/rust/registry/src/index.crates.io-6f17d22bba15001f/tinyvec-1.9.0/src/tinyvec.rs
Line | Count | Source |
1 | | use super::*; |
2 | | |
3 | | use alloc::vec::{self, Vec}; |
4 | | use core::convert::TryFrom; |
5 | | use tinyvec_macros::impl_mirrored; |
6 | | |
7 | | #[cfg(feature = "rustc_1_57")] |
8 | | use alloc::collections::TryReserveError; |
9 | | |
10 | | #[cfg(feature = "serde")] |
11 | | use core::marker::PhantomData; |
12 | | #[cfg(feature = "serde")] |
13 | | use serde::de::{Deserialize, Deserializer, SeqAccess, Visitor}; |
14 | | #[cfg(feature = "serde")] |
15 | | use serde::ser::{Serialize, SerializeSeq, Serializer}; |
16 | | |
17 | | /// Helper to make a `TinyVec`. |
18 | | /// |
19 | | /// You specify the backing array type, and optionally give all the elements you |
20 | | /// want to initially place into the array. |
21 | | /// |
22 | | /// ```rust |
23 | | /// use tinyvec::*; |
24 | | /// |
25 | | /// // The backing array type can be specified in the macro call |
26 | | /// let empty_tv = tiny_vec!([u8; 16]); |
27 | | /// let some_ints = tiny_vec!([i32; 4] => 1, 2, 3); |
28 | | /// let many_ints = tiny_vec!([i32; 4] => 1, 2, 3, 4, 5, 6, 7, 8, 9, 10); |
29 | | /// |
30 | | /// // Or left to inference |
31 | | /// let empty_tv: TinyVec<[u8; 16]> = tiny_vec!(); |
32 | | /// let some_ints: TinyVec<[i32; 4]> = tiny_vec!(1, 2, 3); |
33 | | /// let many_ints: TinyVec<[i32; 4]> = tiny_vec!(1, 2, 3, 4, 5, 6, 7, 8, 9, 10); |
34 | | /// ``` |
35 | | #[macro_export] |
36 | | #[cfg_attr(docsrs, doc(cfg(feature = "alloc")))] |
37 | | macro_rules! tiny_vec { |
38 | | ($array_type:ty => $($elem:expr),* $(,)?) => { |
39 | | { |
40 | | // https://github.com/rust-lang/lang-team/issues/28 |
41 | | const INVOKED_ELEM_COUNT: usize = 0 $( + { let _ = stringify!($elem); 1 })*; |
42 | | // If we have more `$elem` than the `CAPACITY` we will simply go directly |
43 | | // to constructing on the heap. |
44 | | match $crate::TinyVec::constructor_for_capacity(INVOKED_ELEM_COUNT) { |
45 | | $crate::TinyVecConstructor::Inline(f) => { |
46 | | f($crate::array_vec!($array_type => $($elem),*)) |
47 | | } |
48 | | $crate::TinyVecConstructor::Heap(f) => { |
49 | | f(vec!($($elem),*)) |
50 | | } |
51 | | } |
52 | | } |
53 | | }; |
54 | | ($array_type:ty) => { |
55 | | $crate::TinyVec::<$array_type>::default() |
56 | | }; |
57 | | ($($elem:expr),*) => { |
58 | | $crate::tiny_vec!(_ => $($elem),*) |
59 | | }; |
60 | | ($elem:expr; $n:expr) => { |
61 | | $crate::TinyVec::from([$elem; $n]) |
62 | | }; |
63 | | () => { |
64 | | $crate::tiny_vec!(_) |
65 | | }; |
66 | | } |
67 | | |
68 | | #[doc(hidden)] // Internal implementation details of `tiny_vec!` |
69 | | pub enum TinyVecConstructor<A: Array> { |
70 | | Inline(fn(ArrayVec<A>) -> TinyVec<A>), |
71 | | Heap(fn(Vec<A::Item>) -> TinyVec<A>), |
72 | | } |
73 | | |
74 | | /// A vector that starts inline, but can automatically move to the heap. |
75 | | /// |
76 | | /// * Requires the `alloc` feature |
77 | | /// |
78 | | /// A `TinyVec` is either an Inline([`ArrayVec`](crate::ArrayVec::<A>)) or |
79 | | /// Heap([`Vec`](https://doc.rust-lang.org/alloc/vec/struct.Vec.html)). The |
80 | | /// interface for the type as a whole is a bunch of methods that just match on |
81 | | /// the enum variant and then call the same method on the inner vec. |
82 | | /// |
83 | | /// ## Construction |
84 | | /// |
85 | | /// Because it's an enum, you can construct a `TinyVec` simply by making an |
86 | | /// `ArrayVec` or `Vec` and then putting it into the enum. |
87 | | /// |
88 | | /// There is also a macro |
89 | | /// |
90 | | /// ```rust |
91 | | /// # use tinyvec::*; |
92 | | /// let empty_tv = tiny_vec!([u8; 16]); |
93 | | /// let some_ints = tiny_vec!([i32; 4] => 1, 2, 3); |
94 | | /// ``` |
95 | | #[cfg_attr(docsrs, doc(cfg(feature = "alloc")))] |
96 | | pub enum TinyVec<A: Array> { |
97 | | #[allow(missing_docs)] |
98 | | Inline(ArrayVec<A>), |
99 | | #[allow(missing_docs)] |
100 | | Heap(Vec<A::Item>), |
101 | | } |
102 | | |
103 | | impl<A> Clone for TinyVec<A> |
104 | | where |
105 | | A: Array + Clone, |
106 | | A::Item: Clone, |
107 | | { |
108 | | #[inline] |
109 | | fn clone(&self) -> Self { |
110 | | match self { |
111 | | TinyVec::Heap(v) => TinyVec::Heap(v.clone()), |
112 | | TinyVec::Inline(v) => TinyVec::Inline(v.clone()), |
113 | | } |
114 | | } |
115 | | |
116 | | #[inline] |
117 | | fn clone_from(&mut self, o: &Self) { |
118 | | if o.len() > self.len() { |
119 | | self.reserve(o.len() - self.len()); |
120 | | } else { |
121 | | self.truncate(o.len()); |
122 | | } |
123 | | let (start, end) = o.split_at(self.len()); |
124 | | for (dst, src) in self.iter_mut().zip(start) { |
125 | | dst.clone_from(src); |
126 | | } |
127 | | self.extend_from_slice(end); |
128 | | } |
129 | | } |
130 | | |
131 | | impl<A: Array> Default for TinyVec<A> { |
132 | | #[inline] |
133 | | #[must_use] |
134 | 73.6k | fn default() -> Self { |
135 | 73.6k | TinyVec::Inline(ArrayVec::default()) |
136 | 73.6k | } <tinyvec::tinyvec::TinyVec<[(u8, char); 4]> as core::default::Default>::default Line | Count | Source | 134 | 38.9k | fn default() -> Self { | 135 | 38.9k | TinyVec::Inline(ArrayVec::default()) | 136 | 38.9k | } |
<tinyvec::tinyvec::TinyVec<[char; 4]> as core::default::Default>::default Line | Count | Source | 134 | 25.1k | fn default() -> Self { | 135 | 25.1k | TinyVec::Inline(ArrayVec::default()) | 136 | 25.1k | } |
<tinyvec::tinyvec::TinyVec<[(u8, char); 4]> as core::default::Default>::default Line | Count | Source | 134 | 2.12k | fn default() -> Self { | 135 | 2.12k | TinyVec::Inline(ArrayVec::default()) | 136 | 2.12k | } |
<tinyvec::tinyvec::TinyVec<[char; 4]> as core::default::Default>::default Line | Count | Source | 134 | 2.12k | fn default() -> Self { | 135 | 2.12k | TinyVec::Inline(ArrayVec::default()) | 136 | 2.12k | } |
<tinyvec::tinyvec::TinyVec<[(u8, char); 4]> as core::default::Default>::default Line | Count | Source | 134 | 2.82k | fn default() -> Self { | 135 | 2.82k | TinyVec::Inline(ArrayVec::default()) | 136 | 2.82k | } |
<tinyvec::tinyvec::TinyVec<[char; 4]> as core::default::Default>::default Line | Count | Source | 134 | 2.36k | fn default() -> Self { | 135 | 2.36k | TinyVec::Inline(ArrayVec::default()) | 136 | 2.36k | } |
|
137 | | } |
138 | | |
139 | | impl<A: Array> Deref for TinyVec<A> { |
140 | | type Target = [A::Item]; |
141 | | |
142 | | impl_mirrored! { |
143 | | type Mirror = TinyVec; |
144 | | #[inline(always)] |
145 | | #[must_use] |
146 | | fn deref(self: &Self) -> &Self::Target; |
147 | | } |
148 | | } |
149 | | |
150 | | impl<A: Array> DerefMut for TinyVec<A> { |
151 | | impl_mirrored! { |
152 | | type Mirror = TinyVec; |
153 | | #[inline(always)] |
154 | | #[must_use] |
155 | | fn deref_mut(self: &mut Self) -> &mut Self::Target; |
156 | | } |
157 | | } |
158 | | |
159 | | impl<A: Array, I: SliceIndex<[A::Item]>> Index<I> for TinyVec<A> { |
160 | | type Output = <I as SliceIndex<[A::Item]>>::Output; |
161 | | #[inline(always)] |
162 | | #[must_use] |
163 | 270M | fn index(&self, index: I) -> &Self::Output { |
164 | 270M | &self.deref()[index] |
165 | 270M | } <tinyvec::tinyvec::TinyVec<[(u8, char); 4]> as core::ops::index::Index<usize>>::index Line | Count | Source | 163 | 152M | fn index(&self, index: I) -> &Self::Output { | 164 | 152M | &self.deref()[index] | 165 | 152M | } |
<tinyvec::tinyvec::TinyVec<[(u8, char); 4]> as core::ops::index::Index<usize>>::index Line | Count | Source | 163 | 12.3M | fn index(&self, index: I) -> &Self::Output { | 164 | 12.3M | &self.deref()[index] | 165 | 12.3M | } |
<tinyvec::tinyvec::TinyVec<[(u8, char); 4]> as core::ops::index::Index<usize>>::index Line | Count | Source | 163 | 105M | fn index(&self, index: I) -> &Self::Output { | 164 | 105M | &self.deref()[index] | 165 | 105M | } |
|
166 | | } |
167 | | |
168 | | impl<A: Array, I: SliceIndex<[A::Item]>> IndexMut<I> for TinyVec<A> { |
169 | | #[inline(always)] |
170 | | #[must_use] |
171 | 133M | fn index_mut(&mut self, index: I) -> &mut Self::Output { |
172 | 133M | &mut self.deref_mut()[index] |
173 | 133M | } <tinyvec::tinyvec::TinyVec<[(u8, char); 4]> as core::ops::index::IndexMut<core::ops::range::RangeFrom<usize>>>::index_mut Line | Count | Source | 171 | 72.5M | fn index_mut(&mut self, index: I) -> &mut Self::Output { | 172 | 72.5M | &mut self.deref_mut()[index] | 173 | 72.5M | } |
<tinyvec::tinyvec::TinyVec<[(u8, char); 4]> as core::ops::index::IndexMut<usize>>::index_mut Line | Count | Source | 171 | 5.37M | fn index_mut(&mut self, index: I) -> &mut Self::Output { | 172 | 5.37M | &mut self.deref_mut()[index] | 173 | 5.37M | } |
<tinyvec::tinyvec::TinyVec<[(u8, char); 4]> as core::ops::index::IndexMut<core::ops::range::RangeFrom<usize>>>::index_mut Line | Count | Source | 171 | 7.90M | fn index_mut(&mut self, index: I) -> &mut Self::Output { | 172 | 7.90M | &mut self.deref_mut()[index] | 173 | 7.90M | } |
<tinyvec::tinyvec::TinyVec<[(u8, char); 4]> as core::ops::index::IndexMut<usize>>::index_mut Line | Count | Source | 171 | 14.3k | fn index_mut(&mut self, index: I) -> &mut Self::Output { | 172 | 14.3k | &mut self.deref_mut()[index] | 173 | 14.3k | } |
<tinyvec::tinyvec::TinyVec<[(u8, char); 4]> as core::ops::index::IndexMut<core::ops::range::RangeFrom<usize>>>::index_mut Line | Count | Source | 171 | 47.2M | fn index_mut(&mut self, index: I) -> &mut Self::Output { | 172 | 47.2M | &mut self.deref_mut()[index] | 173 | 47.2M | } |
<tinyvec::tinyvec::TinyVec<[(u8, char); 4]> as core::ops::index::IndexMut<usize>>::index_mut Line | Count | Source | 171 | 15.2k | fn index_mut(&mut self, index: I) -> &mut Self::Output { | 172 | 15.2k | &mut self.deref_mut()[index] | 173 | 15.2k | } |
|
174 | | } |
175 | | |
176 | | #[cfg(feature = "std")] |
177 | | #[cfg_attr(docs_rs, doc(cfg(feature = "std")))] |
178 | | impl<A: Array<Item = u8>> std::io::Write for TinyVec<A> { |
179 | | #[inline(always)] |
180 | | fn write(&mut self, buf: &[u8]) -> std::io::Result<usize> { |
181 | | self.extend_from_slice(buf); |
182 | | Ok(buf.len()) |
183 | | } |
184 | | |
185 | | #[inline(always)] |
186 | | fn flush(&mut self) -> std::io::Result<()> { |
187 | | Ok(()) |
188 | | } |
189 | | } |
190 | | |
191 | | #[cfg(feature = "serde")] |
192 | | #[cfg_attr(docs_rs, doc(cfg(feature = "serde")))] |
193 | | impl<A: Array> Serialize for TinyVec<A> |
194 | | where |
195 | | A::Item: Serialize, |
196 | | { |
197 | | #[must_use] |
198 | | fn serialize<S>(&self, serializer: S) -> Result<S::Ok, S::Error> |
199 | | where |
200 | | S: Serializer, |
201 | | { |
202 | | let mut seq = serializer.serialize_seq(Some(self.len()))?; |
203 | | for element in self.iter() { |
204 | | seq.serialize_element(element)?; |
205 | | } |
206 | | seq.end() |
207 | | } |
208 | | } |
209 | | |
210 | | #[cfg(feature = "serde")] |
211 | | #[cfg_attr(docs_rs, doc(cfg(feature = "serde")))] |
212 | | impl<'de, A: Array> Deserialize<'de> for TinyVec<A> |
213 | | where |
214 | | A::Item: Deserialize<'de>, |
215 | | { |
216 | | fn deserialize<D>(deserializer: D) -> Result<Self, D::Error> |
217 | | where |
218 | | D: Deserializer<'de>, |
219 | | { |
220 | | deserializer.deserialize_seq(TinyVecVisitor(PhantomData)) |
221 | | } |
222 | | } |
223 | | |
224 | | #[cfg(feature = "borsh")] |
225 | | #[cfg_attr(docs_rs, doc(cfg(feature = "borsh")))] |
226 | | impl<A: Array> borsh::BorshSerialize for TinyVec<A> |
227 | | where |
228 | | <A as Array>::Item: borsh::BorshSerialize, |
229 | | { |
230 | | fn serialize<W: borsh::io::Write>( |
231 | | &self, writer: &mut W, |
232 | | ) -> borsh::io::Result<()> { |
233 | | <usize as borsh::BorshSerialize>::serialize(&self.len(), writer)?; |
234 | | for elem in self.iter() { |
235 | | <<A as Array>::Item as borsh::BorshSerialize>::serialize(elem, writer)?; |
236 | | } |
237 | | Ok(()) |
238 | | } |
239 | | } |
240 | | |
241 | | #[cfg(feature = "borsh")] |
242 | | #[cfg_attr(docs_rs, doc(cfg(feature = "borsh")))] |
243 | | impl<A: Array> borsh::BorshDeserialize for TinyVec<A> |
244 | | where |
245 | | <A as Array>::Item: borsh::BorshDeserialize, |
246 | | { |
247 | | fn deserialize_reader<R: borsh::io::Read>( |
248 | | reader: &mut R, |
249 | | ) -> borsh::io::Result<Self> { |
250 | | let len = <usize as borsh::BorshDeserialize>::deserialize_reader(reader)?; |
251 | | let mut new_tinyvec = Self::with_capacity(len); |
252 | | |
253 | | for _ in 0..len { |
254 | | new_tinyvec.push( |
255 | | <<A as Array>::Item as borsh::BorshDeserialize>::deserialize_reader( |
256 | | reader, |
257 | | )?, |
258 | | ) |
259 | | } |
260 | | |
261 | | Ok(new_tinyvec) |
262 | | } |
263 | | } |
264 | | |
265 | | #[cfg(feature = "arbitrary")] |
266 | | #[cfg_attr(docs_rs, doc(cfg(feature = "arbitrary")))] |
267 | | impl<'a, A> arbitrary::Arbitrary<'a> for TinyVec<A> |
268 | | where |
269 | | A: Array, |
270 | | A::Item: arbitrary::Arbitrary<'a>, |
271 | | { |
272 | | fn arbitrary(u: &mut arbitrary::Unstructured<'a>) -> arbitrary::Result<Self> { |
273 | | let v = Vec::arbitrary(u)?; |
274 | | let mut tv = TinyVec::Heap(v); |
275 | | tv.shrink_to_fit(); |
276 | | Ok(tv) |
277 | | } |
278 | | } |
279 | | |
280 | | impl<A: Array> TinyVec<A> { |
281 | | /// Returns whether elements are on heap |
282 | | #[inline(always)] |
283 | | #[must_use] |
284 | | pub fn is_heap(&self) -> bool { |
285 | | match self { |
286 | | TinyVec::Heap(_) => true, |
287 | | TinyVec::Inline(_) => false, |
288 | | } |
289 | | } |
290 | | /// Returns whether elements are on stack |
291 | | #[inline(always)] |
292 | | #[must_use] |
293 | | pub fn is_inline(&self) -> bool { |
294 | | !self.is_heap() |
295 | | } |
296 | | |
297 | | /// Shrinks the capacity of the vector as much as possible.\ |
298 | | /// It is inlined if length is less than `A::CAPACITY`. |
299 | | /// ```rust |
300 | | /// use tinyvec::*; |
301 | | /// let mut tv = tiny_vec!([i32; 2] => 1, 2, 3); |
302 | | /// assert!(tv.is_heap()); |
303 | | /// let _ = tv.pop(); |
304 | | /// assert!(tv.is_heap()); |
305 | | /// tv.shrink_to_fit(); |
306 | | /// assert!(tv.is_inline()); |
307 | | /// ``` |
308 | | #[inline] |
309 | | pub fn shrink_to_fit(&mut self) { |
310 | | let vec = match self { |
311 | | TinyVec::Inline(_) => return, |
312 | | TinyVec::Heap(h) => h, |
313 | | }; |
314 | | |
315 | | if vec.len() > A::CAPACITY { |
316 | | return vec.shrink_to_fit(); |
317 | | } |
318 | | |
319 | | let moved_vec = core::mem::take(vec); |
320 | | |
321 | | let mut av = ArrayVec::default(); |
322 | | let mut rest = av.fill(moved_vec); |
323 | | debug_assert!(rest.next().is_none()); |
324 | | *self = TinyVec::Inline(av); |
325 | | } |
326 | | |
327 | | /// Moves the content of the TinyVec to the heap, if it's inline. |
328 | | /// ```rust |
329 | | /// use tinyvec::*; |
330 | | /// let mut tv = tiny_vec!([i32; 4] => 1, 2, 3); |
331 | | /// assert!(tv.is_inline()); |
332 | | /// tv.move_to_the_heap(); |
333 | | /// assert!(tv.is_heap()); |
334 | | /// ``` |
335 | | #[allow(clippy::missing_inline_in_public_items)] |
336 | | pub fn move_to_the_heap(&mut self) { |
337 | | let arr = match self { |
338 | | TinyVec::Heap(_) => return, |
339 | | TinyVec::Inline(a) => a, |
340 | | }; |
341 | | |
342 | | let v = arr.drain_to_vec(); |
343 | | *self = TinyVec::Heap(v); |
344 | | } |
345 | | |
346 | | /// Tries to move the content of the TinyVec to the heap, if it's inline. |
347 | | /// |
348 | | /// # Errors |
349 | | /// |
350 | | /// If the allocator reports a failure, then an error is returned and the |
351 | | /// content is kept on the stack. |
352 | | /// |
353 | | /// ```rust |
354 | | /// use tinyvec::*; |
355 | | /// let mut tv = tiny_vec!([i32; 4] => 1, 2, 3); |
356 | | /// assert!(tv.is_inline()); |
357 | | /// assert_eq!(Ok(()), tv.try_move_to_the_heap()); |
358 | | /// assert!(tv.is_heap()); |
359 | | /// ``` |
360 | | #[inline] |
361 | | #[cfg(feature = "rustc_1_57")] |
362 | | pub fn try_move_to_the_heap(&mut self) -> Result<(), TryReserveError> { |
363 | | let arr = match self { |
364 | | TinyVec::Heap(_) => return Ok(()), |
365 | | TinyVec::Inline(a) => a, |
366 | | }; |
367 | | |
368 | | let v = arr.try_drain_to_vec()?; |
369 | | *self = TinyVec::Heap(v); |
370 | | return Ok(()); |
371 | | } |
372 | | |
373 | | /// If TinyVec is inline, moves the content of it to the heap. |
374 | | /// Also reserves additional space. |
375 | | /// ```rust |
376 | | /// use tinyvec::*; |
377 | | /// let mut tv = tiny_vec!([i32; 4] => 1, 2, 3); |
378 | | /// assert!(tv.is_inline()); |
379 | | /// tv.move_to_the_heap_and_reserve(32); |
380 | | /// assert!(tv.is_heap()); |
381 | | /// assert!(tv.capacity() >= 35); |
382 | | /// ``` |
383 | | #[inline] |
384 | | pub fn move_to_the_heap_and_reserve(&mut self, n: usize) { |
385 | | let arr = match self { |
386 | | TinyVec::Heap(h) => return h.reserve(n), |
387 | | TinyVec::Inline(a) => a, |
388 | | }; |
389 | | |
390 | | let v = arr.drain_to_vec_and_reserve(n); |
391 | | *self = TinyVec::Heap(v); |
392 | | } |
393 | | |
394 | | /// If TinyVec is inline, try to move the content of it to the heap. |
395 | | /// Also reserves additional space. |
396 | | /// |
397 | | /// # Errors |
398 | | /// |
399 | | /// If the allocator reports a failure, then an error is returned. |
400 | | /// |
401 | | /// ```rust |
402 | | /// use tinyvec::*; |
403 | | /// let mut tv = tiny_vec!([i32; 4] => 1, 2, 3); |
404 | | /// assert!(tv.is_inline()); |
405 | | /// assert_eq!(Ok(()), tv.try_move_to_the_heap_and_reserve(32)); |
406 | | /// assert!(tv.is_heap()); |
407 | | /// assert!(tv.capacity() >= 35); |
408 | | /// ``` |
409 | | #[inline] |
410 | | #[cfg(feature = "rustc_1_57")] |
411 | | pub fn try_move_to_the_heap_and_reserve( |
412 | | &mut self, n: usize, |
413 | | ) -> Result<(), TryReserveError> { |
414 | | let arr = match self { |
415 | | TinyVec::Heap(h) => return h.try_reserve(n), |
416 | | TinyVec::Inline(a) => a, |
417 | | }; |
418 | | |
419 | | let v = arr.try_drain_to_vec_and_reserve(n)?; |
420 | | *self = TinyVec::Heap(v); |
421 | | return Ok(()); |
422 | | } |
423 | | |
424 | | /// Reserves additional space. |
425 | | /// Moves to the heap if array can't hold `n` more items |
426 | | /// ```rust |
427 | | /// use tinyvec::*; |
428 | | /// let mut tv = tiny_vec!([i32; 4] => 1, 2, 3, 4); |
429 | | /// assert!(tv.is_inline()); |
430 | | /// tv.reserve(1); |
431 | | /// assert!(tv.is_heap()); |
432 | | /// assert!(tv.capacity() >= 5); |
433 | | /// ``` |
434 | | #[inline] |
435 | | pub fn reserve(&mut self, n: usize) { |
436 | | let arr = match self { |
437 | | TinyVec::Heap(h) => return h.reserve(n), |
438 | | TinyVec::Inline(a) => a, |
439 | | }; |
440 | | |
441 | | if n > arr.capacity() - arr.len() { |
442 | | let v = arr.drain_to_vec_and_reserve(n); |
443 | | *self = TinyVec::Heap(v); |
444 | | } |
445 | | |
446 | | /* In this place array has enough place, so no work is needed more */ |
447 | | return; |
448 | | } |
449 | | |
450 | | /// Tries to reserve additional space. |
451 | | /// Moves to the heap if array can't hold `n` more items. |
452 | | /// |
453 | | /// # Errors |
454 | | /// |
455 | | /// If the allocator reports a failure, then an error is returned. |
456 | | /// |
457 | | /// ```rust |
458 | | /// use tinyvec::*; |
459 | | /// let mut tv = tiny_vec!([i32; 4] => 1, 2, 3, 4); |
460 | | /// assert!(tv.is_inline()); |
461 | | /// assert_eq!(Ok(()), tv.try_reserve(1)); |
462 | | /// assert!(tv.is_heap()); |
463 | | /// assert!(tv.capacity() >= 5); |
464 | | /// ``` |
465 | | #[inline] |
466 | | #[cfg(feature = "rustc_1_57")] |
467 | | pub fn try_reserve(&mut self, n: usize) -> Result<(), TryReserveError> { |
468 | | let arr = match self { |
469 | | TinyVec::Heap(h) => return h.try_reserve(n), |
470 | | TinyVec::Inline(a) => a, |
471 | | }; |
472 | | |
473 | | if n > arr.capacity() - arr.len() { |
474 | | let v = arr.try_drain_to_vec_and_reserve(n)?; |
475 | | *self = TinyVec::Heap(v); |
476 | | } |
477 | | |
478 | | /* In this place array has enough place, so no work is needed more */ |
479 | | return Ok(()); |
480 | | } |
481 | | |
482 | | /// Reserves additional space. |
483 | | /// Moves to the heap if array can't hold `n` more items |
484 | | /// |
485 | | /// From [Vec::reserve_exact](https://doc.rust-lang.org/std/vec/struct.Vec.html#method.reserve_exact) |
486 | | /// ```text |
487 | | /// Note that the allocator may give the collection more space than it requests. |
488 | | /// Therefore, capacity can not be relied upon to be precisely minimal. |
489 | | /// Prefer `reserve` if future insertions are expected. |
490 | | /// ``` |
491 | | /// ```rust |
492 | | /// use tinyvec::*; |
493 | | /// let mut tv = tiny_vec!([i32; 4] => 1, 2, 3, 4); |
494 | | /// assert!(tv.is_inline()); |
495 | | /// tv.reserve_exact(1); |
496 | | /// assert!(tv.is_heap()); |
497 | | /// assert!(tv.capacity() >= 5); |
498 | | /// ``` |
499 | | #[inline] |
500 | | pub fn reserve_exact(&mut self, n: usize) { |
501 | | let arr = match self { |
502 | | TinyVec::Heap(h) => return h.reserve_exact(n), |
503 | | TinyVec::Inline(a) => a, |
504 | | }; |
505 | | |
506 | | if n > arr.capacity() - arr.len() { |
507 | | let v = arr.drain_to_vec_and_reserve(n); |
508 | | *self = TinyVec::Heap(v); |
509 | | } |
510 | | |
511 | | /* In this place array has enough place, so no work is needed more */ |
512 | | return; |
513 | | } |
514 | | |
515 | | /// Tries to reserve additional space. |
516 | | /// Moves to the heap if array can't hold `n` more items |
517 | | /// |
518 | | /// # Errors |
519 | | /// |
520 | | /// If the allocator reports a failure, then an error is returned. |
521 | | /// |
522 | | /// From [Vec::try_reserve_exact](https://doc.rust-lang.org/std/vec/struct.Vec.html#method.try_reserve_exact) |
523 | | /// ```text |
524 | | /// Note that the allocator may give the collection more space than it requests. |
525 | | /// Therefore, capacity can not be relied upon to be precisely minimal. |
526 | | /// Prefer `reserve` if future insertions are expected. |
527 | | /// ``` |
528 | | /// ```rust |
529 | | /// use tinyvec::*; |
530 | | /// let mut tv = tiny_vec!([i32; 4] => 1, 2, 3, 4); |
531 | | /// assert!(tv.is_inline()); |
532 | | /// assert_eq!(Ok(()), tv.try_reserve_exact(1)); |
533 | | /// assert!(tv.is_heap()); |
534 | | /// assert!(tv.capacity() >= 5); |
535 | | /// ``` |
536 | | #[inline] |
537 | | #[cfg(feature = "rustc_1_57")] |
538 | | pub fn try_reserve_exact(&mut self, n: usize) -> Result<(), TryReserveError> { |
539 | | let arr = match self { |
540 | | TinyVec::Heap(h) => return h.try_reserve_exact(n), |
541 | | TinyVec::Inline(a) => a, |
542 | | }; |
543 | | |
544 | | if n > arr.capacity() - arr.len() { |
545 | | let v = arr.try_drain_to_vec_and_reserve(n)?; |
546 | | *self = TinyVec::Heap(v); |
547 | | } |
548 | | |
549 | | /* In this place array has enough place, so no work is needed more */ |
550 | | return Ok(()); |
551 | | } |
552 | | |
553 | | /// Makes a new TinyVec with _at least_ the given capacity. |
554 | | /// |
555 | | /// If the requested capacity is less than or equal to the array capacity you |
556 | | /// get an inline vec. If it's greater than you get a heap vec. |
557 | | /// ``` |
558 | | /// # use tinyvec::*; |
559 | | /// let t = TinyVec::<[u8; 10]>::with_capacity(5); |
560 | | /// assert!(t.is_inline()); |
561 | | /// assert!(t.capacity() >= 5); |
562 | | /// |
563 | | /// let t = TinyVec::<[u8; 10]>::with_capacity(20); |
564 | | /// assert!(t.is_heap()); |
565 | | /// assert!(t.capacity() >= 20); |
566 | | /// ``` |
567 | | #[inline] |
568 | | #[must_use] |
569 | | pub fn with_capacity(cap: usize) -> Self { |
570 | | if cap <= A::CAPACITY { |
571 | | TinyVec::Inline(ArrayVec::default()) |
572 | | } else { |
573 | | TinyVec::Heap(Vec::with_capacity(cap)) |
574 | | } |
575 | | } |
576 | | |
577 | | /// Converts a `TinyVec<[T; N]>` into a `Box<[T]>`. |
578 | | /// |
579 | | /// - For `TinyVec::Heap(Vec<T>)`, it takes the `Vec<T>` and converts it into |
580 | | /// a `Box<[T]>` without heap reallocation. |
581 | | /// - For `TinyVec::Inline(inner_data)`, it first converts the `inner_data` to |
582 | | /// `Vec<T>`, then into a `Box<[T]>`. Requiring only a single heap |
583 | | /// allocation. |
584 | | /// |
585 | | /// ## Example |
586 | | /// |
587 | | /// ``` |
588 | | /// use core::mem::size_of_val as mem_size_of; |
589 | | /// use tinyvec::TinyVec; |
590 | | /// |
591 | | /// // Initialize TinyVec with 256 elements (exceeding inline capacity) |
592 | | /// let v: TinyVec<[_; 128]> = (0u8..=255).collect(); |
593 | | /// |
594 | | /// assert!(v.is_heap()); |
595 | | /// assert_eq!(mem_size_of(&v), 136); // mem size of TinyVec<[u8; N]>: N+8 |
596 | | /// assert_eq!(v.len(), 256); |
597 | | /// |
598 | | /// let boxed = v.into_boxed_slice(); |
599 | | /// assert_eq!(mem_size_of(&boxed), 16); // mem size of Box<[u8]>: 16 bytes (fat pointer) |
600 | | /// assert_eq!(boxed.len(), 256); |
601 | | /// ``` |
602 | | #[inline] |
603 | | #[must_use] |
604 | | pub fn into_boxed_slice(self) -> alloc::boxed::Box<[A::Item]> { |
605 | | self.into_vec().into_boxed_slice() |
606 | | } |
607 | | |
608 | | /// Converts a `TinyVec<[T; N]>` into a `Vec<T>`. |
609 | | /// |
610 | | /// `v.into_vec()` is equivalent to `Into::<Vec<_>>::into(v)`. |
611 | | /// |
612 | | /// - For `TinyVec::Inline(_)`, `.into_vec()` **does not** offer a performance |
613 | | /// advantage over `.to_vec()`. |
614 | | /// - For `TinyVec::Heap(vec_data)`, `.into_vec()` will take `vec_data` |
615 | | /// without heap reallocation. |
616 | | /// |
617 | | /// ## Example |
618 | | /// |
619 | | /// ``` |
620 | | /// use tinyvec::TinyVec; |
621 | | /// |
622 | | /// let v = TinyVec::from([0u8; 8]); |
623 | | /// let v2 = v.clone(); |
624 | | /// |
625 | | /// let vec = v.into_vec(); |
626 | | /// let vec2: Vec<_> = v2.into(); |
627 | | /// |
628 | | /// assert_eq!(vec, vec2); |
629 | | /// ``` |
630 | | #[inline] |
631 | | #[must_use] |
632 | | pub fn into_vec(self) -> Vec<A::Item> { |
633 | | self.into() |
634 | | } |
635 | | } |
636 | | |
637 | | impl<A: Array> TinyVec<A> { |
638 | | /// Move all values from `other` into this vec. |
639 | | #[inline] |
640 | | pub fn append(&mut self, other: &mut Self) { |
641 | | self.reserve(other.len()); |
642 | | |
643 | | /* Doing append should be faster, because it is effectively a memcpy */ |
644 | | match (self, other) { |
645 | | (TinyVec::Heap(sh), TinyVec::Heap(oh)) => sh.append(oh), |
646 | | (TinyVec::Inline(a), TinyVec::Heap(h)) => a.extend(h.drain(..)), |
647 | | (ref mut this, TinyVec::Inline(arr)) => this.extend(arr.drain(..)), |
648 | | } |
649 | | } |
650 | | |
651 | | impl_mirrored! { |
652 | | type Mirror = TinyVec; |
653 | | |
654 | | /// Remove an element, swapping the end of the vec into its place. |
655 | | /// |
656 | | /// ## Panics |
657 | | /// * If the index is out of bounds. |
658 | | /// |
659 | | /// ## Example |
660 | | /// ```rust |
661 | | /// use tinyvec::*; |
662 | | /// let mut tv = tiny_vec!([&str; 4] => "foo", "bar", "quack", "zap"); |
663 | | /// |
664 | | /// assert_eq!(tv.swap_remove(1), "bar"); |
665 | | /// assert_eq!(tv.as_slice(), &["foo", "zap", "quack"][..]); |
666 | | /// |
667 | | /// assert_eq!(tv.swap_remove(0), "foo"); |
668 | | /// assert_eq!(tv.as_slice(), &["quack", "zap"][..]); |
669 | | /// ``` |
670 | | #[inline] |
671 | | pub fn swap_remove(self: &mut Self, index: usize) -> A::Item; |
672 | | |
673 | | /// Remove and return the last element of the vec, if there is one. |
674 | | /// |
675 | | /// ## Failure |
676 | | /// * If the vec is empty you get `None`. |
677 | | #[inline] |
678 | | pub fn pop(self: &mut Self) -> Option<A::Item>; |
679 | | |
680 | | /// Removes the item at `index`, shifting all others down by one index. |
681 | | /// |
682 | | /// Returns the removed element. |
683 | | /// |
684 | | /// ## Panics |
685 | | /// |
686 | | /// If the index is out of bounds. |
687 | | /// |
688 | | /// ## Example |
689 | | /// |
690 | | /// ```rust |
691 | | /// use tinyvec::*; |
692 | | /// let mut tv = tiny_vec!([i32; 4] => 1, 2, 3); |
693 | | /// assert_eq!(tv.remove(1), 2); |
694 | | /// assert_eq!(tv.as_slice(), &[1, 3][..]); |
695 | | /// ``` |
696 | | #[inline] |
697 | | pub fn remove(self: &mut Self, index: usize) -> A::Item; |
698 | | |
699 | | /// The length of the vec (in elements). |
700 | | #[inline(always)] |
701 | | #[must_use] |
702 | | pub fn len(self: &Self) -> usize; |
703 | | |
704 | | /// The capacity of the `TinyVec`. |
705 | | /// |
706 | | /// When not heap allocated this is fixed based on the array type. |
707 | | /// Otherwise its the result of the underlying Vec::capacity. |
708 | | #[inline(always)] |
709 | | #[must_use] |
710 | | pub fn capacity(self: &Self) -> usize; |
711 | | |
712 | | /// Reduces the vec's length to the given value. |
713 | | /// |
714 | | /// If the vec is already shorter than the input, nothing happens. |
715 | | #[inline] |
716 | | pub fn truncate(self: &mut Self, new_len: usize); |
717 | | |
718 | | /// A mutable pointer to the backing array. |
719 | | /// |
720 | | /// ## Safety |
721 | | /// |
722 | | /// This pointer has provenance over the _entire_ backing array/buffer. |
723 | | #[inline(always)] |
724 | | #[must_use] |
725 | | pub fn as_mut_ptr(self: &mut Self) -> *mut A::Item; |
726 | | |
727 | | /// A const pointer to the backing array. |
728 | | /// |
729 | | /// ## Safety |
730 | | /// |
731 | | /// This pointer has provenance over the _entire_ backing array/buffer. |
732 | | #[inline(always)] |
733 | | #[must_use] |
734 | | pub fn as_ptr(self: &Self) -> *const A::Item; |
735 | | } |
736 | | |
737 | | /// Walk the vec and keep only the elements that pass the predicate given. |
738 | | /// |
739 | | /// ## Example |
740 | | /// |
741 | | /// ```rust |
742 | | /// use tinyvec::*; |
743 | | /// |
744 | | /// let mut tv = tiny_vec!([i32; 10] => 1, 2, 3, 4); |
745 | | /// tv.retain(|&x| x % 2 == 0); |
746 | | /// assert_eq!(tv.as_slice(), &[2, 4][..]); |
747 | | /// ``` |
748 | | #[inline] |
749 | | pub fn retain<F: FnMut(&A::Item) -> bool>(&mut self, acceptable: F) { |
750 | | match self { |
751 | | TinyVec::Inline(i) => i.retain(acceptable), |
752 | | TinyVec::Heap(h) => h.retain(acceptable), |
753 | | } |
754 | | } |
755 | | |
756 | | /// Walk the vec and keep only the elements that pass the predicate given, |
757 | | /// having the opportunity to modify the elements at the same time. |
758 | | /// |
759 | | /// ## Example |
760 | | /// |
761 | | /// ```rust |
762 | | /// use tinyvec::*; |
763 | | /// |
764 | | /// let mut tv = tiny_vec!([i32; 10] => 1, 2, 3, 4); |
765 | | /// tv.retain_mut(|x| if *x % 2 == 0 { *x *= 2; true } else { false }); |
766 | | /// assert_eq!(tv.as_slice(), &[4, 8][..]); |
767 | | /// ``` |
768 | | #[inline] |
769 | | #[cfg(feature = "rustc_1_61")] |
770 | | pub fn retain_mut<F: FnMut(&mut A::Item) -> bool>(&mut self, acceptable: F) { |
771 | | match self { |
772 | | TinyVec::Inline(i) => i.retain_mut(acceptable), |
773 | | TinyVec::Heap(h) => h.retain_mut(acceptable), |
774 | | } |
775 | | } |
776 | | |
777 | | /// Helper for getting the mut slice. |
778 | | #[inline(always)] |
779 | | #[must_use] |
780 | | pub fn as_mut_slice(&mut self) -> &mut [A::Item] { |
781 | | self.deref_mut() |
782 | | } |
783 | | |
784 | | /// Helper for getting the shared slice. |
785 | | #[inline(always)] |
786 | | #[must_use] |
787 | | pub fn as_slice(&self) -> &[A::Item] { |
788 | | self.deref() |
789 | | } |
790 | | |
791 | | /// Removes all elements from the vec. |
792 | | #[inline(always)] |
793 | 943k | pub fn clear(&mut self) { |
794 | 943k | self.truncate(0) |
795 | 943k | } <tinyvec::tinyvec::TinyVec<[char; 4]>>::clear Line | Count | Source | 793 | 767k | pub fn clear(&mut self) { | 794 | 767k | self.truncate(0) | 795 | 767k | } |
<tinyvec::tinyvec::TinyVec<[char; 4]>>::clear Line | Count | Source | 793 | 165k | pub fn clear(&mut self) { | 794 | 165k | self.truncate(0) | 795 | 165k | } |
<tinyvec::tinyvec::TinyVec<[char; 4]>>::clear Line | Count | Source | 793 | 10.0k | pub fn clear(&mut self) { | 794 | 10.0k | self.truncate(0) | 795 | 10.0k | } |
|
796 | | |
797 | | /// De-duplicates the vec. |
798 | | #[cfg(feature = "nightly_slice_partition_dedup")] |
799 | | #[inline(always)] |
800 | | pub fn dedup(&mut self) |
801 | | where |
802 | | A::Item: PartialEq, |
803 | | { |
804 | | self.dedup_by(|a, b| a == b) |
805 | | } |
806 | | |
807 | | /// De-duplicates the vec according to the predicate given. |
808 | | #[cfg(feature = "nightly_slice_partition_dedup")] |
809 | | #[inline(always)] |
810 | | pub fn dedup_by<F>(&mut self, same_bucket: F) |
811 | | where |
812 | | F: FnMut(&mut A::Item, &mut A::Item) -> bool, |
813 | | { |
814 | | let len = { |
815 | | let (dedup, _) = self.as_mut_slice().partition_dedup_by(same_bucket); |
816 | | dedup.len() |
817 | | }; |
818 | | self.truncate(len); |
819 | | } |
820 | | |
821 | | /// De-duplicates the vec according to the key selector given. |
822 | | #[cfg(feature = "nightly_slice_partition_dedup")] |
823 | | #[inline(always)] |
824 | | pub fn dedup_by_key<F, K>(&mut self, mut key: F) |
825 | | where |
826 | | F: FnMut(&mut A::Item) -> K, |
827 | | K: PartialEq, |
828 | | { |
829 | | self.dedup_by(|a, b| key(a) == key(b)) |
830 | | } |
831 | | |
832 | | /// Creates a draining iterator that removes the specified range in the vector |
833 | | /// and yields the removed items. |
834 | | /// |
835 | | /// **Note: This method has significant performance issues compared to |
836 | | /// matching on the TinyVec and then calling drain on the Inline or Heap value |
837 | | /// inside. The draining iterator has to branch on every single access. It is |
838 | | /// provided for simplicity and compatibility only.** |
839 | | /// |
840 | | /// ## Panics |
841 | | /// * If the start is greater than the end |
842 | | /// * If the end is past the edge of the vec. |
843 | | /// |
844 | | /// ## Example |
845 | | /// ```rust |
846 | | /// use tinyvec::*; |
847 | | /// let mut tv = tiny_vec!([i32; 4] => 1, 2, 3); |
848 | | /// let tv2: TinyVec<[i32; 4]> = tv.drain(1..).collect(); |
849 | | /// assert_eq!(tv.as_slice(), &[1][..]); |
850 | | /// assert_eq!(tv2.as_slice(), &[2, 3][..]); |
851 | | /// |
852 | | /// tv.drain(..); |
853 | | /// assert_eq!(tv.as_slice(), &[]); |
854 | | /// ``` |
855 | | #[inline] |
856 | | pub fn drain<R: RangeBounds<usize>>( |
857 | | &mut self, range: R, |
858 | | ) -> TinyVecDrain<'_, A> { |
859 | | match self { |
860 | | TinyVec::Inline(i) => TinyVecDrain::Inline(i.drain(range)), |
861 | | TinyVec::Heap(h) => TinyVecDrain::Heap(h.drain(range)), |
862 | | } |
863 | | } |
864 | | |
865 | | /// Clone each element of the slice into this vec. |
866 | | /// ```rust |
867 | | /// use tinyvec::*; |
868 | | /// let mut tv = tiny_vec!([i32; 4] => 1, 2); |
869 | | /// tv.extend_from_slice(&[3, 4]); |
870 | | /// assert_eq!(tv.as_slice(), [1, 2, 3, 4]); |
871 | | /// ``` |
872 | | #[inline] |
873 | | pub fn extend_from_slice(&mut self, sli: &[A::Item]) |
874 | | where |
875 | | A::Item: Clone, |
876 | | { |
877 | | self.reserve(sli.len()); |
878 | | match self { |
879 | | TinyVec::Inline(a) => a.extend_from_slice(sli), |
880 | | TinyVec::Heap(h) => h.extend_from_slice(sli), |
881 | | } |
882 | | } |
883 | | |
884 | | /// Wraps up an array and uses the given length as the initial length. |
885 | | /// |
886 | | /// Note that the `From` impl for arrays assumes the full length is used. |
887 | | /// |
888 | | /// ## Panics |
889 | | /// |
890 | | /// The length must be less than or equal to the capacity of the array. |
891 | | #[inline] |
892 | | #[must_use] |
893 | | #[allow(clippy::match_wild_err_arm)] |
894 | | pub fn from_array_len(data: A, len: usize) -> Self { |
895 | | match Self::try_from_array_len(data, len) { |
896 | | Ok(out) => out, |
897 | | Err(_) => { |
898 | | panic!("TinyVec: length {} exceeds capacity {}!", len, A::CAPACITY) |
899 | | } |
900 | | } |
901 | | } |
902 | | |
903 | | /// This is an internal implementation detail of the `tiny_vec!` macro, and |
904 | | /// using it other than from that macro is not supported by this crate's |
905 | | /// SemVer guarantee. |
906 | | #[inline(always)] |
907 | | #[doc(hidden)] |
908 | | pub fn constructor_for_capacity(cap: usize) -> TinyVecConstructor<A> { |
909 | | if cap <= A::CAPACITY { |
910 | | TinyVecConstructor::Inline(TinyVec::Inline) |
911 | | } else { |
912 | | TinyVecConstructor::Heap(TinyVec::Heap) |
913 | | } |
914 | | } |
915 | | |
916 | | /// Inserts an item at the position given, moving all following elements +1 |
917 | | /// index. |
918 | | /// |
919 | | /// ## Panics |
920 | | /// * If `index` > `len` |
921 | | /// |
922 | | /// ## Example |
923 | | /// ```rust |
924 | | /// use tinyvec::*; |
925 | | /// let mut tv = tiny_vec!([i32; 10] => 1, 2, 3); |
926 | | /// tv.insert(1, 4); |
927 | | /// assert_eq!(tv.as_slice(), &[1, 4, 2, 3]); |
928 | | /// tv.insert(4, 5); |
929 | | /// assert_eq!(tv.as_slice(), &[1, 4, 2, 3, 5]); |
930 | | /// ``` |
931 | | #[inline] |
932 | | pub fn insert(&mut self, index: usize, item: A::Item) { |
933 | | assert!( |
934 | | index <= self.len(), |
935 | | "insertion index (is {}) should be <= len (is {})", |
936 | | index, |
937 | | self.len() |
938 | | ); |
939 | | |
940 | | let arr = match self { |
941 | | TinyVec::Heap(v) => return v.insert(index, item), |
942 | | TinyVec::Inline(a) => a, |
943 | | }; |
944 | | |
945 | | if let Some(x) = arr.try_insert(index, item) { |
946 | | let mut v = Vec::with_capacity(arr.len() * 2); |
947 | | let mut it = arr.iter_mut().map(core::mem::take); |
948 | | v.extend(it.by_ref().take(index)); |
949 | | v.push(x); |
950 | | v.extend(it); |
951 | | *self = TinyVec::Heap(v); |
952 | | } |
953 | | } |
954 | | |
955 | | /// If the vec is empty. |
956 | | #[inline(always)] |
957 | | #[must_use] |
958 | 61.9k | pub fn is_empty(&self) -> bool { |
959 | 61.9k | self.len() == 0 |
960 | 61.9k | } <tinyvec::tinyvec::TinyVec<[(u8, char); 4]>>::is_empty Line | Count | Source | 958 | 54.6k | pub fn is_empty(&self) -> bool { | 959 | 54.6k | self.len() == 0 | 960 | 54.6k | } |
<tinyvec::tinyvec::TinyVec<[(u8, char); 4]>>::is_empty Line | Count | Source | 958 | 2.99k | pub fn is_empty(&self) -> bool { | 959 | 2.99k | self.len() == 0 | 960 | 2.99k | } |
<tinyvec::tinyvec::TinyVec<[(u8, char); 4]>>::is_empty Line | Count | Source | 958 | 4.23k | pub fn is_empty(&self) -> bool { | 959 | 4.23k | self.len() == 0 | 960 | 4.23k | } |
|
961 | | |
962 | | /// Makes a new, empty vec. |
963 | | #[inline(always)] |
964 | | #[must_use] |
965 | 73.6k | pub fn new() -> Self { |
966 | 73.6k | Self::default() |
967 | 73.6k | } <tinyvec::tinyvec::TinyVec<[char; 4]>>::new Line | Count | Source | 965 | 25.1k | pub fn new() -> Self { | 966 | 25.1k | Self::default() | 967 | 25.1k | } |
<tinyvec::tinyvec::TinyVec<[(u8, char); 4]>>::new Line | Count | Source | 965 | 38.9k | pub fn new() -> Self { | 966 | 38.9k | Self::default() | 967 | 38.9k | } |
<tinyvec::tinyvec::TinyVec<[char; 4]>>::new Line | Count | Source | 965 | 2.12k | pub fn new() -> Self { | 966 | 2.12k | Self::default() | 967 | 2.12k | } |
<tinyvec::tinyvec::TinyVec<[(u8, char); 4]>>::new Line | Count | Source | 965 | 2.12k | pub fn new() -> Self { | 966 | 2.12k | Self::default() | 967 | 2.12k | } |
<tinyvec::tinyvec::TinyVec<[(u8, char); 4]>>::new Line | Count | Source | 965 | 2.82k | pub fn new() -> Self { | 966 | 2.82k | Self::default() | 967 | 2.82k | } |
<tinyvec::tinyvec::TinyVec<[char; 4]>>::new Line | Count | Source | 965 | 2.36k | pub fn new() -> Self { | 966 | 2.36k | Self::default() | 967 | 2.36k | } |
|
968 | | |
969 | | /// Place an element onto the end of the vec. |
970 | | #[inline] |
971 | 373M | pub fn push(&mut self, val: A::Item) { |
972 | | // The code path for moving the inline contents to the heap produces a lot |
973 | | // of instructions, but we have a strong guarantee that this is a cold |
974 | | // path. LLVM doesn't know this, inlines it, and this tends to cause a |
975 | | // cascade of other bad inlining decisions because the body of push looks |
976 | | // huge even though nearly every call executes the same few instructions. |
977 | | // |
978 | | // Moving the logic out of line with #[cold] causes the hot code to be |
979 | | // inlined together, and we take the extra cost of a function call only |
980 | | // in rare cases. |
981 | | #[cold] |
982 | 25.7k | fn drain_to_heap_and_push<A: Array>( |
983 | 25.7k | arr: &mut ArrayVec<A>, val: A::Item, |
984 | 25.7k | ) -> TinyVec<A> { |
985 | 25.7k | /* Make the Vec twice the size to amortize the cost of draining */ |
986 | 25.7k | let mut v = arr.drain_to_vec_and_reserve(arr.len()); |
987 | 25.7k | v.push(val); |
988 | 25.7k | TinyVec::Heap(v) |
989 | 25.7k | } <tinyvec::tinyvec::TinyVec<_>>::push::drain_to_heap_and_push::<[(u8, char); 4]> Line | Count | Source | 982 | 15.3k | fn drain_to_heap_and_push<A: Array>( | 983 | 15.3k | arr: &mut ArrayVec<A>, val: A::Item, | 984 | 15.3k | ) -> TinyVec<A> { | 985 | 15.3k | /* Make the Vec twice the size to amortize the cost of draining */ | 986 | 15.3k | let mut v = arr.drain_to_vec_and_reserve(arr.len()); | 987 | 15.3k | v.push(val); | 988 | 15.3k | TinyVec::Heap(v) | 989 | 15.3k | } |
<tinyvec::tinyvec::TinyVec<_>>::push::drain_to_heap_and_push::<[char; 4]> Line | Count | Source | 982 | 6.73k | fn drain_to_heap_and_push<A: Array>( | 983 | 6.73k | arr: &mut ArrayVec<A>, val: A::Item, | 984 | 6.73k | ) -> TinyVec<A> { | 985 | 6.73k | /* Make the Vec twice the size to amortize the cost of draining */ | 986 | 6.73k | let mut v = arr.drain_to_vec_and_reserve(arr.len()); | 987 | 6.73k | v.push(val); | 988 | 6.73k | TinyVec::Heap(v) | 989 | 6.73k | } |
<tinyvec::tinyvec::TinyVec<_>>::push::drain_to_heap_and_push::<[(u8, char); 4]> Line | Count | Source | 982 | 856 | fn drain_to_heap_and_push<A: Array>( | 983 | 856 | arr: &mut ArrayVec<A>, val: A::Item, | 984 | 856 | ) -> TinyVec<A> { | 985 | 856 | /* Make the Vec twice the size to amortize the cost of draining */ | 986 | 856 | let mut v = arr.drain_to_vec_and_reserve(arr.len()); | 987 | 856 | v.push(val); | 988 | 856 | TinyVec::Heap(v) | 989 | 856 | } |
<tinyvec::tinyvec::TinyVec<_>>::push::drain_to_heap_and_push::<[char; 4]> Line | Count | Source | 982 | 495 | fn drain_to_heap_and_push<A: Array>( | 983 | 495 | arr: &mut ArrayVec<A>, val: A::Item, | 984 | 495 | ) -> TinyVec<A> { | 985 | 495 | /* Make the Vec twice the size to amortize the cost of draining */ | 986 | 495 | let mut v = arr.drain_to_vec_and_reserve(arr.len()); | 987 | 495 | v.push(val); | 988 | 495 | TinyVec::Heap(v) | 989 | 495 | } |
<tinyvec::tinyvec::TinyVec<_>>::push::drain_to_heap_and_push::<[(u8, char); 4]> Line | Count | Source | 982 | 1.63k | fn drain_to_heap_and_push<A: Array>( | 983 | 1.63k | arr: &mut ArrayVec<A>, val: A::Item, | 984 | 1.63k | ) -> TinyVec<A> { | 985 | 1.63k | /* Make the Vec twice the size to amortize the cost of draining */ | 986 | 1.63k | let mut v = arr.drain_to_vec_and_reserve(arr.len()); | 987 | 1.63k | v.push(val); | 988 | 1.63k | TinyVec::Heap(v) | 989 | 1.63k | } |
<tinyvec::tinyvec::TinyVec<_>>::push::drain_to_heap_and_push::<[char; 4]> Line | Count | Source | 982 | 766 | fn drain_to_heap_and_push<A: Array>( | 983 | 766 | arr: &mut ArrayVec<A>, val: A::Item, | 984 | 766 | ) -> TinyVec<A> { | 985 | 766 | /* Make the Vec twice the size to amortize the cost of draining */ | 986 | 766 | let mut v = arr.drain_to_vec_and_reserve(arr.len()); | 987 | 766 | v.push(val); | 988 | 766 | TinyVec::Heap(v) | 989 | 766 | } |
|
990 | | |
991 | 373M | match self { |
992 | 343M | TinyVec::Heap(v) => v.push(val), |
993 | 29.3M | TinyVec::Inline(arr) => { |
994 | 29.3M | if let Some(x) = arr.try_push(val) { |
995 | 25.7k | *self = drain_to_heap_and_push(arr, x); |
996 | 29.3M | } |
997 | | } |
998 | | } |
999 | 373M | } <tinyvec::tinyvec::TinyVec<[(u8, char); 4]>>::push Line | Count | Source | 971 | 147M | pub fn push(&mut self, val: A::Item) { | 972 | | // The code path for moving the inline contents to the heap produces a lot | 973 | | // of instructions, but we have a strong guarantee that this is a cold | 974 | | // path. LLVM doesn't know this, inlines it, and this tends to cause a | 975 | | // cascade of other bad inlining decisions because the body of push looks | 976 | | // huge even though nearly every call executes the same few instructions. | 977 | | // | 978 | | // Moving the logic out of line with #[cold] causes the hot code to be | 979 | | // inlined together, and we take the extra cost of a function call only | 980 | | // in rare cases. | 981 | | #[cold] | 982 | | fn drain_to_heap_and_push<A: Array>( | 983 | | arr: &mut ArrayVec<A>, val: A::Item, | 984 | | ) -> TinyVec<A> { | 985 | | /* Make the Vec twice the size to amortize the cost of draining */ | 986 | | let mut v = arr.drain_to_vec_and_reserve(arr.len()); | 987 | | v.push(val); | 988 | | TinyVec::Heap(v) | 989 | | } | 990 | | | 991 | 147M | match self { | 992 | 127M | TinyVec::Heap(v) => v.push(val), | 993 | 19.7M | TinyVec::Inline(arr) => { | 994 | 19.7M | if let Some(x) = arr.try_push(val) { | 995 | 15.3k | *self = drain_to_heap_and_push(arr, x); | 996 | 19.6M | } | 997 | | } | 998 | | } | 999 | 147M | } |
<tinyvec::tinyvec::TinyVec<[char; 4]>>::push Line | Count | Source | 971 | 48.6M | pub fn push(&mut self, val: A::Item) { | 972 | | // The code path for moving the inline contents to the heap produces a lot | 973 | | // of instructions, but we have a strong guarantee that this is a cold | 974 | | // path. LLVM doesn't know this, inlines it, and this tends to cause a | 975 | | // cascade of other bad inlining decisions because the body of push looks | 976 | | // huge even though nearly every call executes the same few instructions. | 977 | | // | 978 | | // Moving the logic out of line with #[cold] causes the hot code to be | 979 | | // inlined together, and we take the extra cost of a function call only | 980 | | // in rare cases. | 981 | | #[cold] | 982 | | fn drain_to_heap_and_push<A: Array>( | 983 | | arr: &mut ArrayVec<A>, val: A::Item, | 984 | | ) -> TinyVec<A> { | 985 | | /* Make the Vec twice the size to amortize the cost of draining */ | 986 | | let mut v = arr.drain_to_vec_and_reserve(arr.len()); | 987 | | v.push(val); | 988 | | TinyVec::Heap(v) | 989 | | } | 990 | | | 991 | 48.6M | match self { | 992 | 48.6M | TinyVec::Heap(v) => v.push(val), | 993 | 65.1k | TinyVec::Inline(arr) => { | 994 | 65.1k | if let Some(x) = arr.try_push(val) { | 995 | 6.73k | *self = drain_to_heap_and_push(arr, x); | 996 | 58.3k | } | 997 | | } | 998 | | } | 999 | 48.6M | } |
<tinyvec::tinyvec::TinyVec<[(u8, char); 4]>>::push Line | Count | Source | 971 | 12.3M | pub fn push(&mut self, val: A::Item) { | 972 | | // The code path for moving the inline contents to the heap produces a lot | 973 | | // of instructions, but we have a strong guarantee that this is a cold | 974 | | // path. LLVM doesn't know this, inlines it, and this tends to cause a | 975 | | // cascade of other bad inlining decisions because the body of push looks | 976 | | // huge even though nearly every call executes the same few instructions. | 977 | | // | 978 | | // Moving the logic out of line with #[cold] causes the hot code to be | 979 | | // inlined together, and we take the extra cost of a function call only | 980 | | // in rare cases. | 981 | | #[cold] | 982 | | fn drain_to_heap_and_push<A: Array>( | 983 | | arr: &mut ArrayVec<A>, val: A::Item, | 984 | | ) -> TinyVec<A> { | 985 | | /* Make the Vec twice the size to amortize the cost of draining */ | 986 | | let mut v = arr.drain_to_vec_and_reserve(arr.len()); | 987 | | v.push(val); | 988 | | TinyVec::Heap(v) | 989 | | } | 990 | | | 991 | 12.3M | match self { | 992 | 5.82M | TinyVec::Heap(v) => v.push(val), | 993 | 6.50M | TinyVec::Inline(arr) => { | 994 | 6.50M | if let Some(x) = arr.try_push(val) { | 995 | 856 | *self = drain_to_heap_and_push(arr, x); | 996 | 6.50M | } | 997 | | } | 998 | | } | 999 | 12.3M | } |
<tinyvec::tinyvec::TinyVec<[char; 4]>>::push Line | Count | Source | 971 | 4.40M | pub fn push(&mut self, val: A::Item) { | 972 | | // The code path for moving the inline contents to the heap produces a lot | 973 | | // of instructions, but we have a strong guarantee that this is a cold | 974 | | // path. LLVM doesn't know this, inlines it, and this tends to cause a | 975 | | // cascade of other bad inlining decisions because the body of push looks | 976 | | // huge even though nearly every call executes the same few instructions. | 977 | | // | 978 | | // Moving the logic out of line with #[cold] causes the hot code to be | 979 | | // inlined together, and we take the extra cost of a function call only | 980 | | // in rare cases. | 981 | | #[cold] | 982 | | fn drain_to_heap_and_push<A: Array>( | 983 | | arr: &mut ArrayVec<A>, val: A::Item, | 984 | | ) -> TinyVec<A> { | 985 | | /* Make the Vec twice the size to amortize the cost of draining */ | 986 | | let mut v = arr.drain_to_vec_and_reserve(arr.len()); | 987 | | v.push(val); | 988 | | TinyVec::Heap(v) | 989 | | } | 990 | | | 991 | 4.40M | match self { | 992 | 4.40M | TinyVec::Heap(v) => v.push(val), | 993 | 4.24k | TinyVec::Inline(arr) => { | 994 | 4.24k | if let Some(x) = arr.try_push(val) { | 995 | 495 | *self = drain_to_heap_and_push(arr, x); | 996 | 3.74k | } | 997 | | } | 998 | | } | 999 | 4.40M | } |
<tinyvec::tinyvec::TinyVec<[(u8, char); 4]>>::push Line | Count | Source | 971 | 105M | pub fn push(&mut self, val: A::Item) { | 972 | | // The code path for moving the inline contents to the heap produces a lot | 973 | | // of instructions, but we have a strong guarantee that this is a cold | 974 | | // path. LLVM doesn't know this, inlines it, and this tends to cause a | 975 | | // cascade of other bad inlining decisions because the body of push looks | 976 | | // huge even though nearly every call executes the same few instructions. | 977 | | // | 978 | | // Moving the logic out of line with #[cold] causes the hot code to be | 979 | | // inlined together, and we take the extra cost of a function call only | 980 | | // in rare cases. | 981 | | #[cold] | 982 | | fn drain_to_heap_and_push<A: Array>( | 983 | | arr: &mut ArrayVec<A>, val: A::Item, | 984 | | ) -> TinyVec<A> { | 985 | | /* Make the Vec twice the size to amortize the cost of draining */ | 986 | | let mut v = arr.drain_to_vec_and_reserve(arr.len()); | 987 | | v.push(val); | 988 | | TinyVec::Heap(v) | 989 | | } | 990 | | | 991 | 105M | match self { | 992 | 102M | TinyVec::Heap(v) => v.push(val), | 993 | 3.10M | TinyVec::Inline(arr) => { | 994 | 3.10M | if let Some(x) = arr.try_push(val) { | 995 | 1.63k | *self = drain_to_heap_and_push(arr, x); | 996 | 3.10M | } | 997 | | } | 998 | | } | 999 | 105M | } |
<tinyvec::tinyvec::TinyVec<[char; 4]>>::push Line | Count | Source | 971 | 54.6M | pub fn push(&mut self, val: A::Item) { | 972 | | // The code path for moving the inline contents to the heap produces a lot | 973 | | // of instructions, but we have a strong guarantee that this is a cold | 974 | | // path. LLVM doesn't know this, inlines it, and this tends to cause a | 975 | | // cascade of other bad inlining decisions because the body of push looks | 976 | | // huge even though nearly every call executes the same few instructions. | 977 | | // | 978 | | // Moving the logic out of line with #[cold] causes the hot code to be | 979 | | // inlined together, and we take the extra cost of a function call only | 980 | | // in rare cases. | 981 | | #[cold] | 982 | | fn drain_to_heap_and_push<A: Array>( | 983 | | arr: &mut ArrayVec<A>, val: A::Item, | 984 | | ) -> TinyVec<A> { | 985 | | /* Make the Vec twice the size to amortize the cost of draining */ | 986 | | let mut v = arr.drain_to_vec_and_reserve(arr.len()); | 987 | | v.push(val); | 988 | | TinyVec::Heap(v) | 989 | | } | 990 | | | 991 | 54.6M | match self { | 992 | 54.6M | TinyVec::Heap(v) => v.push(val), | 993 | 6.81k | TinyVec::Inline(arr) => { | 994 | 6.81k | if let Some(x) = arr.try_push(val) { | 995 | 766 | *self = drain_to_heap_and_push(arr, x); | 996 | 6.04k | } | 997 | | } | 998 | | } | 999 | 54.6M | } |
|
1000 | | |
1001 | | /// Resize the vec to the new length. |
1002 | | /// |
1003 | | /// If it needs to be longer, it's filled with clones of the provided value. |
1004 | | /// If it needs to be shorter, it's truncated. |
1005 | | /// |
1006 | | /// ## Example |
1007 | | /// |
1008 | | /// ```rust |
1009 | | /// use tinyvec::*; |
1010 | | /// |
1011 | | /// let mut tv = tiny_vec!([&str; 10] => "hello"); |
1012 | | /// tv.resize(3, "world"); |
1013 | | /// assert_eq!(tv.as_slice(), &["hello", "world", "world"][..]); |
1014 | | /// |
1015 | | /// let mut tv = tiny_vec!([i32; 10] => 1, 2, 3, 4); |
1016 | | /// tv.resize(2, 0); |
1017 | | /// assert_eq!(tv.as_slice(), &[1, 2][..]); |
1018 | | /// ``` |
1019 | | #[inline] |
1020 | | pub fn resize(&mut self, new_len: usize, new_val: A::Item) |
1021 | | where |
1022 | | A::Item: Clone, |
1023 | | { |
1024 | | self.resize_with(new_len, || new_val.clone()); |
1025 | | } |
1026 | | |
1027 | | /// Resize the vec to the new length. |
1028 | | /// |
1029 | | /// If it needs to be longer, it's filled with repeated calls to the provided |
1030 | | /// function. If it needs to be shorter, it's truncated. |
1031 | | /// |
1032 | | /// ## Example |
1033 | | /// |
1034 | | /// ```rust |
1035 | | /// use tinyvec::*; |
1036 | | /// |
1037 | | /// let mut tv = tiny_vec!([i32; 3] => 1, 2, 3); |
1038 | | /// tv.resize_with(5, Default::default); |
1039 | | /// assert_eq!(tv.as_slice(), &[1, 2, 3, 0, 0][..]); |
1040 | | /// |
1041 | | /// let mut tv = tiny_vec!([i32; 2]); |
1042 | | /// let mut p = 1; |
1043 | | /// tv.resize_with(4, || { |
1044 | | /// p *= 2; |
1045 | | /// p |
1046 | | /// }); |
1047 | | /// assert_eq!(tv.as_slice(), &[2, 4, 8, 16][..]); |
1048 | | /// ``` |
1049 | | #[inline] |
1050 | | pub fn resize_with<F: FnMut() -> A::Item>(&mut self, new_len: usize, f: F) { |
1051 | | match new_len.checked_sub(self.len()) { |
1052 | | None => return self.truncate(new_len), |
1053 | | Some(n) => self.reserve(n), |
1054 | | } |
1055 | | |
1056 | | match self { |
1057 | | TinyVec::Inline(a) => a.resize_with(new_len, f), |
1058 | | TinyVec::Heap(v) => v.resize_with(new_len, f), |
1059 | | } |
1060 | | } |
1061 | | |
1062 | | /// Splits the collection at the point given. |
1063 | | /// |
1064 | | /// * `[0, at)` stays in this vec |
1065 | | /// * `[at, len)` ends up in the new vec. |
1066 | | /// |
1067 | | /// ## Panics |
1068 | | /// * if at > len |
1069 | | /// |
1070 | | /// ## Example |
1071 | | /// |
1072 | | /// ```rust |
1073 | | /// use tinyvec::*; |
1074 | | /// let mut tv = tiny_vec!([i32; 4] => 1, 2, 3); |
1075 | | /// let tv2 = tv.split_off(1); |
1076 | | /// assert_eq!(tv.as_slice(), &[1][..]); |
1077 | | /// assert_eq!(tv2.as_slice(), &[2, 3][..]); |
1078 | | /// ``` |
1079 | | #[inline] |
1080 | | pub fn split_off(&mut self, at: usize) -> Self { |
1081 | | match self { |
1082 | | TinyVec::Inline(a) => TinyVec::Inline(a.split_off(at)), |
1083 | | TinyVec::Heap(v) => TinyVec::Heap(v.split_off(at)), |
1084 | | } |
1085 | | } |
1086 | | |
1087 | | /// Creates a splicing iterator that removes the specified range in the |
1088 | | /// vector, yields the removed items, and replaces them with elements from |
1089 | | /// the provided iterator. |
1090 | | /// |
1091 | | /// `splice` fuses the provided iterator, so elements after the first `None` |
1092 | | /// are ignored. |
1093 | | /// |
1094 | | /// ## Panics |
1095 | | /// * If the start is greater than the end. |
1096 | | /// * If the end is past the edge of the vec. |
1097 | | /// * If the provided iterator panics. |
1098 | | /// |
1099 | | /// ## Example |
1100 | | /// ```rust |
1101 | | /// use tinyvec::*; |
1102 | | /// let mut tv = tiny_vec!([i32; 4] => 1, 2, 3); |
1103 | | /// let tv2: TinyVec<[i32; 4]> = tv.splice(1.., 4..=6).collect(); |
1104 | | /// assert_eq!(tv.as_slice(), &[1, 4, 5, 6][..]); |
1105 | | /// assert_eq!(tv2.as_slice(), &[2, 3][..]); |
1106 | | /// |
1107 | | /// tv.splice(.., None); |
1108 | | /// assert_eq!(tv.as_slice(), &[]); |
1109 | | /// ``` |
1110 | | #[inline] |
1111 | | pub fn splice<R, I>( |
1112 | | &mut self, range: R, replacement: I, |
1113 | | ) -> TinyVecSplice<'_, A, core::iter::Fuse<I::IntoIter>> |
1114 | | where |
1115 | | R: RangeBounds<usize>, |
1116 | | I: IntoIterator<Item = A::Item>, |
1117 | | { |
1118 | | use core::ops::Bound; |
1119 | | let start = match range.start_bound() { |
1120 | | Bound::Included(x) => *x, |
1121 | | Bound::Excluded(x) => x.saturating_add(1), |
1122 | | Bound::Unbounded => 0, |
1123 | | }; |
1124 | | let end = match range.end_bound() { |
1125 | | Bound::Included(x) => x.saturating_add(1), |
1126 | | Bound::Excluded(x) => *x, |
1127 | | Bound::Unbounded => self.len(), |
1128 | | }; |
1129 | | assert!( |
1130 | | start <= end, |
1131 | | "TinyVec::splice> Illegal range, {} to {}", |
1132 | | start, |
1133 | | end |
1134 | | ); |
1135 | | assert!( |
1136 | | end <= self.len(), |
1137 | | "TinyVec::splice> Range ends at {} but length is only {}!", |
1138 | | end, |
1139 | | self.len() |
1140 | | ); |
1141 | | |
1142 | | TinyVecSplice { |
1143 | | removal_start: start, |
1144 | | removal_end: end, |
1145 | | parent: self, |
1146 | | replacement: replacement.into_iter().fuse(), |
1147 | | } |
1148 | | } |
1149 | | |
1150 | | /// Wraps an array, using the given length as the starting length. |
1151 | | /// |
1152 | | /// If you want to use the whole length of the array, you can just use the |
1153 | | /// `From` impl. |
1154 | | /// |
1155 | | /// ## Failure |
1156 | | /// |
1157 | | /// If the given length is greater than the capacity of the array this will |
1158 | | /// error, and you'll get the array back in the `Err`. |
1159 | | #[inline] |
1160 | | pub fn try_from_array_len(data: A, len: usize) -> Result<Self, A> { |
1161 | | let arr = ArrayVec::try_from_array_len(data, len)?; |
1162 | | Ok(TinyVec::Inline(arr)) |
1163 | | } |
1164 | | } |
1165 | | |
1166 | | /// Draining iterator for `TinyVecDrain` |
1167 | | /// |
1168 | | /// See [`TinyVecDrain::drain`](TinyVecDrain::<A>::drain) |
1169 | | #[cfg_attr(docsrs, doc(cfg(feature = "alloc")))] |
1170 | | pub enum TinyVecDrain<'p, A: Array> { |
1171 | | #[allow(missing_docs)] |
1172 | | Inline(ArrayVecDrain<'p, A::Item>), |
1173 | | #[allow(missing_docs)] |
1174 | | Heap(vec::Drain<'p, A::Item>), |
1175 | | } |
1176 | | |
1177 | | impl<'p, A: Array> Iterator for TinyVecDrain<'p, A> { |
1178 | | type Item = A::Item; |
1179 | | |
1180 | | impl_mirrored! { |
1181 | | type Mirror = TinyVecDrain; |
1182 | | |
1183 | | #[inline] |
1184 | | fn next(self: &mut Self) -> Option<Self::Item>; |
1185 | | #[inline] |
1186 | | fn nth(self: &mut Self, n: usize) -> Option<Self::Item>; |
1187 | | #[inline] |
1188 | | fn size_hint(self: &Self) -> (usize, Option<usize>); |
1189 | | #[inline] |
1190 | | fn last(self: Self) -> Option<Self::Item>; |
1191 | | #[inline] |
1192 | | fn count(self: Self) -> usize; |
1193 | | } |
1194 | | |
1195 | | #[inline] |
1196 | | fn for_each<F: FnMut(Self::Item)>(self, f: F) { |
1197 | | match self { |
1198 | | TinyVecDrain::Inline(i) => i.for_each(f), |
1199 | | TinyVecDrain::Heap(h) => h.for_each(f), |
1200 | | } |
1201 | | } |
1202 | | } |
1203 | | |
1204 | | impl<'p, A: Array> DoubleEndedIterator for TinyVecDrain<'p, A> { |
1205 | | impl_mirrored! { |
1206 | | type Mirror = TinyVecDrain; |
1207 | | |
1208 | | #[inline] |
1209 | | fn next_back(self: &mut Self) -> Option<Self::Item>; |
1210 | | |
1211 | | #[inline] |
1212 | | fn nth_back(self: &mut Self, n: usize) -> Option<Self::Item>; |
1213 | | } |
1214 | | } |
1215 | | |
1216 | | /// Splicing iterator for `TinyVec` |
1217 | | /// See [`TinyVec::splice`](TinyVec::<A>::splice) |
1218 | | #[cfg_attr(docsrs, doc(cfg(feature = "alloc")))] |
1219 | | pub struct TinyVecSplice<'p, A: Array, I: Iterator<Item = A::Item>> { |
1220 | | parent: &'p mut TinyVec<A>, |
1221 | | removal_start: usize, |
1222 | | removal_end: usize, |
1223 | | replacement: I, |
1224 | | } |
1225 | | |
1226 | | impl<'p, A, I> Iterator for TinyVecSplice<'p, A, I> |
1227 | | where |
1228 | | A: Array, |
1229 | | I: Iterator<Item = A::Item>, |
1230 | | { |
1231 | | type Item = A::Item; |
1232 | | |
1233 | | #[inline] |
1234 | | fn next(&mut self) -> Option<A::Item> { |
1235 | | if self.removal_start < self.removal_end { |
1236 | | match self.replacement.next() { |
1237 | | Some(replacement) => { |
1238 | | let removed = core::mem::replace( |
1239 | | &mut self.parent[self.removal_start], |
1240 | | replacement, |
1241 | | ); |
1242 | | self.removal_start += 1; |
1243 | | Some(removed) |
1244 | | } |
1245 | | None => { |
1246 | | let removed = self.parent.remove(self.removal_start); |
1247 | | self.removal_end -= 1; |
1248 | | Some(removed) |
1249 | | } |
1250 | | } |
1251 | | } else { |
1252 | | None |
1253 | | } |
1254 | | } |
1255 | | |
1256 | | #[inline] |
1257 | | fn size_hint(&self) -> (usize, Option<usize>) { |
1258 | | let len = self.len(); |
1259 | | (len, Some(len)) |
1260 | | } |
1261 | | } |
1262 | | |
1263 | | impl<'p, A, I> ExactSizeIterator for TinyVecSplice<'p, A, I> |
1264 | | where |
1265 | | A: Array, |
1266 | | I: Iterator<Item = A::Item>, |
1267 | | { |
1268 | | #[inline] |
1269 | | fn len(&self) -> usize { |
1270 | | self.removal_end - self.removal_start |
1271 | | } |
1272 | | } |
1273 | | |
1274 | | impl<'p, A, I> FusedIterator for TinyVecSplice<'p, A, I> |
1275 | | where |
1276 | | A: Array, |
1277 | | I: Iterator<Item = A::Item>, |
1278 | | { |
1279 | | } |
1280 | | |
1281 | | impl<'p, A, I> DoubleEndedIterator for TinyVecSplice<'p, A, I> |
1282 | | where |
1283 | | A: Array, |
1284 | | I: Iterator<Item = A::Item> + DoubleEndedIterator, |
1285 | | { |
1286 | | #[inline] |
1287 | | fn next_back(&mut self) -> Option<A::Item> { |
1288 | | if self.removal_start < self.removal_end { |
1289 | | match self.replacement.next_back() { |
1290 | | Some(replacement) => { |
1291 | | let removed = core::mem::replace( |
1292 | | &mut self.parent[self.removal_end - 1], |
1293 | | replacement, |
1294 | | ); |
1295 | | self.removal_end -= 1; |
1296 | | Some(removed) |
1297 | | } |
1298 | | None => { |
1299 | | let removed = self.parent.remove(self.removal_end - 1); |
1300 | | self.removal_end -= 1; |
1301 | | Some(removed) |
1302 | | } |
1303 | | } |
1304 | | } else { |
1305 | | None |
1306 | | } |
1307 | | } |
1308 | | } |
1309 | | |
1310 | | impl<'p, A: Array, I: Iterator<Item = A::Item>> Drop |
1311 | | for TinyVecSplice<'p, A, I> |
1312 | | { |
1313 | | #[inline] |
1314 | | fn drop(&mut self) { |
1315 | | for _ in self.by_ref() {} |
1316 | | |
1317 | | let (lower_bound, _) = self.replacement.size_hint(); |
1318 | | self.parent.reserve(lower_bound); |
1319 | | |
1320 | | for replacement in self.replacement.by_ref() { |
1321 | | self.parent.insert(self.removal_end, replacement); |
1322 | | self.removal_end += 1; |
1323 | | } |
1324 | | } |
1325 | | } |
1326 | | |
1327 | | impl<A: Array> AsMut<[A::Item]> for TinyVec<A> { |
1328 | | #[inline(always)] |
1329 | | #[must_use] |
1330 | | fn as_mut(&mut self) -> &mut [A::Item] { |
1331 | | &mut *self |
1332 | | } |
1333 | | } |
1334 | | |
1335 | | impl<A: Array> AsRef<[A::Item]> for TinyVec<A> { |
1336 | | #[inline(always)] |
1337 | | #[must_use] |
1338 | | fn as_ref(&self) -> &[A::Item] { |
1339 | | &*self |
1340 | | } |
1341 | | } |
1342 | | |
1343 | | impl<A: Array> Borrow<[A::Item]> for TinyVec<A> { |
1344 | | #[inline(always)] |
1345 | | #[must_use] |
1346 | | fn borrow(&self) -> &[A::Item] { |
1347 | | &*self |
1348 | | } |
1349 | | } |
1350 | | |
1351 | | impl<A: Array> BorrowMut<[A::Item]> for TinyVec<A> { |
1352 | | #[inline(always)] |
1353 | | #[must_use] |
1354 | | fn borrow_mut(&mut self) -> &mut [A::Item] { |
1355 | | &mut *self |
1356 | | } |
1357 | | } |
1358 | | |
1359 | | impl<A: Array> Extend<A::Item> for TinyVec<A> { |
1360 | | #[inline] |
1361 | | fn extend<T: IntoIterator<Item = A::Item>>(&mut self, iter: T) { |
1362 | | let iter = iter.into_iter(); |
1363 | | let (lower_bound, _) = iter.size_hint(); |
1364 | | self.reserve(lower_bound); |
1365 | | |
1366 | | let a = match self { |
1367 | | TinyVec::Heap(h) => return h.extend(iter), |
1368 | | TinyVec::Inline(a) => a, |
1369 | | }; |
1370 | | |
1371 | | let mut iter = a.fill(iter); |
1372 | | let maybe = iter.next(); |
1373 | | |
1374 | | let surely = match maybe { |
1375 | | Some(x) => x, |
1376 | | None => return, |
1377 | | }; |
1378 | | |
1379 | | let mut v = a.drain_to_vec_and_reserve(a.len()); |
1380 | | v.push(surely); |
1381 | | v.extend(iter); |
1382 | | *self = TinyVec::Heap(v); |
1383 | | } |
1384 | | } |
1385 | | |
1386 | | impl<A: Array> From<ArrayVec<A>> for TinyVec<A> { |
1387 | | #[inline(always)] |
1388 | | #[must_use] |
1389 | | fn from(arr: ArrayVec<A>) -> Self { |
1390 | | TinyVec::Inline(arr) |
1391 | | } |
1392 | | } |
1393 | | |
1394 | | impl<A: Array> From<A> for TinyVec<A> { |
1395 | | #[inline] |
1396 | | fn from(array: A) -> Self { |
1397 | | TinyVec::Inline(ArrayVec::from(array)) |
1398 | | } |
1399 | | } |
1400 | | |
1401 | | impl<T, A> From<&'_ [T]> for TinyVec<A> |
1402 | | where |
1403 | | T: Clone + Default, |
1404 | | A: Array<Item = T>, |
1405 | | { |
1406 | | #[inline] |
1407 | | #[must_use] |
1408 | | fn from(slice: &[T]) -> Self { |
1409 | | if let Ok(arr) = ArrayVec::try_from(slice) { |
1410 | | TinyVec::Inline(arr) |
1411 | | } else { |
1412 | | TinyVec::Heap(slice.into()) |
1413 | | } |
1414 | | } |
1415 | | } |
1416 | | |
1417 | | impl<T, A> From<&'_ mut [T]> for TinyVec<A> |
1418 | | where |
1419 | | T: Clone + Default, |
1420 | | A: Array<Item = T>, |
1421 | | { |
1422 | | #[inline] |
1423 | | #[must_use] |
1424 | | fn from(slice: &mut [T]) -> Self { |
1425 | | Self::from(&*slice) |
1426 | | } |
1427 | | } |
1428 | | |
1429 | | impl<A: Array> FromIterator<A::Item> for TinyVec<A> { |
1430 | | #[inline] |
1431 | | #[must_use] |
1432 | | fn from_iter<T: IntoIterator<Item = A::Item>>(iter: T) -> Self { |
1433 | | let mut av = Self::default(); |
1434 | | av.extend(iter); |
1435 | | av |
1436 | | } |
1437 | | } |
1438 | | |
1439 | | impl<A: Array> Into<Vec<A::Item>> for TinyVec<A> { |
1440 | | /// Converts a `TinyVec` into a `Vec`. |
1441 | | /// |
1442 | | /// ## Examples |
1443 | | /// |
1444 | | /// ### Inline to Vec |
1445 | | /// |
1446 | | /// For `TinyVec::Inline(_)`, |
1447 | | /// `.into()` **does not** offer a performance advantage over `.to_vec()`. |
1448 | | /// |
1449 | | /// ``` |
1450 | | /// use core::mem::size_of_val as mem_size_of; |
1451 | | /// use tinyvec::TinyVec; |
1452 | | /// |
1453 | | /// let v = TinyVec::from([0u8; 128]); |
1454 | | /// assert_eq!(mem_size_of(&v), 136); |
1455 | | /// |
1456 | | /// let vec: Vec<_> = v.into(); |
1457 | | /// assert_eq!(mem_size_of(&vec), 24); |
1458 | | /// ``` |
1459 | | /// |
1460 | | /// ### Heap into Vec |
1461 | | /// |
1462 | | /// For `TinyVec::Heap(vec_data)`, |
1463 | | /// `.into()` will take `vec_data` without heap reallocation. |
1464 | | /// |
1465 | | /// ``` |
1466 | | /// use core::{ |
1467 | | /// any::type_name_of_val as type_of, mem::size_of_val as mem_size_of, |
1468 | | /// }; |
1469 | | /// use tinyvec::TinyVec; |
1470 | | /// |
1471 | | /// const fn from_heap<T: Default>(owned: Vec<T>) -> TinyVec<[T; 1]> { |
1472 | | /// TinyVec::Heap(owned) |
1473 | | /// } |
1474 | | /// |
1475 | | /// let v = from_heap(vec![0u8; 128]); |
1476 | | /// assert_eq!(v.len(), 128); |
1477 | | /// assert_eq!(mem_size_of(&v), 24); |
1478 | | /// assert!(type_of(&v).ends_with("TinyVec<[u8; 1]>")); |
1479 | | /// |
1480 | | /// let vec: Vec<_> = v.into(); |
1481 | | /// assert_eq!(mem_size_of(&vec), 24); |
1482 | | /// assert!(type_of(&vec).ends_with("Vec<u8>")); |
1483 | | /// ``` |
1484 | | #[inline] |
1485 | | #[must_use] |
1486 | | fn into(self) -> Vec<A::Item> { |
1487 | | match self { |
1488 | | Self::Heap(inner) => inner, |
1489 | | Self::Inline(mut inner) => inner.drain_to_vec(), |
1490 | | } |
1491 | | } |
1492 | | } |
1493 | | |
1494 | | /// Iterator for consuming an `TinyVec` and returning owned elements. |
1495 | | #[cfg_attr(docsrs, doc(cfg(feature = "alloc")))] |
1496 | | pub enum TinyVecIterator<A: Array> { |
1497 | | #[allow(missing_docs)] |
1498 | | Inline(ArrayVecIterator<A>), |
1499 | | #[allow(missing_docs)] |
1500 | | Heap(alloc::vec::IntoIter<A::Item>), |
1501 | | } |
1502 | | |
1503 | | impl<A: Array> TinyVecIterator<A> { |
1504 | | impl_mirrored! { |
1505 | | type Mirror = TinyVecIterator; |
1506 | | /// Returns the remaining items of this iterator as a slice. |
1507 | | #[inline] |
1508 | | #[must_use] |
1509 | | pub fn as_slice(self: &Self) -> &[A::Item]; |
1510 | | } |
1511 | | } |
1512 | | |
1513 | | impl<A: Array> FusedIterator for TinyVecIterator<A> {} |
1514 | | |
1515 | | impl<A: Array> Iterator for TinyVecIterator<A> { |
1516 | | type Item = A::Item; |
1517 | | |
1518 | | impl_mirrored! { |
1519 | | type Mirror = TinyVecIterator; |
1520 | | |
1521 | | #[inline] |
1522 | | fn next(self: &mut Self) -> Option<Self::Item>; |
1523 | | |
1524 | | #[inline(always)] |
1525 | | #[must_use] |
1526 | | fn size_hint(self: &Self) -> (usize, Option<usize>); |
1527 | | |
1528 | | #[inline(always)] |
1529 | | fn count(self: Self) -> usize; |
1530 | | |
1531 | | #[inline] |
1532 | | fn last(self: Self) -> Option<Self::Item>; |
1533 | | |
1534 | | #[inline] |
1535 | | fn nth(self: &mut Self, n: usize) -> Option<A::Item>; |
1536 | | } |
1537 | | } |
1538 | | |
1539 | | impl<A: Array> DoubleEndedIterator for TinyVecIterator<A> { |
1540 | | impl_mirrored! { |
1541 | | type Mirror = TinyVecIterator; |
1542 | | |
1543 | | #[inline] |
1544 | | fn next_back(self: &mut Self) -> Option<Self::Item>; |
1545 | | |
1546 | | #[inline] |
1547 | | fn nth_back(self: &mut Self, n: usize) -> Option<Self::Item>; |
1548 | | } |
1549 | | } |
1550 | | |
1551 | | impl<A: Array> ExactSizeIterator for TinyVecIterator<A> { |
1552 | | impl_mirrored! { |
1553 | | type Mirror = TinyVecIterator; |
1554 | | #[inline] |
1555 | | fn len(self: &Self) -> usize; |
1556 | | } |
1557 | | } |
1558 | | |
1559 | | impl<A: Array> Debug for TinyVecIterator<A> |
1560 | | where |
1561 | | A::Item: Debug, |
1562 | | { |
1563 | | #[allow(clippy::missing_inline_in_public_items)] |
1564 | | fn fmt(&self, f: &mut Formatter<'_>) -> core::fmt::Result { |
1565 | | f.debug_tuple("TinyVecIterator").field(&self.as_slice()).finish() |
1566 | | } |
1567 | | } |
1568 | | |
1569 | | impl<A: Array> IntoIterator for TinyVec<A> { |
1570 | | type Item = A::Item; |
1571 | | type IntoIter = TinyVecIterator<A>; |
1572 | | #[inline(always)] |
1573 | | #[must_use] |
1574 | | fn into_iter(self) -> Self::IntoIter { |
1575 | | match self { |
1576 | | TinyVec::Inline(a) => TinyVecIterator::Inline(a.into_iter()), |
1577 | | TinyVec::Heap(v) => TinyVecIterator::Heap(v.into_iter()), |
1578 | | } |
1579 | | } |
1580 | | } |
1581 | | |
1582 | | impl<'a, A: Array> IntoIterator for &'a mut TinyVec<A> { |
1583 | | type Item = &'a mut A::Item; |
1584 | | type IntoIter = core::slice::IterMut<'a, A::Item>; |
1585 | | #[inline(always)] |
1586 | | #[must_use] |
1587 | | fn into_iter(self) -> Self::IntoIter { |
1588 | | self.iter_mut() |
1589 | | } |
1590 | | } |
1591 | | |
1592 | | impl<'a, A: Array> IntoIterator for &'a TinyVec<A> { |
1593 | | type Item = &'a A::Item; |
1594 | | type IntoIter = core::slice::Iter<'a, A::Item>; |
1595 | | #[inline(always)] |
1596 | | #[must_use] |
1597 | | fn into_iter(self) -> Self::IntoIter { |
1598 | | self.iter() |
1599 | | } |
1600 | | } |
1601 | | |
1602 | | impl<A: Array> PartialEq for TinyVec<A> |
1603 | | where |
1604 | | A::Item: PartialEq, |
1605 | | { |
1606 | | #[inline] |
1607 | | #[must_use] |
1608 | | fn eq(&self, other: &Self) -> bool { |
1609 | | self.as_slice().eq(other.as_slice()) |
1610 | | } |
1611 | | } |
1612 | | impl<A: Array> Eq for TinyVec<A> where A::Item: Eq {} |
1613 | | |
1614 | | impl<A: Array> PartialOrd for TinyVec<A> |
1615 | | where |
1616 | | A::Item: PartialOrd, |
1617 | | { |
1618 | | #[inline] |
1619 | | #[must_use] |
1620 | | fn partial_cmp(&self, other: &Self) -> Option<core::cmp::Ordering> { |
1621 | | self.as_slice().partial_cmp(other.as_slice()) |
1622 | | } |
1623 | | } |
1624 | | impl<A: Array> Ord for TinyVec<A> |
1625 | | where |
1626 | | A::Item: Ord, |
1627 | | { |
1628 | | #[inline] |
1629 | | #[must_use] |
1630 | | fn cmp(&self, other: &Self) -> core::cmp::Ordering { |
1631 | | self.as_slice().cmp(other.as_slice()) |
1632 | | } |
1633 | | } |
1634 | | |
1635 | | impl<A: Array> PartialEq<&A> for TinyVec<A> |
1636 | | where |
1637 | | A::Item: PartialEq, |
1638 | | { |
1639 | | #[inline] |
1640 | | #[must_use] |
1641 | | fn eq(&self, other: &&A) -> bool { |
1642 | | self.as_slice().eq(other.as_slice()) |
1643 | | } |
1644 | | } |
1645 | | |
1646 | | impl<A: Array> PartialEq<&[A::Item]> for TinyVec<A> |
1647 | | where |
1648 | | A::Item: PartialEq, |
1649 | | { |
1650 | | #[inline] |
1651 | | #[must_use] |
1652 | | fn eq(&self, other: &&[A::Item]) -> bool { |
1653 | | self.as_slice().eq(*other) |
1654 | | } |
1655 | | } |
1656 | | |
1657 | | impl<A: Array> Hash for TinyVec<A> |
1658 | | where |
1659 | | A::Item: Hash, |
1660 | | { |
1661 | | #[inline] |
1662 | | fn hash<H: Hasher>(&self, state: &mut H) { |
1663 | | self.as_slice().hash(state) |
1664 | | } |
1665 | | } |
1666 | | |
1667 | | // // // // // // // // |
1668 | | // Formatting impls |
1669 | | // // // // // // // // |
1670 | | |
1671 | | impl<A: Array> Binary for TinyVec<A> |
1672 | | where |
1673 | | A::Item: Binary, |
1674 | | { |
1675 | | #[allow(clippy::missing_inline_in_public_items)] |
1676 | | fn fmt(&self, f: &mut Formatter) -> core::fmt::Result { |
1677 | | write!(f, "[")?; |
1678 | | if f.alternate() { |
1679 | | write!(f, "\n ")?; |
1680 | | } |
1681 | | for (i, elem) in self.iter().enumerate() { |
1682 | | if i > 0 { |
1683 | | write!(f, ",{}", if f.alternate() { "\n " } else { " " })?; |
1684 | | } |
1685 | | Binary::fmt(elem, f)?; |
1686 | | } |
1687 | | if f.alternate() { |
1688 | | write!(f, ",\n")?; |
1689 | | } |
1690 | | write!(f, "]") |
1691 | | } |
1692 | | } |
1693 | | |
1694 | | impl<A: Array> Debug for TinyVec<A> |
1695 | | where |
1696 | | A::Item: Debug, |
1697 | | { |
1698 | | #[allow(clippy::missing_inline_in_public_items)] |
1699 | | fn fmt(&self, f: &mut Formatter) -> core::fmt::Result { |
1700 | | write!(f, "[")?; |
1701 | | if f.alternate() && !self.is_empty() { |
1702 | | write!(f, "\n ")?; |
1703 | | } |
1704 | | for (i, elem) in self.iter().enumerate() { |
1705 | | if i > 0 { |
1706 | | write!(f, ",{}", if f.alternate() { "\n " } else { " " })?; |
1707 | | } |
1708 | | Debug::fmt(elem, f)?; |
1709 | | } |
1710 | | if f.alternate() && !self.is_empty() { |
1711 | | write!(f, ",\n")?; |
1712 | | } |
1713 | | write!(f, "]") |
1714 | | } |
1715 | | } |
1716 | | |
1717 | | impl<A: Array> Display for TinyVec<A> |
1718 | | where |
1719 | | A::Item: Display, |
1720 | | { |
1721 | | #[allow(clippy::missing_inline_in_public_items)] |
1722 | | fn fmt(&self, f: &mut Formatter) -> core::fmt::Result { |
1723 | | write!(f, "[")?; |
1724 | | if f.alternate() { |
1725 | | write!(f, "\n ")?; |
1726 | | } |
1727 | | for (i, elem) in self.iter().enumerate() { |
1728 | | if i > 0 { |
1729 | | write!(f, ",{}", if f.alternate() { "\n " } else { " " })?; |
1730 | | } |
1731 | | Display::fmt(elem, f)?; |
1732 | | } |
1733 | | if f.alternate() { |
1734 | | write!(f, ",\n")?; |
1735 | | } |
1736 | | write!(f, "]") |
1737 | | } |
1738 | | } |
1739 | | |
1740 | | impl<A: Array> LowerExp for TinyVec<A> |
1741 | | where |
1742 | | A::Item: LowerExp, |
1743 | | { |
1744 | | #[allow(clippy::missing_inline_in_public_items)] |
1745 | | fn fmt(&self, f: &mut Formatter) -> core::fmt::Result { |
1746 | | write!(f, "[")?; |
1747 | | if f.alternate() { |
1748 | | write!(f, "\n ")?; |
1749 | | } |
1750 | | for (i, elem) in self.iter().enumerate() { |
1751 | | if i > 0 { |
1752 | | write!(f, ",{}", if f.alternate() { "\n " } else { " " })?; |
1753 | | } |
1754 | | LowerExp::fmt(elem, f)?; |
1755 | | } |
1756 | | if f.alternate() { |
1757 | | write!(f, ",\n")?; |
1758 | | } |
1759 | | write!(f, "]") |
1760 | | } |
1761 | | } |
1762 | | |
1763 | | impl<A: Array> LowerHex for TinyVec<A> |
1764 | | where |
1765 | | A::Item: LowerHex, |
1766 | | { |
1767 | | #[allow(clippy::missing_inline_in_public_items)] |
1768 | | fn fmt(&self, f: &mut Formatter) -> core::fmt::Result { |
1769 | | write!(f, "[")?; |
1770 | | if f.alternate() { |
1771 | | write!(f, "\n ")?; |
1772 | | } |
1773 | | for (i, elem) in self.iter().enumerate() { |
1774 | | if i > 0 { |
1775 | | write!(f, ",{}", if f.alternate() { "\n " } else { " " })?; |
1776 | | } |
1777 | | LowerHex::fmt(elem, f)?; |
1778 | | } |
1779 | | if f.alternate() { |
1780 | | write!(f, ",\n")?; |
1781 | | } |
1782 | | write!(f, "]") |
1783 | | } |
1784 | | } |
1785 | | |
1786 | | impl<A: Array> Octal for TinyVec<A> |
1787 | | where |
1788 | | A::Item: Octal, |
1789 | | { |
1790 | | #[allow(clippy::missing_inline_in_public_items)] |
1791 | | fn fmt(&self, f: &mut Formatter) -> core::fmt::Result { |
1792 | | write!(f, "[")?; |
1793 | | if f.alternate() { |
1794 | | write!(f, "\n ")?; |
1795 | | } |
1796 | | for (i, elem) in self.iter().enumerate() { |
1797 | | if i > 0 { |
1798 | | write!(f, ",{}", if f.alternate() { "\n " } else { " " })?; |
1799 | | } |
1800 | | Octal::fmt(elem, f)?; |
1801 | | } |
1802 | | if f.alternate() { |
1803 | | write!(f, ",\n")?; |
1804 | | } |
1805 | | write!(f, "]") |
1806 | | } |
1807 | | } |
1808 | | |
1809 | | impl<A: Array> Pointer for TinyVec<A> |
1810 | | where |
1811 | | A::Item: Pointer, |
1812 | | { |
1813 | | #[allow(clippy::missing_inline_in_public_items)] |
1814 | | fn fmt(&self, f: &mut Formatter) -> core::fmt::Result { |
1815 | | write!(f, "[")?; |
1816 | | if f.alternate() { |
1817 | | write!(f, "\n ")?; |
1818 | | } |
1819 | | for (i, elem) in self.iter().enumerate() { |
1820 | | if i > 0 { |
1821 | | write!(f, ",{}", if f.alternate() { "\n " } else { " " })?; |
1822 | | } |
1823 | | Pointer::fmt(elem, f)?; |
1824 | | } |
1825 | | if f.alternate() { |
1826 | | write!(f, ",\n")?; |
1827 | | } |
1828 | | write!(f, "]") |
1829 | | } |
1830 | | } |
1831 | | |
1832 | | impl<A: Array> UpperExp for TinyVec<A> |
1833 | | where |
1834 | | A::Item: UpperExp, |
1835 | | { |
1836 | | #[allow(clippy::missing_inline_in_public_items)] |
1837 | | fn fmt(&self, f: &mut Formatter) -> core::fmt::Result { |
1838 | | write!(f, "[")?; |
1839 | | if f.alternate() { |
1840 | | write!(f, "\n ")?; |
1841 | | } |
1842 | | for (i, elem) in self.iter().enumerate() { |
1843 | | if i > 0 { |
1844 | | write!(f, ",{}", if f.alternate() { "\n " } else { " " })?; |
1845 | | } |
1846 | | UpperExp::fmt(elem, f)?; |
1847 | | } |
1848 | | if f.alternate() { |
1849 | | write!(f, ",\n")?; |
1850 | | } |
1851 | | write!(f, "]") |
1852 | | } |
1853 | | } |
1854 | | |
1855 | | impl<A: Array> UpperHex for TinyVec<A> |
1856 | | where |
1857 | | A::Item: UpperHex, |
1858 | | { |
1859 | | #[allow(clippy::missing_inline_in_public_items)] |
1860 | | fn fmt(&self, f: &mut Formatter) -> core::fmt::Result { |
1861 | | write!(f, "[")?; |
1862 | | if f.alternate() { |
1863 | | write!(f, "\n ")?; |
1864 | | } |
1865 | | for (i, elem) in self.iter().enumerate() { |
1866 | | if i > 0 { |
1867 | | write!(f, ",{}", if f.alternate() { "\n " } else { " " })?; |
1868 | | } |
1869 | | UpperHex::fmt(elem, f)?; |
1870 | | } |
1871 | | if f.alternate() { |
1872 | | write!(f, ",\n")?; |
1873 | | } |
1874 | | write!(f, "]") |
1875 | | } |
1876 | | } |
1877 | | |
1878 | | #[cfg(feature = "serde")] |
1879 | | #[cfg_attr(docs_rs, doc(cfg(feature = "alloc")))] |
1880 | | struct TinyVecVisitor<A: Array>(PhantomData<A>); |
1881 | | |
1882 | | #[cfg(feature = "serde")] |
1883 | | impl<'de, A: Array> Visitor<'de> for TinyVecVisitor<A> |
1884 | | where |
1885 | | A::Item: Deserialize<'de>, |
1886 | | { |
1887 | | type Value = TinyVec<A>; |
1888 | | |
1889 | | fn expecting( |
1890 | | &self, formatter: &mut core::fmt::Formatter, |
1891 | | ) -> core::fmt::Result { |
1892 | | formatter.write_str("a sequence") |
1893 | | } |
1894 | | |
1895 | | fn visit_seq<S>(self, mut seq: S) -> Result<Self::Value, S::Error> |
1896 | | where |
1897 | | S: SeqAccess<'de>, |
1898 | | { |
1899 | | let mut new_tinyvec = match seq.size_hint() { |
1900 | | Some(expected_size) => TinyVec::with_capacity(expected_size), |
1901 | | None => Default::default(), |
1902 | | }; |
1903 | | |
1904 | | while let Some(value) = seq.next_element()? { |
1905 | | new_tinyvec.push(value); |
1906 | | } |
1907 | | |
1908 | | Ok(new_tinyvec) |
1909 | | } |
1910 | | } |