/src/unbound/util/storage/lookup3.c
Line | Count | Source |
1 | | /* |
2 | | May 2019(Wouter) patch to enable the valgrind clean implementation all the |
3 | | time. This enables better security audit and checks, which is better |
4 | | than the speedup. Git issue #30. Renamed the define ARRAY_CLEAN_ACCESS. |
5 | | February 2013(Wouter) patch defines for BSD endianness, from Brad Smith. |
6 | | January 2012(Wouter) added randomised initial value, fallout from 28c3. |
7 | | March 2007(Wouter) adapted from lookup3.c original, add config.h include. |
8 | | added #ifdef VALGRIND to remove 298,384,660 'unused variable k8' warnings. |
9 | | added include of lookup3.h to check definitions match declarations. |
10 | | removed include of stdint - config.h takes care of platform independence. |
11 | | added fallthrough comments for new gcc warning suppression. |
12 | | url http://burtleburtle.net/bob/hash/index.html. |
13 | | */ |
14 | | /* |
15 | | ------------------------------------------------------------------------------- |
16 | | lookup3.c, by Bob Jenkins, May 2006, Public Domain. |
17 | | |
18 | | These are functions for producing 32-bit hashes for hash table lookup. |
19 | | hashword(), hashlittle(), hashlittle2(), hashbig(), mix(), and final() |
20 | | are externally useful functions. Routines to test the hash are included |
21 | | if SELF_TEST is defined. You can use this free for any purpose. It's in |
22 | | the public domain. It has no warranty. |
23 | | |
24 | | You probably want to use hashlittle(). hashlittle() and hashbig() |
25 | | hash byte arrays. hashlittle() is is faster than hashbig() on |
26 | | little-endian machines. Intel and AMD are little-endian machines. |
27 | | On second thought, you probably want hashlittle2(), which is identical to |
28 | | hashlittle() except it returns two 32-bit hashes for the price of one. |
29 | | You could implement hashbig2() if you wanted but I haven't bothered here. |
30 | | |
31 | | If you want to find a hash of, say, exactly 7 integers, do |
32 | | a = i1; b = i2; c = i3; |
33 | | mix(a,b,c); |
34 | | a += i4; b += i5; c += i6; |
35 | | mix(a,b,c); |
36 | | a += i7; |
37 | | final(a,b,c); |
38 | | then use c as the hash value. If you have a variable length array of |
39 | | 4-byte integers to hash, use hashword(). If you have a byte array (like |
40 | | a character string), use hashlittle(). If you have several byte arrays, or |
41 | | a mix of things, see the comments above hashlittle(). |
42 | | |
43 | | Why is this so big? I read 12 bytes at a time into 3 4-byte integers, |
44 | | then mix those integers. This is fast (you can do a lot more thorough |
45 | | mixing with 12*3 instructions on 3 integers than you can with 3 instructions |
46 | | on 1 byte), but shoehorning those bytes into integers efficiently is messy. |
47 | | ------------------------------------------------------------------------------- |
48 | | */ |
49 | | /*#define SELF_TEST 1*/ |
50 | | #define ARRAY_CLEAN_ACCESS 1 |
51 | | |
52 | | #include "config.h" |
53 | | #include "util/storage/lookup3.h" |
54 | | #include <stdio.h> /* defines printf for tests */ |
55 | | #include <time.h> /* defines time_t for timings in the test */ |
56 | | |
57 | | /* |
58 | | * If our build system provides endianness info, signalled by |
59 | | * HAVE_TARGET_ENDIANNESS and the presence or absence of TARGET_IS_BIG_ENDIAN, |
60 | | * use that. Otherwise try to work out the endianness. |
61 | | */ |
62 | | #if defined(HAVE_TARGET_ENDIANNESS) |
63 | | # if defined(TARGET_IS_BIG_ENDIAN) |
64 | | # define HASH_LITTLE_ENDIAN 0 |
65 | | # define HASH_BIG_ENDIAN 1 |
66 | | # else |
67 | | # define HASH_LITTLE_ENDIAN 1 |
68 | | # define HASH_BIG_ENDIAN 0 |
69 | | # endif |
70 | | #else |
71 | | # include <sys/param.h> /* attempt to define endianness */ |
72 | | # ifdef HAVE_SYS_TYPES_H |
73 | | # include <sys/types.h> /* attempt to define endianness (solaris) */ |
74 | | # endif |
75 | | # if defined(linux) || defined(__OpenBSD__) |
76 | | # ifdef HAVE_ENDIAN_H |
77 | | # include <endian.h> /* attempt to define endianness */ |
78 | | # else |
79 | | # include <machine/endian.h> /* on older OpenBSD */ |
80 | | # endif |
81 | | # endif |
82 | | # if defined(__FreeBSD__) || defined(__NetBSD__) || defined(__DragonFly__) |
83 | | # include <sys/endian.h> /* attempt to define endianness */ |
84 | | # endif |
85 | | /* |
86 | | * My best guess at if you are big-endian or little-endian. This may |
87 | | * need adjustment. |
88 | | */ |
89 | | # if (defined(__BYTE_ORDER) && defined(__LITTLE_ENDIAN) && \ |
90 | | __BYTE_ORDER == __LITTLE_ENDIAN) || \ |
91 | | (defined(i386) || defined(__i386__) || defined(__i486__) || \ |
92 | | defined(__i586__) || defined(__i686__) || defined(vax) || defined(MIPSEL) || defined(__x86) || defined(__loongarch__)) |
93 | 9.04M | # define HASH_LITTLE_ENDIAN 1 |
94 | | # define HASH_BIG_ENDIAN 0 |
95 | | # elif (defined(__BYTE_ORDER) && defined(__BIG_ENDIAN) && \ |
96 | | __BYTE_ORDER == __BIG_ENDIAN) || \ |
97 | | (defined(sparc) || defined(__sparc) || defined(__sparc__) || defined(POWERPC) || defined(mc68000) || defined(sel)) |
98 | | # define HASH_LITTLE_ENDIAN 0 |
99 | | # define HASH_BIG_ENDIAN 1 |
100 | | # elif defined(_MACHINE_ENDIAN_H_) |
101 | | /* test for machine_endian_h protects failure if some are empty strings */ |
102 | | # if defined(_BYTE_ORDER) && defined(_BIG_ENDIAN) && _BYTE_ORDER == _BIG_ENDIAN |
103 | | # define HASH_LITTLE_ENDIAN 0 |
104 | | # define HASH_BIG_ENDIAN 1 |
105 | | # endif |
106 | | # if defined(_BYTE_ORDER) && defined(_LITTLE_ENDIAN) && _BYTE_ORDER == _LITTLE_ENDIAN |
107 | | # define HASH_LITTLE_ENDIAN 1 |
108 | | # define HASH_BIG_ENDIAN 0 |
109 | | # endif /* _MACHINE_ENDIAN_H_ */ |
110 | | # else |
111 | | # define HASH_LITTLE_ENDIAN 0 |
112 | | # define HASH_BIG_ENDIAN 0 |
113 | | # endif |
114 | | #endif /* defined(HAVE_TARGET_ENDIANNESS) */ |
115 | | |
116 | | #define hashsize(n) ((uint32_t)1<<(n)) |
117 | | #define hashmask(n) (hashsize(n)-1) |
118 | 24.7M | #define rot(x,k) (((x)<<(k)) | ((x)>>(32-(k)))) |
119 | | |
120 | | /* random initial value */ |
121 | | static uint32_t raninit = (uint32_t)0xdeadbeef; |
122 | | |
123 | | void |
124 | | hash_set_raninit(uint32_t v) |
125 | 0 | { |
126 | 0 | raninit = v; |
127 | 0 | } |
128 | | |
129 | | /* |
130 | | ------------------------------------------------------------------------------- |
131 | | mix -- mix 3 32-bit values reversibly. |
132 | | |
133 | | This is reversible, so any information in (a,b,c) before mix() is |
134 | | still in (a,b,c) after mix(). |
135 | | |
136 | | If four pairs of (a,b,c) inputs are run through mix(), or through |
137 | | mix() in reverse, there are at least 32 bits of the output that |
138 | | are sometimes the same for one pair and different for another pair. |
139 | | This was tested for: |
140 | | * pairs that differed by one bit, by two bits, in any combination |
141 | | of top bits of (a,b,c), or in any combination of bottom bits of |
142 | | (a,b,c). |
143 | | * "differ" is defined as +, -, ^, or ~^. For + and -, I transformed |
144 | | the output delta to a Gray code (a^(a>>1)) so a string of 1's (as |
145 | | is commonly produced by subtraction) look like a single 1-bit |
146 | | difference. |
147 | | * the base values were pseudorandom, all zero but one bit set, or |
148 | | all zero plus a counter that starts at zero. |
149 | | |
150 | | Some k values for my "a-=c; a^=rot(c,k); c+=b;" arrangement that |
151 | | satisfy this are |
152 | | 4 6 8 16 19 4 |
153 | | 9 15 3 18 27 15 |
154 | | 14 9 3 7 17 3 |
155 | | Well, "9 15 3 18 27 15" didn't quite get 32 bits diffing |
156 | | for "differ" defined as + with a one-bit base and a two-bit delta. I |
157 | | used http://burtleburtle.net/bob/hash/avalanche.html to choose |
158 | | the operations, constants, and arrangements of the variables. |
159 | | |
160 | | This does not achieve avalanche. There are input bits of (a,b,c) |
161 | | that fail to affect some output bits of (a,b,c), especially of a. The |
162 | | most thoroughly mixed value is c, but it doesn't really even achieve |
163 | | avalanche in c. |
164 | | |
165 | | This allows some parallelism. Read-after-writes are good at doubling |
166 | | the number of bits affected, so the goal of mixing pulls in the opposite |
167 | | direction as the goal of parallelism. I did what I could. Rotates |
168 | | seem to cost as much as shifts on every machine I could lay my hands |
169 | | on, and rotates are much kinder to the top and bottom bits, so I used |
170 | | rotates. |
171 | | ------------------------------------------------------------------------------- |
172 | | */ |
173 | 119k | #define mix(a,b,c) \ |
174 | 119k | { \ |
175 | 119k | a -= c; a ^= rot(c, 4); c += b; \ |
176 | 119k | b -= a; b ^= rot(a, 6); a += c; \ |
177 | 119k | c -= b; c ^= rot(b, 8); b += a; \ |
178 | 119k | a -= c; a ^= rot(c,16); c += b; \ |
179 | 119k | b -= a; b ^= rot(a,19); a += c; \ |
180 | 119k | c -= b; c ^= rot(b, 4); b += a; \ |
181 | 119k | } |
182 | | |
183 | | /* |
184 | | ------------------------------------------------------------------------------- |
185 | | final -- final mixing of 3 32-bit values (a,b,c) into c |
186 | | |
187 | | Pairs of (a,b,c) values differing in only a few bits will usually |
188 | | produce values of c that look totally different. This was tested for |
189 | | * pairs that differed by one bit, by two bits, in any combination |
190 | | of top bits of (a,b,c), or in any combination of bottom bits of |
191 | | (a,b,c). |
192 | | * "differ" is defined as +, -, ^, or ~^. For + and -, I transformed |
193 | | the output delta to a Gray code (a^(a>>1)) so a string of 1's (as |
194 | | is commonly produced by subtraction) look like a single 1-bit |
195 | | difference. |
196 | | * the base values were pseudorandom, all zero but one bit set, or |
197 | | all zero plus a counter that starts at zero. |
198 | | |
199 | | These constants passed: |
200 | | 14 11 25 16 4 14 24 |
201 | | 12 14 25 16 4 14 24 |
202 | | and these came close: |
203 | | 4 8 15 26 3 22 24 |
204 | | 10 8 15 26 3 22 24 |
205 | | 11 8 15 26 3 22 24 |
206 | | ------------------------------------------------------------------------------- |
207 | | */ |
208 | 3.43M | #define final(a,b,c) \ |
209 | 3.43M | { \ |
210 | 3.43M | c ^= b; c -= rot(b,14); \ |
211 | 3.43M | a ^= c; a -= rot(c,11); \ |
212 | 3.43M | b ^= a; b -= rot(a,25); \ |
213 | 3.43M | c ^= b; c -= rot(b,16); \ |
214 | 3.43M | a ^= c; a -= rot(c,4); \ |
215 | 3.43M | b ^= a; b -= rot(a,14); \ |
216 | 3.43M | c ^= b; c -= rot(b,24); \ |
217 | 3.43M | } |
218 | | |
219 | | /* |
220 | | -------------------------------------------------------------------- |
221 | | This works on all machines. To be useful, it requires |
222 | | -- that the key be an array of uint32_t's, and |
223 | | -- that the length be the number of uint32_t's in the key |
224 | | |
225 | | The function hashword() is identical to hashlittle() on little-endian |
226 | | machines, and identical to hashbig() on big-endian machines, |
227 | | except that the length has to be measured in uint32_ts rather than in |
228 | | bytes. hashlittle() is more complicated than hashword() only because |
229 | | hashlittle() has to dance around fitting the key bytes into registers. |
230 | | -------------------------------------------------------------------- |
231 | | */ |
232 | | uint32_t hashword( |
233 | | const uint32_t *k, /* the key, an array of uint32_t values */ |
234 | | size_t length, /* the length of the key, in uint32_ts */ |
235 | | uint32_t initval) /* the previous hash, or an arbitrary value */ |
236 | 0 | { |
237 | 0 | uint32_t a,b,c; |
238 | | |
239 | | /* Set up the internal state */ |
240 | 0 | a = b = c = raninit + (((uint32_t)length)<<2) + initval; |
241 | | |
242 | | /*------------------------------------------------- handle most of the key */ |
243 | 0 | while (length > 3) |
244 | 0 | { |
245 | 0 | a += k[0]; |
246 | 0 | b += k[1]; |
247 | 0 | c += k[2]; |
248 | 0 | mix(a,b,c); |
249 | 0 | length -= 3; |
250 | 0 | k += 3; |
251 | 0 | } |
252 | | |
253 | | /*------------------------------------------- handle the last 3 uint32_t's */ |
254 | 0 | switch(length) /* all the case statements fall through */ |
255 | 0 | { |
256 | 0 | case 3 : c+=k[2]; |
257 | 0 | ATTR_FALLTHROUGH |
258 | | /* fallthrough */ |
259 | 0 | case 2 : b+=k[1]; |
260 | 0 | ATTR_FALLTHROUGH |
261 | | /* fallthrough */ |
262 | 0 | case 1 : a+=k[0]; |
263 | 0 | final(a,b,c); |
264 | 0 | ATTR_FALLTHROUGH |
265 | | /* fallthrough */ |
266 | 0 | case 0: /* case 0: nothing left to add */ |
267 | 0 | break; |
268 | 0 | } |
269 | | /*------------------------------------------------------ report the result */ |
270 | 0 | return c; |
271 | 0 | } |
272 | | |
273 | | |
274 | | #ifdef SELF_TEST |
275 | | |
276 | | /* |
277 | | -------------------------------------------------------------------- |
278 | | hashword2() -- same as hashword(), but take two seeds and return two |
279 | | 32-bit values. pc and pb must both be nonnull, and *pc and *pb must |
280 | | both be initialized with seeds. If you pass in (*pb)==0, the output |
281 | | (*pc) will be the same as the return value from hashword(). |
282 | | -------------------------------------------------------------------- |
283 | | */ |
284 | | void hashword2 ( |
285 | | const uint32_t *k, /* the key, an array of uint32_t values */ |
286 | | size_t length, /* the length of the key, in uint32_ts */ |
287 | | uint32_t *pc, /* IN: seed OUT: primary hash value */ |
288 | | uint32_t *pb) /* IN: more seed OUT: secondary hash value */ |
289 | | { |
290 | | uint32_t a,b,c; |
291 | | |
292 | | /* Set up the internal state */ |
293 | | a = b = c = raninit + ((uint32_t)(length<<2)) + *pc; |
294 | | c += *pb; |
295 | | |
296 | | /*------------------------------------------------- handle most of the key */ |
297 | | while (length > 3) |
298 | | { |
299 | | a += k[0]; |
300 | | b += k[1]; |
301 | | c += k[2]; |
302 | | mix(a,b,c); |
303 | | length -= 3; |
304 | | k += 3; |
305 | | } |
306 | | |
307 | | /*------------------------------------------- handle the last 3 uint32_t's */ |
308 | | switch(length) /* all the case statements fall through */ |
309 | | { |
310 | | case 3 : c+=k[2]; |
311 | | ATTR_FALLTHROUGH |
312 | | /* fallthrough */ |
313 | | case 2 : b+=k[1]; |
314 | | ATTR_FALLTHROUGH |
315 | | /* fallthrough */ |
316 | | case 1 : a+=k[0]; |
317 | | final(a,b,c); |
318 | | ATTR_FALLTHROUGH |
319 | | /* fallthrough */ |
320 | | case 0: /* case 0: nothing left to add */ |
321 | | break; |
322 | | } |
323 | | /*------------------------------------------------------ report the result */ |
324 | | *pc=c; *pb=b; |
325 | | } |
326 | | |
327 | | #endif /* SELF_TEST */ |
328 | | |
329 | | /* |
330 | | ------------------------------------------------------------------------------- |
331 | | hashlittle() -- hash a variable-length key into a 32-bit value |
332 | | k : the key (the unaligned variable-length array of bytes) |
333 | | length : the length of the key, counting by bytes |
334 | | initval : can be any 4-byte value |
335 | | Returns a 32-bit value. Every bit of the key affects every bit of |
336 | | the return value. Two keys differing by one or two bits will have |
337 | | totally different hash values. |
338 | | |
339 | | The best hash table sizes are powers of 2. There is no need to do |
340 | | mod a prime (mod is sooo slow!). If you need less than 32 bits, |
341 | | use a bitmask. For example, if you need only 10 bits, do |
342 | | h = (h & hashmask(10)); |
343 | | In which case, the hash table should have hashsize(10) elements. |
344 | | |
345 | | If you are hashing n strings (uint8_t **)k, do it like this: |
346 | | for (i=0, h=0; i<n; ++i) h = hashlittle( k[i], len[i], h); |
347 | | |
348 | | By Bob Jenkins, 2006. bob_jenkins@burtleburtle.net. You may use this |
349 | | code any way you wish, private, educational, or commercial. It's free. |
350 | | |
351 | | Use for hash table lookup, or anything where one collision in 2^^32 is |
352 | | acceptable. Do NOT use for cryptographic purposes. |
353 | | ------------------------------------------------------------------------------- |
354 | | */ |
355 | | |
356 | | uint32_t hashlittle( const void *key, size_t length, uint32_t initval) |
357 | 3.43M | { |
358 | 3.43M | uint32_t a,b,c; /* internal state */ |
359 | 3.43M | union { const void *ptr; size_t i; } u; /* needed for Mac Powerbook G4 */ |
360 | | |
361 | | /* Set up the internal state */ |
362 | 3.43M | a = b = c = raninit + ((uint32_t)length) + initval; |
363 | | |
364 | 3.43M | u.ptr = key; |
365 | 3.43M | if (HASH_LITTLE_ENDIAN && ((u.i & 0x3) == 0)) { |
366 | 2.35M | const uint32_t *k = (const uint32_t *)key; /* read 32-bit chunks */ |
367 | 2.35M | #ifdef ARRAY_CLEAN_ACCESS |
368 | 2.35M | const uint8_t *k8; |
369 | 2.35M | #endif |
370 | | |
371 | | /*------ all but last block: aligned reads and affect 32 bits of (a,b,c) */ |
372 | 2.47M | while (length > 12) |
373 | 119k | { |
374 | 119k | a += k[0]; |
375 | 119k | b += k[1]; |
376 | 119k | c += k[2]; |
377 | 119k | mix(a,b,c); |
378 | 119k | length -= 12; |
379 | 119k | k += 3; |
380 | 119k | } |
381 | | |
382 | | /*----------------------------- handle the last (probably partial) block */ |
383 | | /* |
384 | | * "k[2]&0xffffff" actually reads beyond the end of the string, but |
385 | | * then masks off the part it's not allowed to read. Because the |
386 | | * string is aligned, the masked-off tail is in the same word as the |
387 | | * rest of the string. Every machine with memory protection I've seen |
388 | | * does it on word boundaries, so is OK with this. But VALGRIND will |
389 | | * still catch it and complain. The masking trick does make the hash |
390 | | * noticeably faster for short strings (like English words). |
391 | | */ |
392 | | #ifndef ARRAY_CLEAN_ACCESS |
393 | | |
394 | | switch(length) |
395 | | { |
396 | | case 12: c+=k[2]; b+=k[1]; a+=k[0]; break; |
397 | | case 11: c+=k[2]&0xffffff; b+=k[1]; a+=k[0]; break; |
398 | | case 10: c+=k[2]&0xffff; b+=k[1]; a+=k[0]; break; |
399 | | case 9 : c+=k[2]&0xff; b+=k[1]; a+=k[0]; break; |
400 | | case 8 : b+=k[1]; a+=k[0]; break; |
401 | | case 7 : b+=k[1]&0xffffff; a+=k[0]; break; |
402 | | case 6 : b+=k[1]&0xffff; a+=k[0]; break; |
403 | | case 5 : b+=k[1]&0xff; a+=k[0]; break; |
404 | | case 4 : a+=k[0]; break; |
405 | | case 3 : a+=k[0]&0xffffff; break; |
406 | | case 2 : a+=k[0]&0xffff; break; |
407 | | case 1 : a+=k[0]&0xff; break; |
408 | | case 0 : return c; /* zero length strings require no mixing */ |
409 | | } |
410 | | |
411 | | #else /* make valgrind happy */ |
412 | | |
413 | 2.35M | k8 = (const uint8_t *)k; |
414 | 2.35M | switch(length) |
415 | 2.35M | { |
416 | 6.96k | case 12: c+=k[2]; b+=k[1]; a+=k[0]; break; |
417 | 11.3k | case 11: c+=((uint32_t)k8[10])<<16; |
418 | 11.3k | ATTR_FALLTHROUGH |
419 | | /* fallthrough */ |
420 | 16.9k | case 10: c+=((uint32_t)k8[9])<<8; |
421 | 16.9k | ATTR_FALLTHROUGH |
422 | | /* fallthrough */ |
423 | 24.5k | case 9 : c+=k8[8]; |
424 | 24.5k | ATTR_FALLTHROUGH |
425 | | /* fallthrough */ |
426 | 33.6k | case 8 : b+=k[1]; a+=k[0]; break; |
427 | 5.83k | case 7 : b+=((uint32_t)k8[6])<<16; |
428 | 5.83k | ATTR_FALLTHROUGH |
429 | | /* fallthrough */ |
430 | 12.3k | case 6 : b+=((uint32_t)k8[5])<<8; |
431 | 12.3k | ATTR_FALLTHROUGH |
432 | | /* fallthrough */ |
433 | 36.3k | case 5 : b+=k8[4]; |
434 | 36.3k | ATTR_FALLTHROUGH |
435 | | /* fallthrough */ |
436 | 1.13M | case 4 : a+=k[0]; break; |
437 | 33.4k | case 3 : a+=((uint32_t)k8[2])<<16; |
438 | 33.4k | ATTR_FALLTHROUGH |
439 | | /* fallthrough */ |
440 | 1.17M | case 2 : a+=((uint32_t)k8[1])<<8; |
441 | 1.17M | ATTR_FALLTHROUGH |
442 | | /* fallthrough */ |
443 | 1.17M | case 1 : a+=k8[0]; break; |
444 | 0 | case 0 : return c; |
445 | 2.35M | } |
446 | | |
447 | 2.35M | #endif /* !valgrind */ |
448 | | |
449 | 2.35M | } else if (HASH_LITTLE_ENDIAN && ((u.i & 0x1) == 0)) { |
450 | 1.08M | const uint16_t *k = (const uint16_t *)key; /* read 16-bit chunks */ |
451 | 1.08M | const uint8_t *k8; |
452 | | |
453 | | /*--------------- all but last block: aligned reads and different mixing */ |
454 | 1.08M | while (length > 12) |
455 | 0 | { |
456 | 0 | a += k[0] + (((uint32_t)k[1])<<16); |
457 | 0 | b += k[2] + (((uint32_t)k[3])<<16); |
458 | 0 | c += k[4] + (((uint32_t)k[5])<<16); |
459 | 0 | mix(a,b,c); |
460 | 0 | length -= 12; |
461 | 0 | k += 6; |
462 | 0 | } |
463 | | |
464 | | /*----------------------------- handle the last (probably partial) block */ |
465 | 1.08M | k8 = (const uint8_t *)k; |
466 | 1.08M | switch(length) |
467 | 1.08M | { |
468 | 0 | case 12: c+=k[4]+(((uint32_t)k[5])<<16); |
469 | 0 | b+=k[2]+(((uint32_t)k[3])<<16); |
470 | 0 | a+=k[0]+(((uint32_t)k[1])<<16); |
471 | 0 | break; |
472 | 0 | case 11: c+=((uint32_t)k8[10])<<16; |
473 | 0 | ATTR_FALLTHROUGH |
474 | | /* fallthrough */ |
475 | 0 | case 10: c+=k[4]; |
476 | 0 | b+=k[2]+(((uint32_t)k[3])<<16); |
477 | 0 | a+=k[0]+(((uint32_t)k[1])<<16); |
478 | 0 | break; |
479 | 0 | case 9 : c+=k8[8]; |
480 | 0 | ATTR_FALLTHROUGH |
481 | | /* fallthrough */ |
482 | 0 | case 8 : b+=k[2]+(((uint32_t)k[3])<<16); |
483 | 0 | a+=k[0]+(((uint32_t)k[1])<<16); |
484 | 0 | break; |
485 | 0 | case 7 : b+=((uint32_t)k8[6])<<16; |
486 | 0 | ATTR_FALLTHROUGH |
487 | | /* fallthrough */ |
488 | 0 | case 6 : b+=k[2]; |
489 | 0 | a+=k[0]+(((uint32_t)k[1])<<16); |
490 | 0 | break; |
491 | 0 | case 5 : b+=k8[4]; |
492 | 0 | ATTR_FALLTHROUGH |
493 | | /* fallthrough */ |
494 | 0 | case 4 : a+=k[0]+(((uint32_t)k[1])<<16); |
495 | 0 | break; |
496 | 0 | case 3 : a+=((uint32_t)k8[2])<<16; |
497 | 0 | ATTR_FALLTHROUGH |
498 | | /* fallthrough */ |
499 | 1.08M | case 2 : a+=k[0]; |
500 | 1.08M | break; |
501 | 0 | case 1 : a+=k8[0]; |
502 | 0 | break; |
503 | 0 | case 0 : return c; /* zero length requires no mixing */ |
504 | 1.08M | } |
505 | | |
506 | 1.08M | } else { /* need to read the key one byte at a time */ |
507 | 0 | const uint8_t *k = (const uint8_t *)key; |
508 | | |
509 | | /*--------------- all but the last block: affect some 32 bits of (a,b,c) */ |
510 | 0 | while (length > 12) |
511 | 0 | { |
512 | 0 | a += k[0]; |
513 | 0 | a += ((uint32_t)k[1])<<8; |
514 | 0 | a += ((uint32_t)k[2])<<16; |
515 | 0 | a += ((uint32_t)k[3])<<24; |
516 | 0 | b += k[4]; |
517 | 0 | b += ((uint32_t)k[5])<<8; |
518 | 0 | b += ((uint32_t)k[6])<<16; |
519 | 0 | b += ((uint32_t)k[7])<<24; |
520 | 0 | c += k[8]; |
521 | 0 | c += ((uint32_t)k[9])<<8; |
522 | 0 | c += ((uint32_t)k[10])<<16; |
523 | 0 | c += ((uint32_t)k[11])<<24; |
524 | 0 | mix(a,b,c); |
525 | 0 | length -= 12; |
526 | 0 | k += 12; |
527 | 0 | } |
528 | | |
529 | | /*-------------------------------- last block: affect all 32 bits of (c) */ |
530 | 0 | switch(length) /* all the case statements fall through */ |
531 | 0 | { |
532 | 0 | case 12: c+=((uint32_t)k[11])<<24; |
533 | 0 | ATTR_FALLTHROUGH |
534 | | /* fallthrough */ |
535 | 0 | case 11: c+=((uint32_t)k[10])<<16; |
536 | 0 | ATTR_FALLTHROUGH |
537 | | /* fallthrough */ |
538 | 0 | case 10: c+=((uint32_t)k[9])<<8; |
539 | 0 | ATTR_FALLTHROUGH |
540 | | /* fallthrough */ |
541 | 0 | case 9 : c+=k[8]; |
542 | 0 | ATTR_FALLTHROUGH |
543 | | /* fallthrough */ |
544 | 0 | case 8 : b+=((uint32_t)k[7])<<24; |
545 | 0 | ATTR_FALLTHROUGH |
546 | | /* fallthrough */ |
547 | 0 | case 7 : b+=((uint32_t)k[6])<<16; |
548 | 0 | ATTR_FALLTHROUGH |
549 | | /* fallthrough */ |
550 | 0 | case 6 : b+=((uint32_t)k[5])<<8; |
551 | 0 | ATTR_FALLTHROUGH |
552 | | /* fallthrough */ |
553 | 0 | case 5 : b+=k[4]; |
554 | 0 | ATTR_FALLTHROUGH |
555 | | /* fallthrough */ |
556 | 0 | case 4 : a+=((uint32_t)k[3])<<24; |
557 | 0 | ATTR_FALLTHROUGH |
558 | | /* fallthrough */ |
559 | 0 | case 3 : a+=((uint32_t)k[2])<<16; |
560 | 0 | ATTR_FALLTHROUGH |
561 | | /* fallthrough */ |
562 | 0 | case 2 : a+=((uint32_t)k[1])<<8; |
563 | 0 | ATTR_FALLTHROUGH |
564 | | /* fallthrough */ |
565 | 0 | case 1 : a+=k[0]; |
566 | 0 | break; |
567 | 0 | case 0 : return c; |
568 | 0 | } |
569 | 0 | } |
570 | | |
571 | 3.43M | final(a,b,c); |
572 | 3.43M | return c; |
573 | 3.43M | } |
574 | | |
575 | | #ifdef SELF_TEST |
576 | | |
577 | | /* |
578 | | * hashlittle2: return 2 32-bit hash values |
579 | | * |
580 | | * This is identical to hashlittle(), except it returns two 32-bit hash |
581 | | * values instead of just one. This is good enough for hash table |
582 | | * lookup with 2^^64 buckets, or if you want a second hash if you're not |
583 | | * happy with the first, or if you want a probably-unique 64-bit ID for |
584 | | * the key. *pc is better mixed than *pb, so use *pc first. If you want |
585 | | * a 64-bit value do something like "*pc + (((uint64_t)*pb)<<32)". |
586 | | */ |
587 | | void hashlittle2( |
588 | | const void *key, /* the key to hash */ |
589 | | size_t length, /* length of the key */ |
590 | | uint32_t *pc, /* IN: primary initval, OUT: primary hash */ |
591 | | uint32_t *pb) /* IN: secondary initval, OUT: secondary hash */ |
592 | | { |
593 | | uint32_t a,b,c; /* internal state */ |
594 | | union { const void *ptr; size_t i; } u; /* needed for Mac Powerbook G4 */ |
595 | | |
596 | | /* Set up the internal state */ |
597 | | a = b = c = raninit + ((uint32_t)length) + *pc; |
598 | | c += *pb; |
599 | | |
600 | | u.ptr = key; |
601 | | if (HASH_LITTLE_ENDIAN && ((u.i & 0x3) == 0)) { |
602 | | const uint32_t *k = (const uint32_t *)key; /* read 32-bit chunks */ |
603 | | #ifdef VALGRIND |
604 | | const uint8_t *k8; |
605 | | #endif |
606 | | |
607 | | /*------ all but last block: aligned reads and affect 32 bits of (a,b,c) */ |
608 | | while (length > 12) |
609 | | { |
610 | | a += k[0]; |
611 | | b += k[1]; |
612 | | c += k[2]; |
613 | | mix(a,b,c); |
614 | | length -= 12; |
615 | | k += 3; |
616 | | } |
617 | | |
618 | | /*----------------------------- handle the last (probably partial) block */ |
619 | | /* |
620 | | * "k[2]&0xffffff" actually reads beyond the end of the string, but |
621 | | * then masks off the part it's not allowed to read. Because the |
622 | | * string is aligned, the masked-off tail is in the same word as the |
623 | | * rest of the string. Every machine with memory protection I've seen |
624 | | * does it on word boundaries, so is OK with this. But VALGRIND will |
625 | | * still catch it and complain. The masking trick does make the hash |
626 | | * noticeably faster for short strings (like English words). |
627 | | */ |
628 | | #ifndef VALGRIND |
629 | | |
630 | | switch(length) |
631 | | { |
632 | | case 12: c+=k[2]; b+=k[1]; a+=k[0]; break; |
633 | | case 11: c+=k[2]&0xffffff; b+=k[1]; a+=k[0]; break; |
634 | | case 10: c+=k[2]&0xffff; b+=k[1]; a+=k[0]; break; |
635 | | case 9 : c+=k[2]&0xff; b+=k[1]; a+=k[0]; break; |
636 | | case 8 : b+=k[1]; a+=k[0]; break; |
637 | | case 7 : b+=k[1]&0xffffff; a+=k[0]; break; |
638 | | case 6 : b+=k[1]&0xffff; a+=k[0]; break; |
639 | | case 5 : b+=k[1]&0xff; a+=k[0]; break; |
640 | | case 4 : a+=k[0]; break; |
641 | | case 3 : a+=k[0]&0xffffff; break; |
642 | | case 2 : a+=k[0]&0xffff; break; |
643 | | case 1 : a+=k[0]&0xff; break; |
644 | | case 0 : *pc=c; *pb=b; return; /* zero length strings require no mixing */ |
645 | | } |
646 | | |
647 | | #else /* make valgrind happy */ |
648 | | |
649 | | k8 = (const uint8_t *)k; |
650 | | switch(length) |
651 | | { |
652 | | case 12: c+=k[2]; b+=k[1]; a+=k[0]; break; |
653 | | case 11: c+=((uint32_t)k8[10])<<16; |
654 | | ATTR_FALLTHROUGH |
655 | | /* fallthrough */ |
656 | | case 10: c+=((uint32_t)k8[9])<<8; |
657 | | ATTR_FALLTHROUGH |
658 | | /* fallthrough */ |
659 | | case 9 : c+=k8[8]; |
660 | | ATTR_FALLTHROUGH |
661 | | /* fallthrough */ |
662 | | case 8 : b+=k[1]; a+=k[0]; break; |
663 | | case 7 : b+=((uint32_t)k8[6])<<16; |
664 | | ATTR_FALLTHROUGH |
665 | | /* fallthrough */ |
666 | | case 6 : b+=((uint32_t)k8[5])<<8; |
667 | | ATTR_FALLTHROUGH |
668 | | /* fallthrough */ |
669 | | case 5 : b+=k8[4]; |
670 | | ATTR_FALLTHROUGH |
671 | | /* fallthrough */ |
672 | | case 4 : a+=k[0]; break; |
673 | | case 3 : a+=((uint32_t)k8[2])<<16; |
674 | | ATTR_FALLTHROUGH |
675 | | /* fallthrough */ |
676 | | case 2 : a+=((uint32_t)k8[1])<<8; |
677 | | ATTR_FALLTHROUGH |
678 | | /* fallthrough */ |
679 | | case 1 : a+=k8[0]; break; |
680 | | case 0 : *pc=c; *pb=b; return; /* zero length strings require no mixing */ |
681 | | } |
682 | | |
683 | | #endif /* !valgrind */ |
684 | | |
685 | | } else if (HASH_LITTLE_ENDIAN && ((u.i & 0x1) == 0)) { |
686 | | const uint16_t *k = (const uint16_t *)key; /* read 16-bit chunks */ |
687 | | const uint8_t *k8; |
688 | | |
689 | | /*--------------- all but last block: aligned reads and different mixing */ |
690 | | while (length > 12) |
691 | | { |
692 | | a += k[0] + (((uint32_t)k[1])<<16); |
693 | | b += k[2] + (((uint32_t)k[3])<<16); |
694 | | c += k[4] + (((uint32_t)k[5])<<16); |
695 | | mix(a,b,c); |
696 | | length -= 12; |
697 | | k += 6; |
698 | | } |
699 | | |
700 | | /*----------------------------- handle the last (probably partial) block */ |
701 | | k8 = (const uint8_t *)k; |
702 | | switch(length) |
703 | | { |
704 | | case 12: c+=k[4]+(((uint32_t)k[5])<<16); |
705 | | b+=k[2]+(((uint32_t)k[3])<<16); |
706 | | a+=k[0]+(((uint32_t)k[1])<<16); |
707 | | break; |
708 | | case 11: c+=((uint32_t)k8[10])<<16; |
709 | | ATTR_FALLTHROUGH |
710 | | /* fallthrough */ |
711 | | case 10: c+=k[4]; |
712 | | b+=k[2]+(((uint32_t)k[3])<<16); |
713 | | a+=k[0]+(((uint32_t)k[1])<<16); |
714 | | break; |
715 | | case 9 : c+=k8[8]; |
716 | | ATTR_FALLTHROUGH |
717 | | /* fallthrough */ |
718 | | case 8 : b+=k[2]+(((uint32_t)k[3])<<16); |
719 | | a+=k[0]+(((uint32_t)k[1])<<16); |
720 | | break; |
721 | | case 7 : b+=((uint32_t)k8[6])<<16; |
722 | | ATTR_FALLTHROUGH |
723 | | /* fallthrough */ |
724 | | case 6 : b+=k[2]; |
725 | | a+=k[0]+(((uint32_t)k[1])<<16); |
726 | | break; |
727 | | case 5 : b+=k8[4]; |
728 | | ATTR_FALLTHROUGH |
729 | | /* fallthrough */ |
730 | | case 4 : a+=k[0]+(((uint32_t)k[1])<<16); |
731 | | break; |
732 | | case 3 : a+=((uint32_t)k8[2])<<16; |
733 | | ATTR_FALLTHROUGH |
734 | | /* fallthrough */ |
735 | | case 2 : a+=k[0]; |
736 | | break; |
737 | | case 1 : a+=k8[0]; |
738 | | break; |
739 | | case 0 : *pc=c; *pb=b; return; /* zero length strings require no mixing */ |
740 | | } |
741 | | |
742 | | } else { /* need to read the key one byte at a time */ |
743 | | const uint8_t *k = (const uint8_t *)key; |
744 | | |
745 | | /*--------------- all but the last block: affect some 32 bits of (a,b,c) */ |
746 | | while (length > 12) |
747 | | { |
748 | | a += k[0]; |
749 | | a += ((uint32_t)k[1])<<8; |
750 | | a += ((uint32_t)k[2])<<16; |
751 | | a += ((uint32_t)k[3])<<24; |
752 | | b += k[4]; |
753 | | b += ((uint32_t)k[5])<<8; |
754 | | b += ((uint32_t)k[6])<<16; |
755 | | b += ((uint32_t)k[7])<<24; |
756 | | c += k[8]; |
757 | | c += ((uint32_t)k[9])<<8; |
758 | | c += ((uint32_t)k[10])<<16; |
759 | | c += ((uint32_t)k[11])<<24; |
760 | | mix(a,b,c); |
761 | | length -= 12; |
762 | | k += 12; |
763 | | } |
764 | | |
765 | | /*-------------------------------- last block: affect all 32 bits of (c) */ |
766 | | switch(length) /* all the case statements fall through */ |
767 | | { |
768 | | case 12: c+=((uint32_t)k[11])<<24; |
769 | | ATTR_FALLTHROUGH |
770 | | /* fallthrough */ |
771 | | case 11: c+=((uint32_t)k[10])<<16; |
772 | | ATTR_FALLTHROUGH |
773 | | /* fallthrough */ |
774 | | case 10: c+=((uint32_t)k[9])<<8; |
775 | | ATTR_FALLTHROUGH |
776 | | /* fallthrough */ |
777 | | case 9 : c+=k[8]; |
778 | | ATTR_FALLTHROUGH |
779 | | /* fallthrough */ |
780 | | case 8 : b+=((uint32_t)k[7])<<24; |
781 | | ATTR_FALLTHROUGH |
782 | | /* fallthrough */ |
783 | | case 7 : b+=((uint32_t)k[6])<<16; |
784 | | ATTR_FALLTHROUGH |
785 | | /* fallthrough */ |
786 | | case 6 : b+=((uint32_t)k[5])<<8; |
787 | | ATTR_FALLTHROUGH |
788 | | /* fallthrough */ |
789 | | case 5 : b+=k[4]; |
790 | | ATTR_FALLTHROUGH |
791 | | /* fallthrough */ |
792 | | case 4 : a+=((uint32_t)k[3])<<24; |
793 | | ATTR_FALLTHROUGH |
794 | | /* fallthrough */ |
795 | | case 3 : a+=((uint32_t)k[2])<<16; |
796 | | ATTR_FALLTHROUGH |
797 | | /* fallthrough */ |
798 | | case 2 : a+=((uint32_t)k[1])<<8; |
799 | | ATTR_FALLTHROUGH |
800 | | /* fallthrough */ |
801 | | case 1 : a+=k[0]; |
802 | | break; |
803 | | case 0 : *pc=c; *pb=b; return; /* zero length strings require no mixing */ |
804 | | } |
805 | | } |
806 | | |
807 | | final(a,b,c); |
808 | | *pc=c; *pb=b; |
809 | | } |
810 | | |
811 | | #endif /* SELF_TEST */ |
812 | | |
813 | | #if 0 /* currently not used */ |
814 | | |
815 | | /* |
816 | | * hashbig(): |
817 | | * This is the same as hashword() on big-endian machines. It is different |
818 | | * from hashlittle() on all machines. hashbig() takes advantage of |
819 | | * big-endian byte ordering. |
820 | | */ |
821 | | uint32_t hashbig( const void *key, size_t length, uint32_t initval) |
822 | | { |
823 | | uint32_t a,b,c; |
824 | | union { const void *ptr; size_t i; } u; /* to cast key to (size_t) happily */ |
825 | | |
826 | | /* Set up the internal state */ |
827 | | a = b = c = raninit + ((uint32_t)length) + initval; |
828 | | |
829 | | u.ptr = key; |
830 | | if (HASH_BIG_ENDIAN && ((u.i & 0x3) == 0)) { |
831 | | const uint32_t *k = (const uint32_t *)key; /* read 32-bit chunks */ |
832 | | #ifdef VALGRIND |
833 | | const uint8_t *k8; |
834 | | #endif |
835 | | |
836 | | /*------ all but last block: aligned reads and affect 32 bits of (a,b,c) */ |
837 | | while (length > 12) |
838 | | { |
839 | | a += k[0]; |
840 | | b += k[1]; |
841 | | c += k[2]; |
842 | | mix(a,b,c); |
843 | | length -= 12; |
844 | | k += 3; |
845 | | } |
846 | | |
847 | | /*----------------------------- handle the last (probably partial) block */ |
848 | | /* |
849 | | * "k[2]<<8" actually reads beyond the end of the string, but |
850 | | * then shifts out the part it's not allowed to read. Because the |
851 | | * string is aligned, the illegal read is in the same word as the |
852 | | * rest of the string. Every machine with memory protection I've seen |
853 | | * does it on word boundaries, so is OK with this. But VALGRIND will |
854 | | * still catch it and complain. The masking trick does make the hash |
855 | | * noticeably faster for short strings (like English words). |
856 | | */ |
857 | | #ifndef VALGRIND |
858 | | |
859 | | switch(length) |
860 | | { |
861 | | case 12: c+=k[2]; b+=k[1]; a+=k[0]; break; |
862 | | case 11: c+=k[2]&0xffffff00; b+=k[1]; a+=k[0]; break; |
863 | | case 10: c+=k[2]&0xffff0000; b+=k[1]; a+=k[0]; break; |
864 | | case 9 : c+=k[2]&0xff000000; b+=k[1]; a+=k[0]; break; |
865 | | case 8 : b+=k[1]; a+=k[0]; break; |
866 | | case 7 : b+=k[1]&0xffffff00; a+=k[0]; break; |
867 | | case 6 : b+=k[1]&0xffff0000; a+=k[0]; break; |
868 | | case 5 : b+=k[1]&0xff000000; a+=k[0]; break; |
869 | | case 4 : a+=k[0]; break; |
870 | | case 3 : a+=k[0]&0xffffff00; break; |
871 | | case 2 : a+=k[0]&0xffff0000; break; |
872 | | case 1 : a+=k[0]&0xff000000; break; |
873 | | case 0 : return c; /* zero length strings require no mixing */ |
874 | | } |
875 | | |
876 | | #else /* make valgrind happy */ |
877 | | |
878 | | k8 = (const uint8_t *)k; |
879 | | switch(length) /* all the case statements fall through */ |
880 | | { |
881 | | case 12: c+=k[2]; b+=k[1]; a+=k[0]; break; |
882 | | case 11: c+=((uint32_t)k8[10])<<8; |
883 | | ATTR_FALLTHROUGH |
884 | | /* fallthrough */ |
885 | | case 10: c+=((uint32_t)k8[9])<<16; |
886 | | ATTR_FALLTHROUGH |
887 | | /* fallthrough */ |
888 | | case 9 : c+=((uint32_t)k8[8])<<24; |
889 | | ATTR_FALLTHROUGH |
890 | | /* fallthrough */ |
891 | | case 8 : b+=k[1]; a+=k[0]; break; |
892 | | case 7 : b+=((uint32_t)k8[6])<<8; |
893 | | ATTR_FALLTHROUGH |
894 | | /* fallthrough */ |
895 | | case 6 : b+=((uint32_t)k8[5])<<16; |
896 | | ATTR_FALLTHROUGH |
897 | | /* fallthrough */ |
898 | | case 5 : b+=((uint32_t)k8[4])<<24; |
899 | | ATTR_FALLTHROUGH |
900 | | /* fallthrough */ |
901 | | case 4 : a+=k[0]; break; |
902 | | case 3 : a+=((uint32_t)k8[2])<<8; |
903 | | ATTR_FALLTHROUGH |
904 | | /* fallthrough */ |
905 | | case 2 : a+=((uint32_t)k8[1])<<16; |
906 | | ATTR_FALLTHROUGH |
907 | | /* fallthrough */ |
908 | | case 1 : a+=((uint32_t)k8[0])<<24; break; |
909 | | case 0 : return c; |
910 | | } |
911 | | |
912 | | #endif /* !VALGRIND */ |
913 | | |
914 | | } else { /* need to read the key one byte at a time */ |
915 | | const uint8_t *k = (const uint8_t *)key; |
916 | | |
917 | | /*--------------- all but the last block: affect some 32 bits of (a,b,c) */ |
918 | | while (length > 12) |
919 | | { |
920 | | a += ((uint32_t)k[0])<<24; |
921 | | a += ((uint32_t)k[1])<<16; |
922 | | a += ((uint32_t)k[2])<<8; |
923 | | a += ((uint32_t)k[3]); |
924 | | b += ((uint32_t)k[4])<<24; |
925 | | b += ((uint32_t)k[5])<<16; |
926 | | b += ((uint32_t)k[6])<<8; |
927 | | b += ((uint32_t)k[7]); |
928 | | c += ((uint32_t)k[8])<<24; |
929 | | c += ((uint32_t)k[9])<<16; |
930 | | c += ((uint32_t)k[10])<<8; |
931 | | c += ((uint32_t)k[11]); |
932 | | mix(a,b,c); |
933 | | length -= 12; |
934 | | k += 12; |
935 | | } |
936 | | |
937 | | /*-------------------------------- last block: affect all 32 bits of (c) */ |
938 | | switch(length) /* all the case statements fall through */ |
939 | | { |
940 | | case 12: c+=k[11]; |
941 | | ATTR_FALLTHROUGH |
942 | | /* fallthrough */ |
943 | | case 11: c+=((uint32_t)k[10])<<8; |
944 | | ATTR_FALLTHROUGH |
945 | | /* fallthrough */ |
946 | | case 10: c+=((uint32_t)k[9])<<16; |
947 | | ATTR_FALLTHROUGH |
948 | | /* fallthrough */ |
949 | | case 9 : c+=((uint32_t)k[8])<<24; |
950 | | ATTR_FALLTHROUGH |
951 | | /* fallthrough */ |
952 | | case 8 : b+=k[7]; |
953 | | ATTR_FALLTHROUGH |
954 | | /* fallthrough */ |
955 | | case 7 : b+=((uint32_t)k[6])<<8; |
956 | | ATTR_FALLTHROUGH |
957 | | /* fallthrough */ |
958 | | case 6 : b+=((uint32_t)k[5])<<16; |
959 | | ATTR_FALLTHROUGH |
960 | | /* fallthrough */ |
961 | | case 5 : b+=((uint32_t)k[4])<<24; |
962 | | ATTR_FALLTHROUGH |
963 | | /* fallthrough */ |
964 | | case 4 : a+=k[3]; |
965 | | ATTR_FALLTHROUGH |
966 | | /* fallthrough */ |
967 | | case 3 : a+=((uint32_t)k[2])<<8; |
968 | | ATTR_FALLTHROUGH |
969 | | /* fallthrough */ |
970 | | case 2 : a+=((uint32_t)k[1])<<16; |
971 | | ATTR_FALLTHROUGH |
972 | | /* fallthrough */ |
973 | | case 1 : a+=((uint32_t)k[0])<<24; |
974 | | break; |
975 | | case 0 : return c; |
976 | | } |
977 | | } |
978 | | |
979 | | final(a,b,c); |
980 | | return c; |
981 | | } |
982 | | |
983 | | #endif /* 0 == currently not used */ |
984 | | |
985 | | #ifdef SELF_TEST |
986 | | |
987 | | /* used for timings */ |
988 | | void driver1(void) |
989 | | { |
990 | | uint8_t buf[256]; |
991 | | uint32_t i; |
992 | | uint32_t h=0; |
993 | | time_t a,z; |
994 | | |
995 | | time(&a); |
996 | | for (i=0; i<256; ++i) buf[i] = 'x'; |
997 | | for (i=0; i<1; ++i) |
998 | | { |
999 | | h = hashlittle(&buf[0],1,h); |
1000 | | } |
1001 | | time(&z); |
1002 | | if (z-a > 0) printf("time %d %.8x\n", z-a, h); |
1003 | | } |
1004 | | |
1005 | | /* check that every input bit changes every output bit half the time */ |
1006 | | #define HASHSTATE 1 |
1007 | | #define HASHLEN 1 |
1008 | | #define MAXPAIR 60 |
1009 | | #define MAXLEN 70 |
1010 | | void driver2(void) |
1011 | | { |
1012 | | uint8_t qa[MAXLEN+1], qb[MAXLEN+2], *a = &qa[0], *b = &qb[1]; |
1013 | | uint32_t c[HASHSTATE], d[HASHSTATE], i=0, j=0, k, l, m=0, z; |
1014 | | uint32_t e[HASHSTATE],f[HASHSTATE],g[HASHSTATE],h[HASHSTATE]; |
1015 | | uint32_t x[HASHSTATE],y[HASHSTATE]; |
1016 | | uint32_t hlen; |
1017 | | |
1018 | | printf("No more than %d trials should ever be needed \n",MAXPAIR/2); |
1019 | | for (hlen=0; hlen < MAXLEN; ++hlen) |
1020 | | { |
1021 | | z=0; |
1022 | | for (i=0; i<hlen; ++i) /*----------------------- for each input byte, */ |
1023 | | { |
1024 | | for (j=0; j<8; ++j) /*------------------------ for each input bit, */ |
1025 | | { |
1026 | | for (m=1; m<8; ++m) /*------------ for several possible initvals, */ |
1027 | | { |
1028 | | for (l=0; l<HASHSTATE; ++l) |
1029 | | e[l]=f[l]=g[l]=h[l]=x[l]=y[l]=~((uint32_t)0); |
1030 | | |
1031 | | /*---- check that every output bit is affected by that input bit */ |
1032 | | for (k=0; k<MAXPAIR; k+=2) |
1033 | | { |
1034 | | uint32_t finished=1; |
1035 | | /* keys have one bit different */ |
1036 | | for (l=0; l<hlen+1; ++l) {a[l] = b[l] = (uint8_t)0;} |
1037 | | /* have a and b be two keys differing in only one bit */ |
1038 | | a[i] ^= (k<<j); |
1039 | | a[i] ^= (k>>(8-j)); |
1040 | | c[0] = hashlittle(a, hlen, m); |
1041 | | b[i] ^= ((k+1)<<j); |
1042 | | b[i] ^= ((k+1)>>(8-j)); |
1043 | | d[0] = hashlittle(b, hlen, m); |
1044 | | /* check every bit is 1, 0, set, and not set at least once */ |
1045 | | for (l=0; l<HASHSTATE; ++l) |
1046 | | { |
1047 | | e[l] &= (c[l]^d[l]); |
1048 | | f[l] &= ~(c[l]^d[l]); |
1049 | | g[l] &= c[l]; |
1050 | | h[l] &= ~c[l]; |
1051 | | x[l] &= d[l]; |
1052 | | y[l] &= ~d[l]; |
1053 | | if (e[l]|f[l]|g[l]|h[l]|x[l]|y[l]) finished=0; |
1054 | | } |
1055 | | if (finished) break; |
1056 | | } |
1057 | | if (k>z) z=k; |
1058 | | if (k==MAXPAIR) |
1059 | | { |
1060 | | printf("Some bit didn't change: "); |
1061 | | printf("%.8x %.8x %.8x %.8x %.8x %.8x ", |
1062 | | e[0],f[0],g[0],h[0],x[0],y[0]); |
1063 | | printf("i %d j %d m %d len %d\n", i, j, m, hlen); |
1064 | | } |
1065 | | if (z==MAXPAIR) goto done; |
1066 | | } |
1067 | | } |
1068 | | } |
1069 | | done: |
1070 | | if (z < MAXPAIR) |
1071 | | { |
1072 | | printf("Mix success %2d bytes %2d initvals ",i,m); |
1073 | | printf("required %d trials\n", z/2); |
1074 | | } |
1075 | | } |
1076 | | printf("\n"); |
1077 | | } |
1078 | | |
1079 | | /* Check for reading beyond the end of the buffer and alignment problems */ |
1080 | | void driver3(void) |
1081 | | { |
1082 | | uint8_t buf[MAXLEN+20], *b; |
1083 | | uint32_t len; |
1084 | | uint8_t q[] = "This is the time for all good men to come to the aid of their country..."; |
1085 | | uint32_t h; |
1086 | | uint8_t qq[] = "xThis is the time for all good men to come to the aid of their country..."; |
1087 | | uint32_t i; |
1088 | | uint8_t qqq[] = "xxThis is the time for all good men to come to the aid of their country..."; |
1089 | | uint32_t j; |
1090 | | uint8_t qqqq[] = "xxxThis is the time for all good men to come to the aid of their country..."; |
1091 | | uint32_t ref,x,y; |
1092 | | uint8_t *p; |
1093 | | |
1094 | | printf("Endianness. These lines should all be the same (for values filled in):\n"); |
1095 | | printf("%.8x %.8x %.8x\n", |
1096 | | hashword((const uint32_t *)q, (sizeof(q)-1)/4, 13), |
1097 | | hashword((const uint32_t *)q, (sizeof(q)-5)/4, 13), |
1098 | | hashword((const uint32_t *)q, (sizeof(q)-9)/4, 13)); |
1099 | | p = q; |
1100 | | printf("%.8x %.8x %.8x %.8x %.8x %.8x %.8x %.8x %.8x %.8x %.8x %.8x\n", |
1101 | | hashlittle(p, sizeof(q)-1, 13), hashlittle(p, sizeof(q)-2, 13), |
1102 | | hashlittle(p, sizeof(q)-3, 13), hashlittle(p, sizeof(q)-4, 13), |
1103 | | hashlittle(p, sizeof(q)-5, 13), hashlittle(p, sizeof(q)-6, 13), |
1104 | | hashlittle(p, sizeof(q)-7, 13), hashlittle(p, sizeof(q)-8, 13), |
1105 | | hashlittle(p, sizeof(q)-9, 13), hashlittle(p, sizeof(q)-10, 13), |
1106 | | hashlittle(p, sizeof(q)-11, 13), hashlittle(p, sizeof(q)-12, 13)); |
1107 | | p = &qq[1]; |
1108 | | printf("%.8x %.8x %.8x %.8x %.8x %.8x %.8x %.8x %.8x %.8x %.8x %.8x\n", |
1109 | | hashlittle(p, sizeof(q)-1, 13), hashlittle(p, sizeof(q)-2, 13), |
1110 | | hashlittle(p, sizeof(q)-3, 13), hashlittle(p, sizeof(q)-4, 13), |
1111 | | hashlittle(p, sizeof(q)-5, 13), hashlittle(p, sizeof(q)-6, 13), |
1112 | | hashlittle(p, sizeof(q)-7, 13), hashlittle(p, sizeof(q)-8, 13), |
1113 | | hashlittle(p, sizeof(q)-9, 13), hashlittle(p, sizeof(q)-10, 13), |
1114 | | hashlittle(p, sizeof(q)-11, 13), hashlittle(p, sizeof(q)-12, 13)); |
1115 | | p = &qqq[2]; |
1116 | | printf("%.8x %.8x %.8x %.8x %.8x %.8x %.8x %.8x %.8x %.8x %.8x %.8x\n", |
1117 | | hashlittle(p, sizeof(q)-1, 13), hashlittle(p, sizeof(q)-2, 13), |
1118 | | hashlittle(p, sizeof(q)-3, 13), hashlittle(p, sizeof(q)-4, 13), |
1119 | | hashlittle(p, sizeof(q)-5, 13), hashlittle(p, sizeof(q)-6, 13), |
1120 | | hashlittle(p, sizeof(q)-7, 13), hashlittle(p, sizeof(q)-8, 13), |
1121 | | hashlittle(p, sizeof(q)-9, 13), hashlittle(p, sizeof(q)-10, 13), |
1122 | | hashlittle(p, sizeof(q)-11, 13), hashlittle(p, sizeof(q)-12, 13)); |
1123 | | p = &qqqq[3]; |
1124 | | printf("%.8x %.8x %.8x %.8x %.8x %.8x %.8x %.8x %.8x %.8x %.8x %.8x\n", |
1125 | | hashlittle(p, sizeof(q)-1, 13), hashlittle(p, sizeof(q)-2, 13), |
1126 | | hashlittle(p, sizeof(q)-3, 13), hashlittle(p, sizeof(q)-4, 13), |
1127 | | hashlittle(p, sizeof(q)-5, 13), hashlittle(p, sizeof(q)-6, 13), |
1128 | | hashlittle(p, sizeof(q)-7, 13), hashlittle(p, sizeof(q)-8, 13), |
1129 | | hashlittle(p, sizeof(q)-9, 13), hashlittle(p, sizeof(q)-10, 13), |
1130 | | hashlittle(p, sizeof(q)-11, 13), hashlittle(p, sizeof(q)-12, 13)); |
1131 | | printf("\n"); |
1132 | | |
1133 | | /* check that hashlittle2 and hashlittle produce the same results */ |
1134 | | i=47; j=0; |
1135 | | hashlittle2(q, sizeof(q), &i, &j); |
1136 | | if (hashlittle(q, sizeof(q), 47) != i) |
1137 | | printf("hashlittle2 and hashlittle mismatch\n"); |
1138 | | |
1139 | | /* check that hashword2 and hashword produce the same results */ |
1140 | | len = raninit; |
1141 | | i=47, j=0; |
1142 | | hashword2(&len, 1, &i, &j); |
1143 | | if (hashword(&len, 1, 47) != i) |
1144 | | printf("hashword2 and hashword mismatch %x %x\n", |
1145 | | i, hashword(&len, 1, 47)); |
1146 | | |
1147 | | /* check hashlittle doesn't read before or after the ends of the string */ |
1148 | | for (h=0, b=buf+1; h<8; ++h, ++b) |
1149 | | { |
1150 | | for (i=0; i<MAXLEN; ++i) |
1151 | | { |
1152 | | len = i; |
1153 | | for (j=0; j<i; ++j) *(b+j)=0; |
1154 | | |
1155 | | /* these should all be equal */ |
1156 | | ref = hashlittle(b, len, (uint32_t)1); |
1157 | | *(b+i)=(uint8_t)~0; |
1158 | | *(b-1)=(uint8_t)~0; |
1159 | | x = hashlittle(b, len, (uint32_t)1); |
1160 | | y = hashlittle(b, len, (uint32_t)1); |
1161 | | if ((ref != x) || (ref != y)) |
1162 | | { |
1163 | | printf("alignment error: %.8x %.8x %.8x %d %d\n",ref,x,y, |
1164 | | h, i); |
1165 | | } |
1166 | | } |
1167 | | } |
1168 | | } |
1169 | | |
1170 | | /* check for problems with nulls */ |
1171 | | void driver4(void) |
1172 | | { |
1173 | | uint8_t buf[1]; |
1174 | | uint32_t h,i,state[HASHSTATE]; |
1175 | | |
1176 | | |
1177 | | buf[0] = ~0; |
1178 | | for (i=0; i<HASHSTATE; ++i) state[i] = 1; |
1179 | | printf("These should all be different\n"); |
1180 | | for (i=0, h=0; i<8; ++i) |
1181 | | { |
1182 | | h = hashlittle(buf, 0, h); |
1183 | | printf("%2ld 0-byte strings, hash is %.8x\n", i, h); |
1184 | | } |
1185 | | } |
1186 | | |
1187 | | |
1188 | | int main(void) |
1189 | | { |
1190 | | driver1(); /* test that the key is hashed: used for timings */ |
1191 | | driver2(); /* test that whole key is hashed thoroughly */ |
1192 | | driver3(); /* test that nothing but the key is hashed */ |
1193 | | driver4(); /* test hashing multiple buffers (all buffers are null) */ |
1194 | | return 1; |
1195 | | } |
1196 | | |
1197 | | #endif /* SELF_TEST */ |