | /* find class n in tree, we may get a direct hit, or if we don't |
288 | | * this is the last item of the previous class so rbtree_next() takes |
289 | | * us to the next root (if any) */ |
290 | 0 | key.node.key = &key; |
291 | 0 | key.name = (uint8_t*)"\000"; |
292 | 0 | key.len = 1; |
293 | 0 | key.labs = 0; |
294 | 0 | key.dclass = *dclass; |
295 | 0 | n = NULL; |
296 | 0 | if(rbtree_find_less_equal(tree, &key, &n)) { |
297 | | /* exact */ |
298 | 0 | return 1; |
299 | 0 | } else { |
300 | | /* smaller element */ |
301 | 0 | if(!n || n == RBTREE_NULL) |
302 | 0 | return 0; /* nothing found */ |
303 | 0 | n = rbtree_next(n); |
304 | 0 | if(n == RBTREE_NULL) |
305 | 0 | return 0; /* no higher */ |
306 | 0 | p = (struct name_tree_node*)n; |
307 | 0 | if(dname_is_root(p->name)) { |
308 | 0 | *dclass = p->dclass; |
309 | 0 | return 1; |
310 | 0 | } |
311 | | /* not a root node, return next higher item */ |
312 | 0 | *dclass = p->dclass+1; |
313 | 0 | return name_tree_next_root(tree, dclass); |
314 | 0 | } |
315 | 0 | } |