/rust/registry/src/index.crates.io-6f17d22bba15001f/crossbeam-deque-0.8.5/src/deque.rs
Line | Count | Source (jump to first uncovered line) |
1 | | use std::cell::{Cell, UnsafeCell}; |
2 | | use std::cmp; |
3 | | use std::fmt; |
4 | | use std::marker::PhantomData; |
5 | | use std::mem::{self, MaybeUninit}; |
6 | | use std::ptr; |
7 | | use std::slice; |
8 | | use std::sync::atomic::{self, AtomicIsize, AtomicPtr, AtomicUsize, Ordering}; |
9 | | use std::sync::Arc; |
10 | | |
11 | | use crossbeam_epoch::{self as epoch, Atomic, Owned}; |
12 | | use crossbeam_utils::{Backoff, CachePadded}; |
13 | | |
14 | | // Minimum buffer capacity. |
15 | | const MIN_CAP: usize = 64; |
16 | | // Maximum number of tasks that can be stolen in `steal_batch()` and `steal_batch_and_pop()`. |
17 | | const MAX_BATCH: usize = 32; |
18 | | // If a buffer of at least this size is retired, thread-local garbage is flushed so that it gets |
19 | | // deallocated as soon as possible. |
20 | | const FLUSH_THRESHOLD_BYTES: usize = 1 << 10; |
21 | | |
22 | | /// A buffer that holds tasks in a worker queue. |
23 | | /// |
24 | | /// This is just a pointer to the buffer and its length - dropping an instance of this struct will |
25 | | /// *not* deallocate the buffer. |
26 | | struct Buffer<T> { |
27 | | /// Pointer to the allocated memory. |
28 | | ptr: *mut T, |
29 | | |
30 | | /// Capacity of the buffer. Always a power of two. |
31 | | cap: usize, |
32 | | } |
33 | | |
34 | | unsafe impl<T> Send for Buffer<T> {} |
35 | | |
36 | | impl<T> Buffer<T> { |
37 | | /// Allocates a new buffer with the specified capacity. |
38 | 192 | fn alloc(cap: usize) -> Buffer<T> { |
39 | 192 | debug_assert_eq!(cap, cap.next_power_of_two()); |
40 | | |
41 | 192 | let ptr = Box::into_raw( |
42 | 192 | (0..cap) |
43 | 12.2k | .map(|_| MaybeUninit::<T>::uninit()) Unexecuted instantiation: <crossbeam_deque::deque::Buffer<rayon_core::job::JobRef>>::alloc::{closure#0} Unexecuted instantiation: <crossbeam_deque::deque::Buffer<rayon_core::job::JobRef>>::alloc::{closure#0} <crossbeam_deque::deque::Buffer<rayon_core::job::JobRef>>::alloc::{closure#0} Line | Count | Source | 43 | 12.2k | .map(|_| MaybeUninit::<T>::uninit()) |
Unexecuted instantiation: <crossbeam_deque::deque::Buffer<rayon_core::job::JobRef>>::alloc::{closure#0} Unexecuted instantiation: <crossbeam_deque::deque::Buffer<rayon_core::job::JobRef>>::alloc::{closure#0} Unexecuted instantiation: <crossbeam_deque::deque::Buffer<rayon_core::job::JobRef>>::alloc::{closure#0} |
44 | 192 | .collect::<Box<[_]>>(), |
45 | 192 | ) |
46 | 192 | .cast::<T>(); |
47 | 192 | |
48 | 192 | Buffer { ptr, cap } |
49 | 192 | } Unexecuted instantiation: <crossbeam_deque::deque::Buffer<rayon_core::job::JobRef>>::alloc Unexecuted instantiation: <crossbeam_deque::deque::Buffer<rayon_core::job::JobRef>>::alloc <crossbeam_deque::deque::Buffer<rayon_core::job::JobRef>>::alloc Line | Count | Source | 38 | 192 | fn alloc(cap: usize) -> Buffer<T> { | 39 | 192 | debug_assert_eq!(cap, cap.next_power_of_two()); | 40 | | | 41 | 192 | let ptr = Box::into_raw( | 42 | 192 | (0..cap) | 43 | 192 | .map(|_| MaybeUninit::<T>::uninit()) | 44 | 192 | .collect::<Box<[_]>>(), | 45 | 192 | ) | 46 | 192 | .cast::<T>(); | 47 | 192 | | 48 | 192 | Buffer { ptr, cap } | 49 | 192 | } |
Unexecuted instantiation: <crossbeam_deque::deque::Buffer<rayon_core::job::JobRef>>::alloc Unexecuted instantiation: <crossbeam_deque::deque::Buffer<rayon_core::job::JobRef>>::alloc Unexecuted instantiation: <crossbeam_deque::deque::Buffer<rayon_core::job::JobRef>>::alloc |
50 | | |
51 | | /// Deallocates the buffer. |
52 | 0 | unsafe fn dealloc(self) { |
53 | 0 | drop(Box::from_raw(slice::from_raw_parts_mut( |
54 | 0 | self.ptr.cast::<MaybeUninit<T>>(), |
55 | 0 | self.cap, |
56 | 0 | ))); |
57 | 0 | } Unexecuted instantiation: <crossbeam_deque::deque::Buffer<rayon_core::job::JobRef>>::dealloc Unexecuted instantiation: <crossbeam_deque::deque::Buffer<rayon_core::job::JobRef>>::dealloc Unexecuted instantiation: <crossbeam_deque::deque::Buffer<rayon_core::job::JobRef>>::dealloc Unexecuted instantiation: <crossbeam_deque::deque::Buffer<rayon_core::job::JobRef>>::dealloc Unexecuted instantiation: <crossbeam_deque::deque::Buffer<rayon_core::job::JobRef>>::dealloc Unexecuted instantiation: <crossbeam_deque::deque::Buffer<rayon_core::job::JobRef>>::dealloc |
58 | | |
59 | | /// Returns a pointer to the task at the specified `index`. |
60 | 1.22M | unsafe fn at(&self, index: isize) -> *mut T { |
61 | 1.22M | // `self.cap` is always a power of two. |
62 | 1.22M | // We do all the loads at `MaybeUninit` because we might realize, after loading, that we |
63 | 1.22M | // don't actually have the right to access this memory. |
64 | 1.22M | self.ptr.offset(index & (self.cap - 1) as isize) |
65 | 1.22M | } <crossbeam_deque::deque::Buffer<rayon_core::job::JobRef>>::at Line | Count | Source | 60 | 157k | unsafe fn at(&self, index: isize) -> *mut T { | 61 | 157k | // `self.cap` is always a power of two. | 62 | 157k | // We do all the loads at `MaybeUninit` because we might realize, after loading, that we | 63 | 157k | // don't actually have the right to access this memory. | 64 | 157k | self.ptr.offset(index & (self.cap - 1) as isize) | 65 | 157k | } |
<crossbeam_deque::deque::Buffer<rayon_core::job::JobRef>>::at Line | Count | Source | 60 | 134k | unsafe fn at(&self, index: isize) -> *mut T { | 61 | 134k | // `self.cap` is always a power of two. | 62 | 134k | // We do all the loads at `MaybeUninit` because we might realize, after loading, that we | 63 | 134k | // don't actually have the right to access this memory. | 64 | 134k | self.ptr.offset(index & (self.cap - 1) as isize) | 65 | 134k | } |
<crossbeam_deque::deque::Buffer<rayon_core::job::JobRef>>::at Line | Count | Source | 60 | 577k | unsafe fn at(&self, index: isize) -> *mut T { | 61 | 577k | // `self.cap` is always a power of two. | 62 | 577k | // We do all the loads at `MaybeUninit` because we might realize, after loading, that we | 63 | 577k | // don't actually have the right to access this memory. | 64 | 577k | self.ptr.offset(index & (self.cap - 1) as isize) | 65 | 577k | } |
<crossbeam_deque::deque::Buffer<rayon_core::job::JobRef>>::at Line | Count | Source | 60 | 215k | unsafe fn at(&self, index: isize) -> *mut T { | 61 | 215k | // `self.cap` is always a power of two. | 62 | 215k | // We do all the loads at `MaybeUninit` because we might realize, after loading, that we | 63 | 215k | // don't actually have the right to access this memory. | 64 | 215k | self.ptr.offset(index & (self.cap - 1) as isize) | 65 | 215k | } |
Unexecuted instantiation: <crossbeam_deque::deque::Buffer<rayon_core::job::JobRef>>::at <crossbeam_deque::deque::Buffer<rayon_core::job::JobRef>>::at Line | Count | Source | 60 | 136k | unsafe fn at(&self, index: isize) -> *mut T { | 61 | 136k | // `self.cap` is always a power of two. | 62 | 136k | // We do all the loads at `MaybeUninit` because we might realize, after loading, that we | 63 | 136k | // don't actually have the right to access this memory. | 64 | 136k | self.ptr.offset(index & (self.cap - 1) as isize) | 65 | 136k | } |
|
66 | | |
67 | | /// Writes `task` into the specified `index`. |
68 | | /// |
69 | | /// This method might be concurrently called with another `read` at the same index, which is |
70 | | /// technically speaking a data race and therefore UB. We should use an atomic store here, but |
71 | | /// that would be more expensive and difficult to implement generically for all types `T`. |
72 | | /// Hence, as a hack, we use a volatile write instead. |
73 | 574k | unsafe fn write(&self, index: isize, task: MaybeUninit<T>) { |
74 | 574k | ptr::write_volatile(self.at(index).cast::<MaybeUninit<T>>(), task) |
75 | 574k | } <crossbeam_deque::deque::Buffer<rayon_core::job::JobRef>>::write Line | Count | Source | 73 | 141k | unsafe fn write(&self, index: isize, task: MaybeUninit<T>) { | 74 | 141k | ptr::write_volatile(self.at(index).cast::<MaybeUninit<T>>(), task) | 75 | 141k | } |
<crossbeam_deque::deque::Buffer<rayon_core::job::JobRef>>::write Line | Count | Source | 73 | 121k | unsafe fn write(&self, index: isize, task: MaybeUninit<T>) { | 74 | 121k | ptr::write_volatile(self.at(index).cast::<MaybeUninit<T>>(), task) | 75 | 121k | } |
Unexecuted instantiation: <crossbeam_deque::deque::Buffer<rayon_core::job::JobRef>>::write <crossbeam_deque::deque::Buffer<rayon_core::job::JobRef>>::write Line | Count | Source | 73 | 189k | unsafe fn write(&self, index: isize, task: MaybeUninit<T>) { | 74 | 189k | ptr::write_volatile(self.at(index).cast::<MaybeUninit<T>>(), task) | 75 | 189k | } |
Unexecuted instantiation: <crossbeam_deque::deque::Buffer<rayon_core::job::JobRef>>::write <crossbeam_deque::deque::Buffer<rayon_core::job::JobRef>>::write Line | Count | Source | 73 | 121k | unsafe fn write(&self, index: isize, task: MaybeUninit<T>) { | 74 | 121k | ptr::write_volatile(self.at(index).cast::<MaybeUninit<T>>(), task) | 75 | 121k | } |
|
76 | | |
77 | | /// Reads a task from the specified `index`. |
78 | | /// |
79 | | /// This method might be concurrently called with another `write` at the same index, which is |
80 | | /// technically speaking a data race and therefore UB. We should use an atomic load here, but |
81 | | /// that would be more expensive and difficult to implement generically for all types `T`. |
82 | | /// Hence, as a hack, we use a volatile load instead. |
83 | 646k | unsafe fn read(&self, index: isize) -> MaybeUninit<T> { |
84 | 646k | ptr::read_volatile(self.at(index).cast::<MaybeUninit<T>>()) |
85 | 646k | } <crossbeam_deque::deque::Buffer<rayon_core::job::JobRef>>::read Line | Count | Source | 83 | 16.3k | unsafe fn read(&self, index: isize) -> MaybeUninit<T> { | 84 | 16.3k | ptr::read_volatile(self.at(index).cast::<MaybeUninit<T>>()) | 85 | 16.3k | } |
<crossbeam_deque::deque::Buffer<rayon_core::job::JobRef>>::read Line | Count | Source | 83 | 12.6k | unsafe fn read(&self, index: isize) -> MaybeUninit<T> { | 84 | 12.6k | ptr::read_volatile(self.at(index).cast::<MaybeUninit<T>>()) | 85 | 12.6k | } |
<crossbeam_deque::deque::Buffer<rayon_core::job::JobRef>>::read Line | Count | Source | 83 | 577k | unsafe fn read(&self, index: isize) -> MaybeUninit<T> { | 84 | 577k | ptr::read_volatile(self.at(index).cast::<MaybeUninit<T>>()) | 85 | 577k | } |
<crossbeam_deque::deque::Buffer<rayon_core::job::JobRef>>::read Line | Count | Source | 83 | 25.4k | unsafe fn read(&self, index: isize) -> MaybeUninit<T> { | 84 | 25.4k | ptr::read_volatile(self.at(index).cast::<MaybeUninit<T>>()) | 85 | 25.4k | } |
Unexecuted instantiation: <crossbeam_deque::deque::Buffer<rayon_core::job::JobRef>>::read <crossbeam_deque::deque::Buffer<rayon_core::job::JobRef>>::read Line | Count | Source | 83 | 15.0k | unsafe fn read(&self, index: isize) -> MaybeUninit<T> { | 84 | 15.0k | ptr::read_volatile(self.at(index).cast::<MaybeUninit<T>>()) | 85 | 15.0k | } |
|
86 | | } |
87 | | |
88 | | impl<T> Clone for Buffer<T> { |
89 | | fn clone(&self) -> Buffer<T> { |
90 | | *self |
91 | | } |
92 | | } |
93 | | |
94 | | impl<T> Copy for Buffer<T> {} |
95 | | |
96 | | /// Internal queue data shared between the worker and stealers. |
97 | | /// |
98 | | /// The implementation is based on the following work: |
99 | | /// |
100 | | /// 1. [Chase and Lev. Dynamic circular work-stealing deque. SPAA 2005.][chase-lev] |
101 | | /// 2. [Le, Pop, Cohen, and Nardelli. Correct and efficient work-stealing for weak memory models. |
102 | | /// PPoPP 2013.][weak-mem] |
103 | | /// 3. [Norris and Demsky. CDSchecker: checking concurrent data structures written with C/C++ |
104 | | /// atomics. OOPSLA 2013.][checker] |
105 | | /// |
106 | | /// [chase-lev]: https://dl.acm.org/citation.cfm?id=1073974 |
107 | | /// [weak-mem]: https://dl.acm.org/citation.cfm?id=2442524 |
108 | | /// [checker]: https://dl.acm.org/citation.cfm?id=2509514 |
109 | | struct Inner<T> { |
110 | | /// The front index. |
111 | | front: AtomicIsize, |
112 | | |
113 | | /// The back index. |
114 | | back: AtomicIsize, |
115 | | |
116 | | /// The underlying buffer. |
117 | | buffer: CachePadded<Atomic<Buffer<T>>>, |
118 | | } |
119 | | |
120 | | impl<T> Drop for Inner<T> { |
121 | 0 | fn drop(&mut self) { |
122 | 0 | // Load the back index, front index, and buffer. |
123 | 0 | let b = *self.back.get_mut(); |
124 | 0 | let f = *self.front.get_mut(); |
125 | 0 |
|
126 | 0 | unsafe { |
127 | 0 | let buffer = self.buffer.load(Ordering::Relaxed, epoch::unprotected()); |
128 | 0 |
|
129 | 0 | // Go through the buffer from front to back and drop all tasks in the queue. |
130 | 0 | let mut i = f; |
131 | 0 | while i != b { |
132 | 0 | buffer.deref().at(i).drop_in_place(); |
133 | 0 | i = i.wrapping_add(1); |
134 | 0 | } |
135 | | |
136 | | // Free the memory allocated by the buffer. |
137 | 0 | buffer.into_owned().into_box().dealloc(); |
138 | 0 | } |
139 | 0 | } Unexecuted instantiation: <crossbeam_deque::deque::Inner<rayon_core::job::JobRef> as core::ops::drop::Drop>::drop Unexecuted instantiation: <crossbeam_deque::deque::Inner<rayon_core::job::JobRef> as core::ops::drop::Drop>::drop Unexecuted instantiation: <crossbeam_deque::deque::Inner<rayon_core::job::JobRef> as core::ops::drop::Drop>::drop Unexecuted instantiation: <crossbeam_deque::deque::Inner<rayon_core::job::JobRef> as core::ops::drop::Drop>::drop Unexecuted instantiation: <crossbeam_deque::deque::Inner<rayon_core::job::JobRef> as core::ops::drop::Drop>::drop Unexecuted instantiation: <crossbeam_deque::deque::Inner<rayon_core::job::JobRef> as core::ops::drop::Drop>::drop |
140 | | } |
141 | | |
142 | | /// Worker queue flavor: FIFO or LIFO. |
143 | | #[derive(Clone, Copy, Debug, Eq, PartialEq)] |
144 | | enum Flavor { |
145 | | /// The first-in first-out flavor. |
146 | | Fifo, |
147 | | |
148 | | /// The last-in first-out flavor. |
149 | | Lifo, |
150 | | } |
151 | | |
152 | | /// A worker queue. |
153 | | /// |
154 | | /// This is a FIFO or LIFO queue that is owned by a single thread, but other threads may steal |
155 | | /// tasks from it. Task schedulers typically create a single worker queue per thread. |
156 | | /// |
157 | | /// # Examples |
158 | | /// |
159 | | /// A FIFO worker: |
160 | | /// |
161 | | /// ``` |
162 | | /// use crossbeam_deque::{Steal, Worker}; |
163 | | /// |
164 | | /// let w = Worker::new_fifo(); |
165 | | /// let s = w.stealer(); |
166 | | /// |
167 | | /// w.push(1); |
168 | | /// w.push(2); |
169 | | /// w.push(3); |
170 | | /// |
171 | | /// assert_eq!(s.steal(), Steal::Success(1)); |
172 | | /// assert_eq!(w.pop(), Some(2)); |
173 | | /// assert_eq!(w.pop(), Some(3)); |
174 | | /// ``` |
175 | | /// |
176 | | /// A LIFO worker: |
177 | | /// |
178 | | /// ``` |
179 | | /// use crossbeam_deque::{Steal, Worker}; |
180 | | /// |
181 | | /// let w = Worker::new_lifo(); |
182 | | /// let s = w.stealer(); |
183 | | /// |
184 | | /// w.push(1); |
185 | | /// w.push(2); |
186 | | /// w.push(3); |
187 | | /// |
188 | | /// assert_eq!(s.steal(), Steal::Success(1)); |
189 | | /// assert_eq!(w.pop(), Some(3)); |
190 | | /// assert_eq!(w.pop(), Some(2)); |
191 | | /// ``` |
192 | | pub struct Worker<T> { |
193 | | /// A reference to the inner representation of the queue. |
194 | | inner: Arc<CachePadded<Inner<T>>>, |
195 | | |
196 | | /// A copy of `inner.buffer` for quick access. |
197 | | buffer: Cell<Buffer<T>>, |
198 | | |
199 | | /// The flavor of the queue. |
200 | | flavor: Flavor, |
201 | | |
202 | | /// Indicates that the worker cannot be shared among threads. |
203 | | _marker: PhantomData<*mut ()>, // !Send + !Sync |
204 | | } |
205 | | |
206 | | unsafe impl<T: Send> Send for Worker<T> {} |
207 | | |
208 | | impl<T> Worker<T> { |
209 | | /// Creates a FIFO worker queue. |
210 | | /// |
211 | | /// Tasks are pushed and popped from opposite ends. |
212 | | /// |
213 | | /// # Examples |
214 | | /// |
215 | | /// ``` |
216 | | /// use crossbeam_deque::Worker; |
217 | | /// |
218 | | /// let w = Worker::<i32>::new_fifo(); |
219 | | /// ``` |
220 | 96 | pub fn new_fifo() -> Worker<T> { |
221 | 96 | let buffer = Buffer::alloc(MIN_CAP); |
222 | 96 | |
223 | 96 | let inner = Arc::new(CachePadded::new(Inner { |
224 | 96 | front: AtomicIsize::new(0), |
225 | 96 | back: AtomicIsize::new(0), |
226 | 96 | buffer: CachePadded::new(Atomic::new(buffer)), |
227 | 96 | })); |
228 | 96 | |
229 | 96 | Worker { |
230 | 96 | inner, |
231 | 96 | buffer: Cell::new(buffer), |
232 | 96 | flavor: Flavor::Fifo, |
233 | 96 | _marker: PhantomData, |
234 | 96 | } |
235 | 96 | } |
236 | | |
237 | | /// Creates a LIFO worker queue. |
238 | | /// |
239 | | /// Tasks are pushed and popped from the same end. |
240 | | /// |
241 | | /// # Examples |
242 | | /// |
243 | | /// ``` |
244 | | /// use crossbeam_deque::Worker; |
245 | | /// |
246 | | /// let w = Worker::<i32>::new_lifo(); |
247 | | /// ``` |
248 | 96 | pub fn new_lifo() -> Worker<T> { |
249 | 96 | let buffer = Buffer::alloc(MIN_CAP); |
250 | 96 | |
251 | 96 | let inner = Arc::new(CachePadded::new(Inner { |
252 | 96 | front: AtomicIsize::new(0), |
253 | 96 | back: AtomicIsize::new(0), |
254 | 96 | buffer: CachePadded::new(Atomic::new(buffer)), |
255 | 96 | })); |
256 | 96 | |
257 | 96 | Worker { |
258 | 96 | inner, |
259 | 96 | buffer: Cell::new(buffer), |
260 | 96 | flavor: Flavor::Lifo, |
261 | 96 | _marker: PhantomData, |
262 | 96 | } |
263 | 96 | } |
264 | | |
265 | | /// Creates a stealer for this queue. |
266 | | /// |
267 | | /// The returned stealer can be shared among threads and cloned. |
268 | | /// |
269 | | /// # Examples |
270 | | /// |
271 | | /// ``` |
272 | | /// use crossbeam_deque::Worker; |
273 | | /// |
274 | | /// let w = Worker::<i32>::new_lifo(); |
275 | | /// let s = w.stealer(); |
276 | | /// ``` |
277 | 192 | pub fn stealer(&self) -> Stealer<T> { |
278 | 192 | Stealer { |
279 | 192 | inner: self.inner.clone(), |
280 | 192 | flavor: self.flavor, |
281 | 192 | } |
282 | 192 | } |
283 | | |
284 | | /// Resizes the internal buffer to the new capacity of `new_cap`. |
285 | | #[cold] |
286 | 0 | unsafe fn resize(&self, new_cap: usize) { |
287 | 0 | // Load the back index, front index, and buffer. |
288 | 0 | let b = self.inner.back.load(Ordering::Relaxed); |
289 | 0 | let f = self.inner.front.load(Ordering::Relaxed); |
290 | 0 | let buffer = self.buffer.get(); |
291 | 0 |
|
292 | 0 | // Allocate a new buffer and copy data from the old buffer to the new one. |
293 | 0 | let new = Buffer::alloc(new_cap); |
294 | 0 | let mut i = f; |
295 | 0 | while i != b { |
296 | 0 | ptr::copy_nonoverlapping(buffer.at(i), new.at(i), 1); |
297 | 0 | i = i.wrapping_add(1); |
298 | 0 | } |
299 | | |
300 | 0 | let guard = &epoch::pin(); |
301 | 0 |
|
302 | 0 | // Replace the old buffer with the new one. |
303 | 0 | self.buffer.replace(new); |
304 | 0 | let old = |
305 | 0 | self.inner |
306 | 0 | .buffer |
307 | 0 | .swap(Owned::new(new).into_shared(guard), Ordering::Release, guard); |
308 | 0 |
|
309 | 0 | // Destroy the old buffer later. |
310 | 0 | guard.defer_unchecked(move || old.into_owned().into_box().dealloc()); Unexecuted instantiation: <crossbeam_deque::deque::Worker<rayon_core::job::JobRef>>::resize::{closure#0} Unexecuted instantiation: <crossbeam_deque::deque::Worker<rayon_core::job::JobRef>>::resize::{closure#0} Unexecuted instantiation: <crossbeam_deque::deque::Worker<rayon_core::job::JobRef>>::resize::{closure#0} Unexecuted instantiation: <crossbeam_deque::deque::Worker<rayon_core::job::JobRef>>::resize::{closure#0} Unexecuted instantiation: <crossbeam_deque::deque::Worker<rayon_core::job::JobRef>>::resize::{closure#0} Unexecuted instantiation: <crossbeam_deque::deque::Worker<rayon_core::job::JobRef>>::resize::{closure#0} |
311 | 0 |
|
312 | 0 | // If the buffer is very large, then flush the thread-local garbage in order to deallocate |
313 | 0 | // it as soon as possible. |
314 | 0 | if mem::size_of::<T>() * new_cap >= FLUSH_THRESHOLD_BYTES { |
315 | 0 | guard.flush(); |
316 | 0 | } |
317 | 0 | } Unexecuted instantiation: <crossbeam_deque::deque::Worker<rayon_core::job::JobRef>>::resize Unexecuted instantiation: <crossbeam_deque::deque::Worker<rayon_core::job::JobRef>>::resize Unexecuted instantiation: <crossbeam_deque::deque::Worker<rayon_core::job::JobRef>>::resize Unexecuted instantiation: <crossbeam_deque::deque::Worker<rayon_core::job::JobRef>>::resize Unexecuted instantiation: <crossbeam_deque::deque::Worker<rayon_core::job::JobRef>>::resize Unexecuted instantiation: <crossbeam_deque::deque::Worker<rayon_core::job::JobRef>>::resize |
318 | | |
319 | | /// Reserves enough capacity so that `reserve_cap` tasks can be pushed without growing the |
320 | | /// buffer. |
321 | | fn reserve(&self, reserve_cap: usize) { |
322 | | if reserve_cap > 0 { |
323 | | // Compute the current length. |
324 | | let b = self.inner.back.load(Ordering::Relaxed); |
325 | | let f = self.inner.front.load(Ordering::SeqCst); |
326 | | let len = b.wrapping_sub(f) as usize; |
327 | | |
328 | | // The current capacity. |
329 | | let cap = self.buffer.get().cap; |
330 | | |
331 | | // Is there enough capacity to push `reserve_cap` tasks? |
332 | | if cap - len < reserve_cap { |
333 | | // Keep doubling the capacity as much as is needed. |
334 | | let mut new_cap = cap * 2; |
335 | | while new_cap - len < reserve_cap { |
336 | | new_cap *= 2; |
337 | | } |
338 | | |
339 | | // Resize the buffer. |
340 | | unsafe { |
341 | | self.resize(new_cap); |
342 | | } |
343 | | } |
344 | | } |
345 | | } |
346 | | |
347 | | /// Returns `true` if the queue is empty. |
348 | | /// |
349 | | /// ``` |
350 | | /// use crossbeam_deque::Worker; |
351 | | /// |
352 | | /// let w = Worker::new_lifo(); |
353 | | /// |
354 | | /// assert!(w.is_empty()); |
355 | | /// w.push(1); |
356 | | /// assert!(!w.is_empty()); |
357 | | /// ``` |
358 | 574k | pub fn is_empty(&self) -> bool { |
359 | 574k | let b = self.inner.back.load(Ordering::Relaxed); |
360 | 574k | let f = self.inner.front.load(Ordering::SeqCst); |
361 | 574k | b.wrapping_sub(f) <= 0 |
362 | 574k | } <crossbeam_deque::deque::Worker<rayon_core::job::JobRef>>::is_empty Line | Count | Source | 358 | 141k | pub fn is_empty(&self) -> bool { | 359 | 141k | let b = self.inner.back.load(Ordering::Relaxed); | 360 | 141k | let f = self.inner.front.load(Ordering::SeqCst); | 361 | 141k | b.wrapping_sub(f) <= 0 | 362 | 141k | } |
<crossbeam_deque::deque::Worker<rayon_core::job::JobRef>>::is_empty Line | Count | Source | 358 | 121k | pub fn is_empty(&self) -> bool { | 359 | 121k | let b = self.inner.back.load(Ordering::Relaxed); | 360 | 121k | let f = self.inner.front.load(Ordering::SeqCst); | 361 | 121k | b.wrapping_sub(f) <= 0 | 362 | 121k | } |
Unexecuted instantiation: <crossbeam_deque::deque::Worker<rayon_core::job::JobRef>>::is_empty <crossbeam_deque::deque::Worker<rayon_core::job::JobRef>>::is_empty Line | Count | Source | 358 | 189k | pub fn is_empty(&self) -> bool { | 359 | 189k | let b = self.inner.back.load(Ordering::Relaxed); | 360 | 189k | let f = self.inner.front.load(Ordering::SeqCst); | 361 | 189k | b.wrapping_sub(f) <= 0 | 362 | 189k | } |
Unexecuted instantiation: <crossbeam_deque::deque::Worker<rayon_core::job::JobRef>>::is_empty <crossbeam_deque::deque::Worker<rayon_core::job::JobRef>>::is_empty Line | Count | Source | 358 | 121k | pub fn is_empty(&self) -> bool { | 359 | 121k | let b = self.inner.back.load(Ordering::Relaxed); | 360 | 121k | let f = self.inner.front.load(Ordering::SeqCst); | 361 | 121k | b.wrapping_sub(f) <= 0 | 362 | 121k | } |
|
363 | | |
364 | | /// Returns the number of tasks in the deque. |
365 | | /// |
366 | | /// ``` |
367 | | /// use crossbeam_deque::Worker; |
368 | | /// |
369 | | /// let w = Worker::new_lifo(); |
370 | | /// |
371 | | /// assert_eq!(w.len(), 0); |
372 | | /// w.push(1); |
373 | | /// assert_eq!(w.len(), 1); |
374 | | /// w.push(1); |
375 | | /// assert_eq!(w.len(), 2); |
376 | | /// ``` |
377 | | pub fn len(&self) -> usize { |
378 | | let b = self.inner.back.load(Ordering::Relaxed); |
379 | | let f = self.inner.front.load(Ordering::SeqCst); |
380 | | b.wrapping_sub(f).max(0) as usize |
381 | | } |
382 | | |
383 | | /// Pushes a task into the queue. |
384 | | /// |
385 | | /// # Examples |
386 | | /// |
387 | | /// ``` |
388 | | /// use crossbeam_deque::Worker; |
389 | | /// |
390 | | /// let w = Worker::new_lifo(); |
391 | | /// w.push(1); |
392 | | /// w.push(2); |
393 | | /// ``` |
394 | 574k | pub fn push(&self, task: T) { |
395 | 574k | // Load the back index, front index, and buffer. |
396 | 574k | let b = self.inner.back.load(Ordering::Relaxed); |
397 | 574k | let f = self.inner.front.load(Ordering::Acquire); |
398 | 574k | let mut buffer = self.buffer.get(); |
399 | 574k | |
400 | 574k | // Calculate the length of the queue. |
401 | 574k | let len = b.wrapping_sub(f); |
402 | 574k | |
403 | 574k | // Is the queue full? |
404 | 574k | if len >= buffer.cap as isize { |
405 | 0 | // Yes. Grow the underlying buffer. |
406 | 0 | unsafe { |
407 | 0 | self.resize(2 * buffer.cap); |
408 | 0 | } |
409 | 0 | buffer = self.buffer.get(); |
410 | 574k | } |
411 | | |
412 | | // Write `task` into the slot. |
413 | 574k | unsafe { |
414 | 574k | buffer.write(b, MaybeUninit::new(task)); |
415 | 574k | } |
416 | 574k | |
417 | 574k | atomic::fence(Ordering::Release); |
418 | 574k | |
419 | 574k | // Increment the back index. |
420 | 574k | // |
421 | 574k | // This ordering could be `Relaxed`, but then thread sanitizer would falsely report data |
422 | 574k | // races because it doesn't understand fences. |
423 | 574k | self.inner.back.store(b.wrapping_add(1), Ordering::Release); |
424 | 574k | } <crossbeam_deque::deque::Worker<rayon_core::job::JobRef>>::push Line | Count | Source | 394 | 141k | pub fn push(&self, task: T) { | 395 | 141k | // Load the back index, front index, and buffer. | 396 | 141k | let b = self.inner.back.load(Ordering::Relaxed); | 397 | 141k | let f = self.inner.front.load(Ordering::Acquire); | 398 | 141k | let mut buffer = self.buffer.get(); | 399 | 141k | | 400 | 141k | // Calculate the length of the queue. | 401 | 141k | let len = b.wrapping_sub(f); | 402 | 141k | | 403 | 141k | // Is the queue full? | 404 | 141k | if len >= buffer.cap as isize { | 405 | 0 | // Yes. Grow the underlying buffer. | 406 | 0 | unsafe { | 407 | 0 | self.resize(2 * buffer.cap); | 408 | 0 | } | 409 | 0 | buffer = self.buffer.get(); | 410 | 141k | } | 411 | | | 412 | | // Write `task` into the slot. | 413 | 141k | unsafe { | 414 | 141k | buffer.write(b, MaybeUninit::new(task)); | 415 | 141k | } | 416 | 141k | | 417 | 141k | atomic::fence(Ordering::Release); | 418 | 141k | | 419 | 141k | // Increment the back index. | 420 | 141k | // | 421 | 141k | // This ordering could be `Relaxed`, but then thread sanitizer would falsely report data | 422 | 141k | // races because it doesn't understand fences. | 423 | 141k | self.inner.back.store(b.wrapping_add(1), Ordering::Release); | 424 | 141k | } |
<crossbeam_deque::deque::Worker<rayon_core::job::JobRef>>::push Line | Count | Source | 394 | 121k | pub fn push(&self, task: T) { | 395 | 121k | // Load the back index, front index, and buffer. | 396 | 121k | let b = self.inner.back.load(Ordering::Relaxed); | 397 | 121k | let f = self.inner.front.load(Ordering::Acquire); | 398 | 121k | let mut buffer = self.buffer.get(); | 399 | 121k | | 400 | 121k | // Calculate the length of the queue. | 401 | 121k | let len = b.wrapping_sub(f); | 402 | 121k | | 403 | 121k | // Is the queue full? | 404 | 121k | if len >= buffer.cap as isize { | 405 | 0 | // Yes. Grow the underlying buffer. | 406 | 0 | unsafe { | 407 | 0 | self.resize(2 * buffer.cap); | 408 | 0 | } | 409 | 0 | buffer = self.buffer.get(); | 410 | 121k | } | 411 | | | 412 | | // Write `task` into the slot. | 413 | 121k | unsafe { | 414 | 121k | buffer.write(b, MaybeUninit::new(task)); | 415 | 121k | } | 416 | 121k | | 417 | 121k | atomic::fence(Ordering::Release); | 418 | 121k | | 419 | 121k | // Increment the back index. | 420 | 121k | // | 421 | 121k | // This ordering could be `Relaxed`, but then thread sanitizer would falsely report data | 422 | 121k | // races because it doesn't understand fences. | 423 | 121k | self.inner.back.store(b.wrapping_add(1), Ordering::Release); | 424 | 121k | } |
Unexecuted instantiation: <crossbeam_deque::deque::Worker<rayon_core::job::JobRef>>::push <crossbeam_deque::deque::Worker<rayon_core::job::JobRef>>::push Line | Count | Source | 394 | 189k | pub fn push(&self, task: T) { | 395 | 189k | // Load the back index, front index, and buffer. | 396 | 189k | let b = self.inner.back.load(Ordering::Relaxed); | 397 | 189k | let f = self.inner.front.load(Ordering::Acquire); | 398 | 189k | let mut buffer = self.buffer.get(); | 399 | 189k | | 400 | 189k | // Calculate the length of the queue. | 401 | 189k | let len = b.wrapping_sub(f); | 402 | 189k | | 403 | 189k | // Is the queue full? | 404 | 189k | if len >= buffer.cap as isize { | 405 | 0 | // Yes. Grow the underlying buffer. | 406 | 0 | unsafe { | 407 | 0 | self.resize(2 * buffer.cap); | 408 | 0 | } | 409 | 0 | buffer = self.buffer.get(); | 410 | 189k | } | 411 | | | 412 | | // Write `task` into the slot. | 413 | 189k | unsafe { | 414 | 189k | buffer.write(b, MaybeUninit::new(task)); | 415 | 189k | } | 416 | 189k | | 417 | 189k | atomic::fence(Ordering::Release); | 418 | 189k | | 419 | 189k | // Increment the back index. | 420 | 189k | // | 421 | 189k | // This ordering could be `Relaxed`, but then thread sanitizer would falsely report data | 422 | 189k | // races because it doesn't understand fences. | 423 | 189k | self.inner.back.store(b.wrapping_add(1), Ordering::Release); | 424 | 189k | } |
Unexecuted instantiation: <crossbeam_deque::deque::Worker<rayon_core::job::JobRef>>::push <crossbeam_deque::deque::Worker<rayon_core::job::JobRef>>::push Line | Count | Source | 394 | 121k | pub fn push(&self, task: T) { | 395 | 121k | // Load the back index, front index, and buffer. | 396 | 121k | let b = self.inner.back.load(Ordering::Relaxed); | 397 | 121k | let f = self.inner.front.load(Ordering::Acquire); | 398 | 121k | let mut buffer = self.buffer.get(); | 399 | 121k | | 400 | 121k | // Calculate the length of the queue. | 401 | 121k | let len = b.wrapping_sub(f); | 402 | 121k | | 403 | 121k | // Is the queue full? | 404 | 121k | if len >= buffer.cap as isize { | 405 | 0 | // Yes. Grow the underlying buffer. | 406 | 0 | unsafe { | 407 | 0 | self.resize(2 * buffer.cap); | 408 | 0 | } | 409 | 0 | buffer = self.buffer.get(); | 410 | 121k | } | 411 | | | 412 | | // Write `task` into the slot. | 413 | 121k | unsafe { | 414 | 121k | buffer.write(b, MaybeUninit::new(task)); | 415 | 121k | } | 416 | 121k | | 417 | 121k | atomic::fence(Ordering::Release); | 418 | 121k | | 419 | 121k | // Increment the back index. | 420 | 121k | // | 421 | 121k | // This ordering could be `Relaxed`, but then thread sanitizer would falsely report data | 422 | 121k | // races because it doesn't understand fences. | 423 | 121k | self.inner.back.store(b.wrapping_add(1), Ordering::Release); | 424 | 121k | } |
|
425 | | |
426 | | /// Pops a task from the queue. |
427 | | /// |
428 | | /// # Examples |
429 | | /// |
430 | | /// ``` |
431 | | /// use crossbeam_deque::Worker; |
432 | | /// |
433 | | /// let w = Worker::new_fifo(); |
434 | | /// w.push(1); |
435 | | /// w.push(2); |
436 | | /// |
437 | | /// assert_eq!(w.pop(), Some(1)); |
438 | | /// assert_eq!(w.pop(), Some(2)); |
439 | | /// assert_eq!(w.pop(), None); |
440 | | /// ``` |
441 | 25.6M | pub fn pop(&self) -> Option<T> { |
442 | 25.6M | // Load the back and front index. |
443 | 25.6M | let b = self.inner.back.load(Ordering::Relaxed); |
444 | 25.6M | let f = self.inner.front.load(Ordering::Relaxed); |
445 | 25.6M | |
446 | 25.6M | // Calculate the length of the queue. |
447 | 25.6M | let len = b.wrapping_sub(f); |
448 | 25.6M | |
449 | 25.6M | // Is the queue empty? |
450 | 25.6M | if len <= 0 { |
451 | 25.5M | return None; |
452 | 69.5k | } |
453 | 69.5k | |
454 | 69.5k | match self.flavor { |
455 | | // Pop from the front of the queue. |
456 | | Flavor::Fifo => { |
457 | | // Try incrementing the front index to pop the task. |
458 | 0 | let f = self.inner.front.fetch_add(1, Ordering::SeqCst); |
459 | 0 | let new_f = f.wrapping_add(1); |
460 | 0 |
|
461 | 0 | if b.wrapping_sub(new_f) < 0 { |
462 | 0 | self.inner.front.store(f, Ordering::Relaxed); |
463 | 0 | return None; |
464 | 0 | } |
465 | 0 |
|
466 | 0 | unsafe { |
467 | 0 | // Read the popped task. |
468 | 0 | let buffer = self.buffer.get(); |
469 | 0 | let task = buffer.read(f).assume_init(); |
470 | 0 |
|
471 | 0 | // Shrink the buffer if `len - 1` is less than one fourth of the capacity. |
472 | 0 | if buffer.cap > MIN_CAP && len <= buffer.cap as isize / 4 { |
473 | 0 | self.resize(buffer.cap / 2); |
474 | 0 | } |
475 | | |
476 | 0 | Some(task) |
477 | | } |
478 | | } |
479 | | |
480 | | // Pop from the back of the queue. |
481 | | Flavor::Lifo => { |
482 | | // Decrement the back index. |
483 | 69.5k | let b = b.wrapping_sub(1); |
484 | 69.5k | self.inner.back.store(b, Ordering::Relaxed); |
485 | 69.5k | |
486 | 69.5k | atomic::fence(Ordering::SeqCst); |
487 | 69.5k | |
488 | 69.5k | // Load the front index. |
489 | 69.5k | let f = self.inner.front.load(Ordering::Relaxed); |
490 | 69.5k | |
491 | 69.5k | // Compute the length after the back index was decremented. |
492 | 69.5k | let len = b.wrapping_sub(f); |
493 | 69.5k | |
494 | 69.5k | if len < 0 { |
495 | | // The queue is empty. Restore the back index to the original task. |
496 | 91 | self.inner.back.store(b.wrapping_add(1), Ordering::Relaxed); |
497 | 91 | None |
498 | | } else { |
499 | | // Read the task to be popped. |
500 | 69.4k | let buffer = self.buffer.get(); |
501 | 69.4k | let mut task = unsafe { Some(buffer.read(b)) }; |
502 | 69.4k | |
503 | 69.4k | // Are we popping the last task from the queue? |
504 | 69.4k | if len == 0 { |
505 | | // Try incrementing the front index. |
506 | 47.4k | if self |
507 | 47.4k | .inner |
508 | 47.4k | .front |
509 | 47.4k | .compare_exchange( |
510 | 47.4k | f, |
511 | 47.4k | f.wrapping_add(1), |
512 | 47.4k | Ordering::SeqCst, |
513 | 47.4k | Ordering::Relaxed, |
514 | 47.4k | ) |
515 | 47.4k | .is_err() |
516 | 131 | { |
517 | 131 | // Failed. We didn't pop anything. Reset to `None`. |
518 | 131 | task.take(); |
519 | 47.3k | } |
520 | | |
521 | | // Restore the back index to the original task. |
522 | 47.4k | self.inner.back.store(b.wrapping_add(1), Ordering::Relaxed); |
523 | | } else { |
524 | | // Shrink the buffer if `len` is less than one fourth of the capacity. |
525 | 22.0k | if buffer.cap > MIN_CAP && len < buffer.cap as isize / 4 { |
526 | 0 | unsafe { |
527 | 0 | self.resize(buffer.cap / 2); |
528 | 0 | } |
529 | 22.0k | } |
530 | | } |
531 | | |
532 | 69.4k | task.map(|t| unsafe { t.assume_init() }) <crossbeam_deque::deque::Worker<rayon_core::job::JobRef>>::pop::{closure#0} Line | Count | Source | 532 | 16.3k | task.map(|t| unsafe { t.assume_init() }) |
<crossbeam_deque::deque::Worker<rayon_core::job::JobRef>>::pop::{closure#0} Line | Count | Source | 532 | 12.6k | task.map(|t| unsafe { t.assume_init() }) |
Unexecuted instantiation: <crossbeam_deque::deque::Worker<rayon_core::job::JobRef>>::pop::{closure#0} <crossbeam_deque::deque::Worker<rayon_core::job::JobRef>>::pop::{closure#0} Line | Count | Source | 532 | 25.3k | task.map(|t| unsafe { t.assume_init() }) |
Unexecuted instantiation: <crossbeam_deque::deque::Worker<rayon_core::job::JobRef>>::pop::{closure#0} <crossbeam_deque::deque::Worker<rayon_core::job::JobRef>>::pop::{closure#0} Line | Count | Source | 532 | 14.9k | task.map(|t| unsafe { t.assume_init() }) |
|
533 | | } |
534 | | } |
535 | | } |
536 | 25.6M | } <crossbeam_deque::deque::Worker<rayon_core::job::JobRef>>::pop Line | Count | Source | 441 | 96.9k | pub fn pop(&self) -> Option<T> { | 442 | 96.9k | // Load the back and front index. | 443 | 96.9k | let b = self.inner.back.load(Ordering::Relaxed); | 444 | 96.9k | let f = self.inner.front.load(Ordering::Relaxed); | 445 | 96.9k | | 446 | 96.9k | // Calculate the length of the queue. | 447 | 96.9k | let len = b.wrapping_sub(f); | 448 | 96.9k | | 449 | 96.9k | // Is the queue empty? | 450 | 96.9k | if len <= 0 { | 451 | 80.6k | return None; | 452 | 16.3k | } | 453 | 16.3k | | 454 | 16.3k | match self.flavor { | 455 | | // Pop from the front of the queue. | 456 | | Flavor::Fifo => { | 457 | | // Try incrementing the front index to pop the task. | 458 | 0 | let f = self.inner.front.fetch_add(1, Ordering::SeqCst); | 459 | 0 | let new_f = f.wrapping_add(1); | 460 | 0 |
| 461 | 0 | if b.wrapping_sub(new_f) < 0 { | 462 | 0 | self.inner.front.store(f, Ordering::Relaxed); | 463 | 0 | return None; | 464 | 0 | } | 465 | 0 |
| 466 | 0 | unsafe { | 467 | 0 | // Read the popped task. | 468 | 0 | let buffer = self.buffer.get(); | 469 | 0 | let task = buffer.read(f).assume_init(); | 470 | 0 |
| 471 | 0 | // Shrink the buffer if `len - 1` is less than one fourth of the capacity. | 472 | 0 | if buffer.cap > MIN_CAP && len <= buffer.cap as isize / 4 { | 473 | 0 | self.resize(buffer.cap / 2); | 474 | 0 | } | 475 | | | 476 | 0 | Some(task) | 477 | | } | 478 | | } | 479 | | | 480 | | // Pop from the back of the queue. | 481 | | Flavor::Lifo => { | 482 | | // Decrement the back index. | 483 | 16.3k | let b = b.wrapping_sub(1); | 484 | 16.3k | self.inner.back.store(b, Ordering::Relaxed); | 485 | 16.3k | | 486 | 16.3k | atomic::fence(Ordering::SeqCst); | 487 | 16.3k | | 488 | 16.3k | // Load the front index. | 489 | 16.3k | let f = self.inner.front.load(Ordering::Relaxed); | 490 | 16.3k | | 491 | 16.3k | // Compute the length after the back index was decremented. | 492 | 16.3k | let len = b.wrapping_sub(f); | 493 | 16.3k | | 494 | 16.3k | if len < 0 { | 495 | | // The queue is empty. Restore the back index to the original task. | 496 | 0 | self.inner.back.store(b.wrapping_add(1), Ordering::Relaxed); | 497 | 0 | None | 498 | | } else { | 499 | | // Read the task to be popped. | 500 | 16.3k | let buffer = self.buffer.get(); | 501 | 16.3k | let mut task = unsafe { Some(buffer.read(b)) }; | 502 | 16.3k | | 503 | 16.3k | // Are we popping the last task from the queue? | 504 | 16.3k | if len == 0 { | 505 | | // Try incrementing the front index. | 506 | 11.2k | if self | 507 | 11.2k | .inner | 508 | 11.2k | .front | 509 | 11.2k | .compare_exchange( | 510 | 11.2k | f, | 511 | 11.2k | f.wrapping_add(1), | 512 | 11.2k | Ordering::SeqCst, | 513 | 11.2k | Ordering::Relaxed, | 514 | 11.2k | ) | 515 | 11.2k | .is_err() | 516 | 1 | { | 517 | 1 | // Failed. We didn't pop anything. Reset to `None`. | 518 | 1 | task.take(); | 519 | 11.2k | } | 520 | | | 521 | | // Restore the back index to the original task. | 522 | 11.2k | self.inner.back.store(b.wrapping_add(1), Ordering::Relaxed); | 523 | | } else { | 524 | | // Shrink the buffer if `len` is less than one fourth of the capacity. | 525 | 5.09k | if buffer.cap > MIN_CAP && len < buffer.cap as isize / 4 { | 526 | 0 | unsafe { | 527 | 0 | self.resize(buffer.cap / 2); | 528 | 0 | } | 529 | 5.09k | } | 530 | | } | 531 | | | 532 | 16.3k | task.map(|t| unsafe { t.assume_init() }) | 533 | | } | 534 | | } | 535 | | } | 536 | 96.9k | } |
<crossbeam_deque::deque::Worker<rayon_core::job::JobRef>>::pop Line | Count | Source | 441 | 80.5k | pub fn pop(&self) -> Option<T> { | 442 | 80.5k | // Load the back and front index. | 443 | 80.5k | let b = self.inner.back.load(Ordering::Relaxed); | 444 | 80.5k | let f = self.inner.front.load(Ordering::Relaxed); | 445 | 80.5k | | 446 | 80.5k | // Calculate the length of the queue. | 447 | 80.5k | let len = b.wrapping_sub(f); | 448 | 80.5k | | 449 | 80.5k | // Is the queue empty? | 450 | 80.5k | if len <= 0 { | 451 | 67.9k | return None; | 452 | 12.6k | } | 453 | 12.6k | | 454 | 12.6k | match self.flavor { | 455 | | // Pop from the front of the queue. | 456 | | Flavor::Fifo => { | 457 | | // Try incrementing the front index to pop the task. | 458 | 0 | let f = self.inner.front.fetch_add(1, Ordering::SeqCst); | 459 | 0 | let new_f = f.wrapping_add(1); | 460 | 0 |
| 461 | 0 | if b.wrapping_sub(new_f) < 0 { | 462 | 0 | self.inner.front.store(f, Ordering::Relaxed); | 463 | 0 | return None; | 464 | 0 | } | 465 | 0 |
| 466 | 0 | unsafe { | 467 | 0 | // Read the popped task. | 468 | 0 | let buffer = self.buffer.get(); | 469 | 0 | let task = buffer.read(f).assume_init(); | 470 | 0 |
| 471 | 0 | // Shrink the buffer if `len - 1` is less than one fourth of the capacity. | 472 | 0 | if buffer.cap > MIN_CAP && len <= buffer.cap as isize / 4 { | 473 | 0 | self.resize(buffer.cap / 2); | 474 | 0 | } | 475 | | | 476 | 0 | Some(task) | 477 | | } | 478 | | } | 479 | | | 480 | | // Pop from the back of the queue. | 481 | | Flavor::Lifo => { | 482 | | // Decrement the back index. | 483 | 12.6k | let b = b.wrapping_sub(1); | 484 | 12.6k | self.inner.back.store(b, Ordering::Relaxed); | 485 | 12.6k | | 486 | 12.6k | atomic::fence(Ordering::SeqCst); | 487 | 12.6k | | 488 | 12.6k | // Load the front index. | 489 | 12.6k | let f = self.inner.front.load(Ordering::Relaxed); | 490 | 12.6k | | 491 | 12.6k | // Compute the length after the back index was decremented. | 492 | 12.6k | let len = b.wrapping_sub(f); | 493 | 12.6k | | 494 | 12.6k | if len < 0 { | 495 | | // The queue is empty. Restore the back index to the original task. | 496 | 1 | self.inner.back.store(b.wrapping_add(1), Ordering::Relaxed); | 497 | 1 | None | 498 | | } else { | 499 | | // Read the task to be popped. | 500 | 12.6k | let buffer = self.buffer.get(); | 501 | 12.6k | let mut task = unsafe { Some(buffer.read(b)) }; | 502 | 12.6k | | 503 | 12.6k | // Are we popping the last task from the queue? | 504 | 12.6k | if len == 0 { | 505 | | // Try incrementing the front index. | 506 | 8.79k | if self | 507 | 8.79k | .inner | 508 | 8.79k | .front | 509 | 8.79k | .compare_exchange( | 510 | 8.79k | f, | 511 | 8.79k | f.wrapping_add(1), | 512 | 8.79k | Ordering::SeqCst, | 513 | 8.79k | Ordering::Relaxed, | 514 | 8.79k | ) | 515 | 8.79k | .is_err() | 516 | 5 | { | 517 | 5 | // Failed. We didn't pop anything. Reset to `None`. | 518 | 5 | task.take(); | 519 | 8.79k | } | 520 | | | 521 | | // Restore the back index to the original task. | 522 | 8.79k | self.inner.back.store(b.wrapping_add(1), Ordering::Relaxed); | 523 | | } else { | 524 | | // Shrink the buffer if `len` is less than one fourth of the capacity. | 525 | 3.88k | if buffer.cap > MIN_CAP && len < buffer.cap as isize / 4 { | 526 | 0 | unsafe { | 527 | 0 | self.resize(buffer.cap / 2); | 528 | 0 | } | 529 | 3.88k | } | 530 | | } | 531 | | | 532 | 12.6k | task.map(|t| unsafe { t.assume_init() }) | 533 | | } | 534 | | } | 535 | | } | 536 | 80.5k | } |
<crossbeam_deque::deque::Worker<rayon_core::job::JobRef>>::pop Line | Count | Source | 441 | 25.2M | pub fn pop(&self) -> Option<T> { | 442 | 25.2M | // Load the back and front index. | 443 | 25.2M | let b = self.inner.back.load(Ordering::Relaxed); | 444 | 25.2M | let f = self.inner.front.load(Ordering::Relaxed); | 445 | 25.2M | | 446 | 25.2M | // Calculate the length of the queue. | 447 | 25.2M | let len = b.wrapping_sub(f); | 448 | 25.2M | | 449 | 25.2M | // Is the queue empty? | 450 | 25.2M | if len <= 0 { | 451 | 25.2M | return None; | 452 | 0 | } | 453 | 0 |
| 454 | 0 | match self.flavor { | 455 | | // Pop from the front of the queue. | 456 | | Flavor::Fifo => { | 457 | | // Try incrementing the front index to pop the task. | 458 | 0 | let f = self.inner.front.fetch_add(1, Ordering::SeqCst); | 459 | 0 | let new_f = f.wrapping_add(1); | 460 | 0 |
| 461 | 0 | if b.wrapping_sub(new_f) < 0 { | 462 | 0 | self.inner.front.store(f, Ordering::Relaxed); | 463 | 0 | return None; | 464 | 0 | } | 465 | 0 |
| 466 | 0 | unsafe { | 467 | 0 | // Read the popped task. | 468 | 0 | let buffer = self.buffer.get(); | 469 | 0 | let task = buffer.read(f).assume_init(); | 470 | 0 |
| 471 | 0 | // Shrink the buffer if `len - 1` is less than one fourth of the capacity. | 472 | 0 | if buffer.cap > MIN_CAP && len <= buffer.cap as isize / 4 { | 473 | 0 | self.resize(buffer.cap / 2); | 474 | 0 | } | 475 | | | 476 | 0 | Some(task) | 477 | | } | 478 | | } | 479 | | | 480 | | // Pop from the back of the queue. | 481 | | Flavor::Lifo => { | 482 | | // Decrement the back index. | 483 | 0 | let b = b.wrapping_sub(1); | 484 | 0 | self.inner.back.store(b, Ordering::Relaxed); | 485 | 0 |
| 486 | 0 | atomic::fence(Ordering::SeqCst); | 487 | 0 |
| 488 | 0 | // Load the front index. | 489 | 0 | let f = self.inner.front.load(Ordering::Relaxed); | 490 | 0 |
| 491 | 0 | // Compute the length after the back index was decremented. | 492 | 0 | let len = b.wrapping_sub(f); | 493 | 0 |
| 494 | 0 | if len < 0 { | 495 | | // The queue is empty. Restore the back index to the original task. | 496 | 0 | self.inner.back.store(b.wrapping_add(1), Ordering::Relaxed); | 497 | 0 | None | 498 | | } else { | 499 | | // Read the task to be popped. | 500 | 0 | let buffer = self.buffer.get(); | 501 | 0 | let mut task = unsafe { Some(buffer.read(b)) }; | 502 | 0 |
| 503 | 0 | // Are we popping the last task from the queue? | 504 | 0 | if len == 0 { | 505 | | // Try incrementing the front index. | 506 | 0 | if self | 507 | 0 | .inner | 508 | 0 | .front | 509 | 0 | .compare_exchange( | 510 | 0 | f, | 511 | 0 | f.wrapping_add(1), | 512 | 0 | Ordering::SeqCst, | 513 | 0 | Ordering::Relaxed, | 514 | 0 | ) | 515 | 0 | .is_err() | 516 | 0 | { | 517 | 0 | // Failed. We didn't pop anything. Reset to `None`. | 518 | 0 | task.take(); | 519 | 0 | } | 520 | | | 521 | | // Restore the back index to the original task. | 522 | 0 | self.inner.back.store(b.wrapping_add(1), Ordering::Relaxed); | 523 | | } else { | 524 | | // Shrink the buffer if `len` is less than one fourth of the capacity. | 525 | 0 | if buffer.cap > MIN_CAP && len < buffer.cap as isize / 4 { | 526 | 0 | unsafe { | 527 | 0 | self.resize(buffer.cap / 2); | 528 | 0 | } | 529 | 0 | } | 530 | | } | 531 | | | 532 | 0 | task.map(|t| unsafe { t.assume_init() }) | 533 | | } | 534 | | } | 535 | | } | 536 | 25.2M | } |
<crossbeam_deque::deque::Worker<rayon_core::job::JobRef>>::pop Line | Count | Source | 441 | 134k | pub fn pop(&self) -> Option<T> { | 442 | 134k | // Load the back and front index. | 443 | 134k | let b = self.inner.back.load(Ordering::Relaxed); | 444 | 134k | let f = self.inner.front.load(Ordering::Relaxed); | 445 | 134k | | 446 | 134k | // Calculate the length of the queue. | 447 | 134k | let len = b.wrapping_sub(f); | 448 | 134k | | 449 | 134k | // Is the queue empty? | 450 | 134k | if len <= 0 { | 451 | 109k | return None; | 452 | 25.4k | } | 453 | 25.4k | | 454 | 25.4k | match self.flavor { | 455 | | // Pop from the front of the queue. | 456 | | Flavor::Fifo => { | 457 | | // Try incrementing the front index to pop the task. | 458 | 0 | let f = self.inner.front.fetch_add(1, Ordering::SeqCst); | 459 | 0 | let new_f = f.wrapping_add(1); | 460 | 0 |
| 461 | 0 | if b.wrapping_sub(new_f) < 0 { | 462 | 0 | self.inner.front.store(f, Ordering::Relaxed); | 463 | 0 | return None; | 464 | 0 | } | 465 | 0 |
| 466 | 0 | unsafe { | 467 | 0 | // Read the popped task. | 468 | 0 | let buffer = self.buffer.get(); | 469 | 0 | let task = buffer.read(f).assume_init(); | 470 | 0 |
| 471 | 0 | // Shrink the buffer if `len - 1` is less than one fourth of the capacity. | 472 | 0 | if buffer.cap > MIN_CAP && len <= buffer.cap as isize / 4 { | 473 | 0 | self.resize(buffer.cap / 2); | 474 | 0 | } | 475 | | | 476 | 0 | Some(task) | 477 | | } | 478 | | } | 479 | | | 480 | | // Pop from the back of the queue. | 481 | | Flavor::Lifo => { | 482 | | // Decrement the back index. | 483 | 25.4k | let b = b.wrapping_sub(1); | 484 | 25.4k | self.inner.back.store(b, Ordering::Relaxed); | 485 | 25.4k | | 486 | 25.4k | atomic::fence(Ordering::SeqCst); | 487 | 25.4k | | 488 | 25.4k | // Load the front index. | 489 | 25.4k | let f = self.inner.front.load(Ordering::Relaxed); | 490 | 25.4k | | 491 | 25.4k | // Compute the length after the back index was decremented. | 492 | 25.4k | let len = b.wrapping_sub(f); | 493 | 25.4k | | 494 | 25.4k | if len < 0 { | 495 | | // The queue is empty. Restore the back index to the original task. | 496 | 28 | self.inner.back.store(b.wrapping_add(1), Ordering::Relaxed); | 497 | 28 | None | 498 | | } else { | 499 | | // Read the task to be popped. | 500 | 25.4k | let buffer = self.buffer.get(); | 501 | 25.4k | let mut task = unsafe { Some(buffer.read(b)) }; | 502 | 25.4k | | 503 | 25.4k | // Are we popping the last task from the queue? | 504 | 25.4k | if len == 0 { | 505 | | // Try incrementing the front index. | 506 | 17.0k | if self | 507 | 17.0k | .inner | 508 | 17.0k | .front | 509 | 17.0k | .compare_exchange( | 510 | 17.0k | f, | 511 | 17.0k | f.wrapping_add(1), | 512 | 17.0k | Ordering::SeqCst, | 513 | 17.0k | Ordering::Relaxed, | 514 | 17.0k | ) | 515 | 17.0k | .is_err() | 516 | 41 | { | 517 | 41 | // Failed. We didn't pop anything. Reset to `None`. | 518 | 41 | task.take(); | 519 | 17.0k | } | 520 | | | 521 | | // Restore the back index to the original task. | 522 | 17.0k | self.inner.back.store(b.wrapping_add(1), Ordering::Relaxed); | 523 | | } else { | 524 | | // Shrink the buffer if `len` is less than one fourth of the capacity. | 525 | 8.31k | if buffer.cap > MIN_CAP && len < buffer.cap as isize / 4 { | 526 | 0 | unsafe { | 527 | 0 | self.resize(buffer.cap / 2); | 528 | 0 | } | 529 | 8.31k | } | 530 | | } | 531 | | | 532 | 25.4k | task.map(|t| unsafe { t.assume_init() }) | 533 | | } | 534 | | } | 535 | | } | 536 | 134k | } |
Unexecuted instantiation: <crossbeam_deque::deque::Worker<rayon_core::job::JobRef>>::pop <crossbeam_deque::deque::Worker<rayon_core::job::JobRef>>::pop Line | Count | Source | 441 | 89.7k | pub fn pop(&self) -> Option<T> { | 442 | 89.7k | // Load the back and front index. | 443 | 89.7k | let b = self.inner.back.load(Ordering::Relaxed); | 444 | 89.7k | let f = self.inner.front.load(Ordering::Relaxed); | 445 | 89.7k | | 446 | 89.7k | // Calculate the length of the queue. | 447 | 89.7k | let len = b.wrapping_sub(f); | 448 | 89.7k | | 449 | 89.7k | // Is the queue empty? | 450 | 89.7k | if len <= 0 { | 451 | 74.6k | return None; | 452 | 15.1k | } | 453 | 15.1k | | 454 | 15.1k | match self.flavor { | 455 | | // Pop from the front of the queue. | 456 | | Flavor::Fifo => { | 457 | | // Try incrementing the front index to pop the task. | 458 | 0 | let f = self.inner.front.fetch_add(1, Ordering::SeqCst); | 459 | 0 | let new_f = f.wrapping_add(1); | 460 | 0 |
| 461 | 0 | if b.wrapping_sub(new_f) < 0 { | 462 | 0 | self.inner.front.store(f, Ordering::Relaxed); | 463 | 0 | return None; | 464 | 0 | } | 465 | 0 |
| 466 | 0 | unsafe { | 467 | 0 | // Read the popped task. | 468 | 0 | let buffer = self.buffer.get(); | 469 | 0 | let task = buffer.read(f).assume_init(); | 470 | 0 |
| 471 | 0 | // Shrink the buffer if `len - 1` is less than one fourth of the capacity. | 472 | 0 | if buffer.cap > MIN_CAP && len <= buffer.cap as isize / 4 { | 473 | 0 | self.resize(buffer.cap / 2); | 474 | 0 | } | 475 | | | 476 | 0 | Some(task) | 477 | | } | 478 | | } | 479 | | | 480 | | // Pop from the back of the queue. | 481 | | Flavor::Lifo => { | 482 | | // Decrement the back index. | 483 | 15.1k | let b = b.wrapping_sub(1); | 484 | 15.1k | self.inner.back.store(b, Ordering::Relaxed); | 485 | 15.1k | | 486 | 15.1k | atomic::fence(Ordering::SeqCst); | 487 | 15.1k | | 488 | 15.1k | // Load the front index. | 489 | 15.1k | let f = self.inner.front.load(Ordering::Relaxed); | 490 | 15.1k | | 491 | 15.1k | // Compute the length after the back index was decremented. | 492 | 15.1k | let len = b.wrapping_sub(f); | 493 | 15.1k | | 494 | 15.1k | if len < 0 { | 495 | | // The queue is empty. Restore the back index to the original task. | 496 | 62 | self.inner.back.store(b.wrapping_add(1), Ordering::Relaxed); | 497 | 62 | None | 498 | | } else { | 499 | | // Read the task to be popped. | 500 | 15.0k | let buffer = self.buffer.get(); | 501 | 15.0k | let mut task = unsafe { Some(buffer.read(b)) }; | 502 | 15.0k | | 503 | 15.0k | // Are we popping the last task from the queue? | 504 | 15.0k | if len == 0 { | 505 | | // Try incrementing the front index. | 506 | 10.3k | if self | 507 | 10.3k | .inner | 508 | 10.3k | .front | 509 | 10.3k | .compare_exchange( | 510 | 10.3k | f, | 511 | 10.3k | f.wrapping_add(1), | 512 | 10.3k | Ordering::SeqCst, | 513 | 10.3k | Ordering::Relaxed, | 514 | 10.3k | ) | 515 | 10.3k | .is_err() | 516 | 84 | { | 517 | 84 | // Failed. We didn't pop anything. Reset to `None`. | 518 | 84 | task.take(); | 519 | 10.2k | } | 520 | | | 521 | | // Restore the back index to the original task. | 522 | 10.3k | self.inner.back.store(b.wrapping_add(1), Ordering::Relaxed); | 523 | | } else { | 524 | | // Shrink the buffer if `len` is less than one fourth of the capacity. | 525 | 4.71k | if buffer.cap > MIN_CAP && len < buffer.cap as isize / 4 { | 526 | 0 | unsafe { | 527 | 0 | self.resize(buffer.cap / 2); | 528 | 0 | } | 529 | 4.71k | } | 530 | | } | 531 | | | 532 | 15.0k | task.map(|t| unsafe { t.assume_init() }) | 533 | | } | 534 | | } | 535 | | } | 536 | 89.7k | } |
|
537 | | } |
538 | | |
539 | | impl<T> fmt::Debug for Worker<T> { |
540 | | fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result { |
541 | | f.pad("Worker { .. }") |
542 | | } |
543 | | } |
544 | | |
545 | | /// A stealer handle of a worker queue. |
546 | | /// |
547 | | /// Stealers can be shared among threads. |
548 | | /// |
549 | | /// Task schedulers typically have a single worker queue per worker thread. |
550 | | /// |
551 | | /// # Examples |
552 | | /// |
553 | | /// ``` |
554 | | /// use crossbeam_deque::{Steal, Worker}; |
555 | | /// |
556 | | /// let w = Worker::new_lifo(); |
557 | | /// w.push(1); |
558 | | /// w.push(2); |
559 | | /// |
560 | | /// let s = w.stealer(); |
561 | | /// assert_eq!(s.steal(), Steal::Success(1)); |
562 | | /// assert_eq!(s.steal(), Steal::Success(2)); |
563 | | /// assert_eq!(s.steal(), Steal::Empty); |
564 | | /// ``` |
565 | | pub struct Stealer<T> { |
566 | | /// A reference to the inner representation of the queue. |
567 | | inner: Arc<CachePadded<Inner<T>>>, |
568 | | |
569 | | /// The flavor of the queue. |
570 | | flavor: Flavor, |
571 | | } |
572 | | |
573 | | unsafe impl<T: Send> Send for Stealer<T> {} |
574 | | unsafe impl<T: Send> Sync for Stealer<T> {} |
575 | | |
576 | | impl<T> Stealer<T> { |
577 | | /// Returns `true` if the queue is empty. |
578 | | /// |
579 | | /// ``` |
580 | | /// use crossbeam_deque::Worker; |
581 | | /// |
582 | | /// let w = Worker::new_lifo(); |
583 | | /// let s = w.stealer(); |
584 | | /// |
585 | | /// assert!(s.is_empty()); |
586 | | /// w.push(1); |
587 | | /// assert!(!s.is_empty()); |
588 | | /// ``` |
589 | 630k | pub fn is_empty(&self) -> bool { |
590 | 630k | let f = self.inner.front.load(Ordering::Acquire); |
591 | 630k | atomic::fence(Ordering::SeqCst); |
592 | 630k | let b = self.inner.back.load(Ordering::Acquire); |
593 | 630k | b.wrapping_sub(f) <= 0 |
594 | 630k | } |
595 | | |
596 | | /// Returns the number of tasks in the deque. |
597 | | /// |
598 | | /// ``` |
599 | | /// use crossbeam_deque::Worker; |
600 | | /// |
601 | | /// let w = Worker::new_lifo(); |
602 | | /// let s = w.stealer(); |
603 | | /// |
604 | | /// assert_eq!(s.len(), 0); |
605 | | /// w.push(1); |
606 | | /// assert_eq!(s.len(), 1); |
607 | | /// w.push(2); |
608 | | /// assert_eq!(s.len(), 2); |
609 | | /// ``` |
610 | | pub fn len(&self) -> usize { |
611 | | let f = self.inner.front.load(Ordering::Acquire); |
612 | | atomic::fence(Ordering::SeqCst); |
613 | | let b = self.inner.back.load(Ordering::Acquire); |
614 | | b.wrapping_sub(f).max(0) as usize |
615 | | } |
616 | | |
617 | | /// Steals a task from the queue. |
618 | | /// |
619 | | /// # Examples |
620 | | /// |
621 | | /// ``` |
622 | | /// use crossbeam_deque::{Steal, Worker}; |
623 | | /// |
624 | | /// let w = Worker::new_lifo(); |
625 | | /// w.push(1); |
626 | | /// w.push(2); |
627 | | /// |
628 | | /// let s = w.stealer(); |
629 | | /// assert_eq!(s.steal(), Steal::Success(1)); |
630 | | /// assert_eq!(s.steal(), Steal::Success(2)); |
631 | | /// ``` |
632 | 774M | pub fn steal(&self) -> Steal<T> { |
633 | 774M | // Load the front index. |
634 | 774M | let f = self.inner.front.load(Ordering::Acquire); |
635 | 774M | |
636 | 774M | // A SeqCst fence is needed here. |
637 | 774M | // |
638 | 774M | // If the current thread is already pinned (reentrantly), we must manually issue the |
639 | 774M | // fence. Otherwise, the following pinning will issue the fence anyway, so we don't |
640 | 774M | // have to. |
641 | 774M | if epoch::is_pinned() { |
642 | 0 | atomic::fence(Ordering::SeqCst); |
643 | 774M | } |
644 | | |
645 | 774M | let guard = &epoch::pin(); |
646 | 774M | |
647 | 774M | // Load the back index. |
648 | 774M | let b = self.inner.back.load(Ordering::Acquire); |
649 | 774M | |
650 | 774M | // Is the queue empty? |
651 | 774M | if b.wrapping_sub(f) <= 0 { |
652 | 774M | return Steal::Empty; |
653 | 577k | } |
654 | 577k | |
655 | 577k | // Load the buffer and read the task at the front. |
656 | 577k | let buffer = self.inner.buffer.load(Ordering::Acquire, guard); |
657 | 577k | let task = unsafe { buffer.deref().read(f) }; |
658 | 577k | |
659 | 577k | // Try incrementing the front index to steal the task. |
660 | 577k | // If the buffer has been swapped or the increment fails, we retry. |
661 | 577k | if self.inner.buffer.load(Ordering::Acquire, guard) != buffer |
662 | 577k | || self |
663 | 577k | .inner |
664 | 577k | .front |
665 | 577k | .compare_exchange(f, f.wrapping_add(1), Ordering::SeqCst, Ordering::Relaxed) |
666 | 577k | .is_err() |
667 | | { |
668 | | // We didn't steal this task, forget it. |
669 | 72.5k | return Steal::Retry; |
670 | 504k | } |
671 | 504k | |
672 | 504k | // Return the stolen task. |
673 | 504k | Steal::Success(unsafe { task.assume_init() }) |
674 | 774M | } <crossbeam_deque::deque::Stealer<rayon_core::job::JobRef>>::steal Line | Count | Source | 632 | 80.6k | pub fn steal(&self) -> Steal<T> { | 633 | 80.6k | // Load the front index. | 634 | 80.6k | let f = self.inner.front.load(Ordering::Acquire); | 635 | 80.6k | | 636 | 80.6k | // A SeqCst fence is needed here. | 637 | 80.6k | // | 638 | 80.6k | // If the current thread is already pinned (reentrantly), we must manually issue the | 639 | 80.6k | // fence. Otherwise, the following pinning will issue the fence anyway, so we don't | 640 | 80.6k | // have to. | 641 | 80.6k | if epoch::is_pinned() { | 642 | 0 | atomic::fence(Ordering::SeqCst); | 643 | 80.6k | } | 644 | | | 645 | 80.6k | let guard = &epoch::pin(); | 646 | 80.6k | | 647 | 80.6k | // Load the back index. | 648 | 80.6k | let b = self.inner.back.load(Ordering::Acquire); | 649 | 80.6k | | 650 | 80.6k | // Is the queue empty? | 651 | 80.6k | if b.wrapping_sub(f) <= 0 { | 652 | 80.6k | return Steal::Empty; | 653 | 0 | } | 654 | 0 |
| 655 | 0 | // Load the buffer and read the task at the front. | 656 | 0 | let buffer = self.inner.buffer.load(Ordering::Acquire, guard); | 657 | 0 | let task = unsafe { buffer.deref().read(f) }; | 658 | 0 |
| 659 | 0 | // Try incrementing the front index to steal the task. | 660 | 0 | // If the buffer has been swapped or the increment fails, we retry. | 661 | 0 | if self.inner.buffer.load(Ordering::Acquire, guard) != buffer | 662 | 0 | || self | 663 | 0 | .inner | 664 | 0 | .front | 665 | 0 | .compare_exchange(f, f.wrapping_add(1), Ordering::SeqCst, Ordering::Relaxed) | 666 | 0 | .is_err() | 667 | | { | 668 | | // We didn't steal this task, forget it. | 669 | 0 | return Steal::Retry; | 670 | 0 | } | 671 | 0 |
| 672 | 0 | // Return the stolen task. | 673 | 0 | Steal::Success(unsafe { task.assume_init() }) | 674 | 80.6k | } |
<crossbeam_deque::deque::Stealer<rayon_core::job::JobRef>>::steal Line | Count | Source | 632 | 67.9k | pub fn steal(&self) -> Steal<T> { | 633 | 67.9k | // Load the front index. | 634 | 67.9k | let f = self.inner.front.load(Ordering::Acquire); | 635 | 67.9k | | 636 | 67.9k | // A SeqCst fence is needed here. | 637 | 67.9k | // | 638 | 67.9k | // If the current thread is already pinned (reentrantly), we must manually issue the | 639 | 67.9k | // fence. Otherwise, the following pinning will issue the fence anyway, so we don't | 640 | 67.9k | // have to. | 641 | 67.9k | if epoch::is_pinned() { | 642 | 0 | atomic::fence(Ordering::SeqCst); | 643 | 67.9k | } | 644 | | | 645 | 67.9k | let guard = &epoch::pin(); | 646 | 67.9k | | 647 | 67.9k | // Load the back index. | 648 | 67.9k | let b = self.inner.back.load(Ordering::Acquire); | 649 | 67.9k | | 650 | 67.9k | // Is the queue empty? | 651 | 67.9k | if b.wrapping_sub(f) <= 0 { | 652 | 67.9k | return Steal::Empty; | 653 | 0 | } | 654 | 0 |
| 655 | 0 | // Load the buffer and read the task at the front. | 656 | 0 | let buffer = self.inner.buffer.load(Ordering::Acquire, guard); | 657 | 0 | let task = unsafe { buffer.deref().read(f) }; | 658 | 0 |
| 659 | 0 | // Try incrementing the front index to steal the task. | 660 | 0 | // If the buffer has been swapped or the increment fails, we retry. | 661 | 0 | if self.inner.buffer.load(Ordering::Acquire, guard) != buffer | 662 | 0 | || self | 663 | 0 | .inner | 664 | 0 | .front | 665 | 0 | .compare_exchange(f, f.wrapping_add(1), Ordering::SeqCst, Ordering::Relaxed) | 666 | 0 | .is_err() | 667 | | { | 668 | | // We didn't steal this task, forget it. | 669 | 0 | return Steal::Retry; | 670 | 0 | } | 671 | 0 |
| 672 | 0 | // Return the stolen task. | 673 | 0 | Steal::Success(unsafe { task.assume_init() }) | 674 | 67.9k | } |
<crossbeam_deque::deque::Stealer<rayon_core::job::JobRef>>::steal Line | Count | Source | 632 | 774M | pub fn steal(&self) -> Steal<T> { | 633 | 774M | // Load the front index. | 634 | 774M | let f = self.inner.front.load(Ordering::Acquire); | 635 | 774M | | 636 | 774M | // A SeqCst fence is needed here. | 637 | 774M | // | 638 | 774M | // If the current thread is already pinned (reentrantly), we must manually issue the | 639 | 774M | // fence. Otherwise, the following pinning will issue the fence anyway, so we don't | 640 | 774M | // have to. | 641 | 774M | if epoch::is_pinned() { | 642 | 0 | atomic::fence(Ordering::SeqCst); | 643 | 774M | } | 644 | | | 645 | 774M | let guard = &epoch::pin(); | 646 | 774M | | 647 | 774M | // Load the back index. | 648 | 774M | let b = self.inner.back.load(Ordering::Acquire); | 649 | 774M | | 650 | 774M | // Is the queue empty? | 651 | 774M | if b.wrapping_sub(f) <= 0 { | 652 | 773M | return Steal::Empty; | 653 | 577k | } | 654 | 577k | | 655 | 577k | // Load the buffer and read the task at the front. | 656 | 577k | let buffer = self.inner.buffer.load(Ordering::Acquire, guard); | 657 | 577k | let task = unsafe { buffer.deref().read(f) }; | 658 | 577k | | 659 | 577k | // Try incrementing the front index to steal the task. | 660 | 577k | // If the buffer has been swapped or the increment fails, we retry. | 661 | 577k | if self.inner.buffer.load(Ordering::Acquire, guard) != buffer | 662 | 577k | || self | 663 | 577k | .inner | 664 | 577k | .front | 665 | 577k | .compare_exchange(f, f.wrapping_add(1), Ordering::SeqCst, Ordering::Relaxed) | 666 | 577k | .is_err() | 667 | | { | 668 | | // We didn't steal this task, forget it. | 669 | 72.5k | return Steal::Retry; | 670 | 504k | } | 671 | 504k | | 672 | 504k | // Return the stolen task. | 673 | 504k | Steal::Success(unsafe { task.assume_init() }) | 674 | 774M | } |
<crossbeam_deque::deque::Stealer<rayon_core::job::JobRef>>::steal Line | Count | Source | 632 | 109k | pub fn steal(&self) -> Steal<T> { | 633 | 109k | // Load the front index. | 634 | 109k | let f = self.inner.front.load(Ordering::Acquire); | 635 | 109k | | 636 | 109k | // A SeqCst fence is needed here. | 637 | 109k | // | 638 | 109k | // If the current thread is already pinned (reentrantly), we must manually issue the | 639 | 109k | // fence. Otherwise, the following pinning will issue the fence anyway, so we don't | 640 | 109k | // have to. | 641 | 109k | if epoch::is_pinned() { | 642 | 0 | atomic::fence(Ordering::SeqCst); | 643 | 109k | } | 644 | | | 645 | 109k | let guard = &epoch::pin(); | 646 | 109k | | 647 | 109k | // Load the back index. | 648 | 109k | let b = self.inner.back.load(Ordering::Acquire); | 649 | 109k | | 650 | 109k | // Is the queue empty? | 651 | 109k | if b.wrapping_sub(f) <= 0 { | 652 | 109k | return Steal::Empty; | 653 | 0 | } | 654 | 0 |
| 655 | 0 | // Load the buffer and read the task at the front. | 656 | 0 | let buffer = self.inner.buffer.load(Ordering::Acquire, guard); | 657 | 0 | let task = unsafe { buffer.deref().read(f) }; | 658 | 0 |
| 659 | 0 | // Try incrementing the front index to steal the task. | 660 | 0 | // If the buffer has been swapped or the increment fails, we retry. | 661 | 0 | if self.inner.buffer.load(Ordering::Acquire, guard) != buffer | 662 | 0 | || self | 663 | 0 | .inner | 664 | 0 | .front | 665 | 0 | .compare_exchange(f, f.wrapping_add(1), Ordering::SeqCst, Ordering::Relaxed) | 666 | 0 | .is_err() | 667 | | { | 668 | | // We didn't steal this task, forget it. | 669 | 0 | return Steal::Retry; | 670 | 0 | } | 671 | 0 |
| 672 | 0 | // Return the stolen task. | 673 | 0 | Steal::Success(unsafe { task.assume_init() }) | 674 | 109k | } |
Unexecuted instantiation: <crossbeam_deque::deque::Stealer<rayon_core::job::JobRef>>::steal <crossbeam_deque::deque::Stealer<rayon_core::job::JobRef>>::steal Line | Count | Source | 632 | 74.7k | pub fn steal(&self) -> Steal<T> { | 633 | 74.7k | // Load the front index. | 634 | 74.7k | let f = self.inner.front.load(Ordering::Acquire); | 635 | 74.7k | | 636 | 74.7k | // A SeqCst fence is needed here. | 637 | 74.7k | // | 638 | 74.7k | // If the current thread is already pinned (reentrantly), we must manually issue the | 639 | 74.7k | // fence. Otherwise, the following pinning will issue the fence anyway, so we don't | 640 | 74.7k | // have to. | 641 | 74.7k | if epoch::is_pinned() { | 642 | 0 | atomic::fence(Ordering::SeqCst); | 643 | 74.7k | } | 644 | | | 645 | 74.7k | let guard = &epoch::pin(); | 646 | 74.7k | | 647 | 74.7k | // Load the back index. | 648 | 74.7k | let b = self.inner.back.load(Ordering::Acquire); | 649 | 74.7k | | 650 | 74.7k | // Is the queue empty? | 651 | 74.7k | if b.wrapping_sub(f) <= 0 { | 652 | 74.7k | return Steal::Empty; | 653 | 0 | } | 654 | 0 |
| 655 | 0 | // Load the buffer and read the task at the front. | 656 | 0 | let buffer = self.inner.buffer.load(Ordering::Acquire, guard); | 657 | 0 | let task = unsafe { buffer.deref().read(f) }; | 658 | 0 |
| 659 | 0 | // Try incrementing the front index to steal the task. | 660 | 0 | // If the buffer has been swapped or the increment fails, we retry. | 661 | 0 | if self.inner.buffer.load(Ordering::Acquire, guard) != buffer | 662 | 0 | || self | 663 | 0 | .inner | 664 | 0 | .front | 665 | 0 | .compare_exchange(f, f.wrapping_add(1), Ordering::SeqCst, Ordering::Relaxed) | 666 | 0 | .is_err() | 667 | | { | 668 | | // We didn't steal this task, forget it. | 669 | 0 | return Steal::Retry; | 670 | 0 | } | 671 | 0 |
| 672 | 0 | // Return the stolen task. | 673 | 0 | Steal::Success(unsafe { task.assume_init() }) | 674 | 74.7k | } |
|
675 | | |
676 | | /// Steals a batch of tasks and pushes them into another worker. |
677 | | /// |
678 | | /// How many tasks exactly will be stolen is not specified. That said, this method will try to |
679 | | /// steal around half of the tasks in the queue, but also not more than some constant limit. |
680 | | /// |
681 | | /// # Examples |
682 | | /// |
683 | | /// ``` |
684 | | /// use crossbeam_deque::Worker; |
685 | | /// |
686 | | /// let w1 = Worker::new_fifo(); |
687 | | /// w1.push(1); |
688 | | /// w1.push(2); |
689 | | /// w1.push(3); |
690 | | /// w1.push(4); |
691 | | /// |
692 | | /// let s = w1.stealer(); |
693 | | /// let w2 = Worker::new_fifo(); |
694 | | /// |
695 | | /// let _ = s.steal_batch(&w2); |
696 | | /// assert_eq!(w2.pop(), Some(1)); |
697 | | /// assert_eq!(w2.pop(), Some(2)); |
698 | | /// ``` |
699 | | pub fn steal_batch(&self, dest: &Worker<T>) -> Steal<()> { |
700 | | self.steal_batch_with_limit(dest, MAX_BATCH) |
701 | | } |
702 | | |
703 | | /// Steals no more than `limit` of tasks and pushes them into another worker. |
704 | | /// |
705 | | /// How many tasks exactly will be stolen is not specified. That said, this method will try to |
706 | | /// steal around half of the tasks in the queue, but also not more than the given limit. |
707 | | /// |
708 | | /// # Examples |
709 | | /// |
710 | | /// ``` |
711 | | /// use crossbeam_deque::Worker; |
712 | | /// |
713 | | /// let w1 = Worker::new_fifo(); |
714 | | /// w1.push(1); |
715 | | /// w1.push(2); |
716 | | /// w1.push(3); |
717 | | /// w1.push(4); |
718 | | /// w1.push(5); |
719 | | /// w1.push(6); |
720 | | /// |
721 | | /// let s = w1.stealer(); |
722 | | /// let w2 = Worker::new_fifo(); |
723 | | /// |
724 | | /// let _ = s.steal_batch_with_limit(&w2, 2); |
725 | | /// assert_eq!(w2.pop(), Some(1)); |
726 | | /// assert_eq!(w2.pop(), Some(2)); |
727 | | /// assert_eq!(w2.pop(), None); |
728 | | /// |
729 | | /// w1.push(7); |
730 | | /// w1.push(8); |
731 | | /// // Setting a large limit does not guarantee that all elements will be popped. In this case, |
732 | | /// // half of the elements are currently popped, but the number of popped elements is considered |
733 | | /// // an implementation detail that may be changed in the future. |
734 | | /// let _ = s.steal_batch_with_limit(&w2, std::usize::MAX); |
735 | | /// assert_eq!(w2.len(), 3); |
736 | | /// ``` |
737 | | pub fn steal_batch_with_limit(&self, dest: &Worker<T>, limit: usize) -> Steal<()> { |
738 | | assert!(limit > 0); |
739 | | if Arc::ptr_eq(&self.inner, &dest.inner) { |
740 | | if dest.is_empty() { |
741 | | return Steal::Empty; |
742 | | } else { |
743 | | return Steal::Success(()); |
744 | | } |
745 | | } |
746 | | |
747 | | // Load the front index. |
748 | | let mut f = self.inner.front.load(Ordering::Acquire); |
749 | | |
750 | | // A SeqCst fence is needed here. |
751 | | // |
752 | | // If the current thread is already pinned (reentrantly), we must manually issue the |
753 | | // fence. Otherwise, the following pinning will issue the fence anyway, so we don't |
754 | | // have to. |
755 | | if epoch::is_pinned() { |
756 | | atomic::fence(Ordering::SeqCst); |
757 | | } |
758 | | |
759 | | let guard = &epoch::pin(); |
760 | | |
761 | | // Load the back index. |
762 | | let b = self.inner.back.load(Ordering::Acquire); |
763 | | |
764 | | // Is the queue empty? |
765 | | let len = b.wrapping_sub(f); |
766 | | if len <= 0 { |
767 | | return Steal::Empty; |
768 | | } |
769 | | |
770 | | // Reserve capacity for the stolen batch. |
771 | | let batch_size = cmp::min((len as usize + 1) / 2, limit); |
772 | | dest.reserve(batch_size); |
773 | | let mut batch_size = batch_size as isize; |
774 | | |
775 | | // Get the destination buffer and back index. |
776 | | let dest_buffer = dest.buffer.get(); |
777 | | let mut dest_b = dest.inner.back.load(Ordering::Relaxed); |
778 | | |
779 | | // Load the buffer. |
780 | | let buffer = self.inner.buffer.load(Ordering::Acquire, guard); |
781 | | |
782 | | match self.flavor { |
783 | | // Steal a batch of tasks from the front at once. |
784 | | Flavor::Fifo => { |
785 | | // Copy the batch from the source to the destination buffer. |
786 | | match dest.flavor { |
787 | | Flavor::Fifo => { |
788 | | for i in 0..batch_size { |
789 | | unsafe { |
790 | | let task = buffer.deref().read(f.wrapping_add(i)); |
791 | | dest_buffer.write(dest_b.wrapping_add(i), task); |
792 | | } |
793 | | } |
794 | | } |
795 | | Flavor::Lifo => { |
796 | | for i in 0..batch_size { |
797 | | unsafe { |
798 | | let task = buffer.deref().read(f.wrapping_add(i)); |
799 | | dest_buffer.write(dest_b.wrapping_add(batch_size - 1 - i), task); |
800 | | } |
801 | | } |
802 | | } |
803 | | } |
804 | | |
805 | | // Try incrementing the front index to steal the batch. |
806 | | // If the buffer has been swapped or the increment fails, we retry. |
807 | | if self.inner.buffer.load(Ordering::Acquire, guard) != buffer |
808 | | || self |
809 | | .inner |
810 | | .front |
811 | | .compare_exchange( |
812 | | f, |
813 | | f.wrapping_add(batch_size), |
814 | | Ordering::SeqCst, |
815 | | Ordering::Relaxed, |
816 | | ) |
817 | | .is_err() |
818 | | { |
819 | | return Steal::Retry; |
820 | | } |
821 | | |
822 | | dest_b = dest_b.wrapping_add(batch_size); |
823 | | } |
824 | | |
825 | | // Steal a batch of tasks from the front one by one. |
826 | | Flavor::Lifo => { |
827 | | // This loop may modify the batch_size, which triggers a clippy lint warning. |
828 | | // Use a new variable to avoid the warning, and to make it clear we aren't |
829 | | // modifying the loop exit condition during iteration. |
830 | | let original_batch_size = batch_size; |
831 | | |
832 | | for i in 0..original_batch_size { |
833 | | // If this is not the first steal, check whether the queue is empty. |
834 | | if i > 0 { |
835 | | // We've already got the current front index. Now execute the fence to |
836 | | // synchronize with other threads. |
837 | | atomic::fence(Ordering::SeqCst); |
838 | | |
839 | | // Load the back index. |
840 | | let b = self.inner.back.load(Ordering::Acquire); |
841 | | |
842 | | // Is the queue empty? |
843 | | if b.wrapping_sub(f) <= 0 { |
844 | | batch_size = i; |
845 | | break; |
846 | | } |
847 | | } |
848 | | |
849 | | // Read the task at the front. |
850 | | let task = unsafe { buffer.deref().read(f) }; |
851 | | |
852 | | // Try incrementing the front index to steal the task. |
853 | | // If the buffer has been swapped or the increment fails, we retry. |
854 | | if self.inner.buffer.load(Ordering::Acquire, guard) != buffer |
855 | | || self |
856 | | .inner |
857 | | .front |
858 | | .compare_exchange( |
859 | | f, |
860 | | f.wrapping_add(1), |
861 | | Ordering::SeqCst, |
862 | | Ordering::Relaxed, |
863 | | ) |
864 | | .is_err() |
865 | | { |
866 | | // We didn't steal this task, forget it and break from the loop. |
867 | | batch_size = i; |
868 | | break; |
869 | | } |
870 | | |
871 | | // Write the stolen task into the destination buffer. |
872 | | unsafe { |
873 | | dest_buffer.write(dest_b, task); |
874 | | } |
875 | | |
876 | | // Move the source front index and the destination back index one step forward. |
877 | | f = f.wrapping_add(1); |
878 | | dest_b = dest_b.wrapping_add(1); |
879 | | } |
880 | | |
881 | | // If we didn't steal anything, the operation needs to be retried. |
882 | | if batch_size == 0 { |
883 | | return Steal::Retry; |
884 | | } |
885 | | |
886 | | // If stealing into a FIFO queue, stolen tasks need to be reversed. |
887 | | if dest.flavor == Flavor::Fifo { |
888 | | for i in 0..batch_size / 2 { |
889 | | unsafe { |
890 | | let i1 = dest_b.wrapping_sub(batch_size - i); |
891 | | let i2 = dest_b.wrapping_sub(i + 1); |
892 | | let t1 = dest_buffer.read(i1); |
893 | | let t2 = dest_buffer.read(i2); |
894 | | dest_buffer.write(i1, t2); |
895 | | dest_buffer.write(i2, t1); |
896 | | } |
897 | | } |
898 | | } |
899 | | } |
900 | | } |
901 | | |
902 | | atomic::fence(Ordering::Release); |
903 | | |
904 | | // Update the back index in the destination queue. |
905 | | // |
906 | | // This ordering could be `Relaxed`, but then thread sanitizer would falsely report data |
907 | | // races because it doesn't understand fences. |
908 | | dest.inner.back.store(dest_b, Ordering::Release); |
909 | | |
910 | | // Return with success. |
911 | | Steal::Success(()) |
912 | | } |
913 | | |
914 | | /// Steals a batch of tasks, pushes them into another worker, and pops a task from that worker. |
915 | | /// |
916 | | /// How many tasks exactly will be stolen is not specified. That said, this method will try to |
917 | | /// steal around half of the tasks in the queue, but also not more than some constant limit. |
918 | | /// |
919 | | /// # Examples |
920 | | /// |
921 | | /// ``` |
922 | | /// use crossbeam_deque::{Steal, Worker}; |
923 | | /// |
924 | | /// let w1 = Worker::new_fifo(); |
925 | | /// w1.push(1); |
926 | | /// w1.push(2); |
927 | | /// w1.push(3); |
928 | | /// w1.push(4); |
929 | | /// |
930 | | /// let s = w1.stealer(); |
931 | | /// let w2 = Worker::new_fifo(); |
932 | | /// |
933 | | /// assert_eq!(s.steal_batch_and_pop(&w2), Steal::Success(1)); |
934 | | /// assert_eq!(w2.pop(), Some(2)); |
935 | | /// ``` |
936 | | pub fn steal_batch_and_pop(&self, dest: &Worker<T>) -> Steal<T> { |
937 | | self.steal_batch_with_limit_and_pop(dest, MAX_BATCH) |
938 | | } |
939 | | |
940 | | /// Steals no more than `limit` of tasks, pushes them into another worker, and pops a task from |
941 | | /// that worker. |
942 | | /// |
943 | | /// How many tasks exactly will be stolen is not specified. That said, this method will try to |
944 | | /// steal around half of the tasks in the queue, but also not more than the given limit. |
945 | | /// |
946 | | /// # Examples |
947 | | /// |
948 | | /// ``` |
949 | | /// use crossbeam_deque::{Steal, Worker}; |
950 | | /// |
951 | | /// let w1 = Worker::new_fifo(); |
952 | | /// w1.push(1); |
953 | | /// w1.push(2); |
954 | | /// w1.push(3); |
955 | | /// w1.push(4); |
956 | | /// w1.push(5); |
957 | | /// w1.push(6); |
958 | | /// |
959 | | /// let s = w1.stealer(); |
960 | | /// let w2 = Worker::new_fifo(); |
961 | | /// |
962 | | /// assert_eq!(s.steal_batch_with_limit_and_pop(&w2, 2), Steal::Success(1)); |
963 | | /// assert_eq!(w2.pop(), Some(2)); |
964 | | /// assert_eq!(w2.pop(), None); |
965 | | /// |
966 | | /// w1.push(7); |
967 | | /// w1.push(8); |
968 | | /// // Setting a large limit does not guarantee that all elements will be popped. In this case, |
969 | | /// // half of the elements are currently popped, but the number of popped elements is considered |
970 | | /// // an implementation detail that may be changed in the future. |
971 | | /// assert_eq!(s.steal_batch_with_limit_and_pop(&w2, std::usize::MAX), Steal::Success(3)); |
972 | | /// assert_eq!(w2.pop(), Some(4)); |
973 | | /// assert_eq!(w2.pop(), Some(5)); |
974 | | /// assert_eq!(w2.pop(), None); |
975 | | /// ``` |
976 | | pub fn steal_batch_with_limit_and_pop(&self, dest: &Worker<T>, limit: usize) -> Steal<T> { |
977 | | assert!(limit > 0); |
978 | | if Arc::ptr_eq(&self.inner, &dest.inner) { |
979 | | match dest.pop() { |
980 | | None => return Steal::Empty, |
981 | | Some(task) => return Steal::Success(task), |
982 | | } |
983 | | } |
984 | | |
985 | | // Load the front index. |
986 | | let mut f = self.inner.front.load(Ordering::Acquire); |
987 | | |
988 | | // A SeqCst fence is needed here. |
989 | | // |
990 | | // If the current thread is already pinned (reentrantly), we must manually issue the |
991 | | // fence. Otherwise, the following pinning will issue the fence anyway, so we don't |
992 | | // have to. |
993 | | if epoch::is_pinned() { |
994 | | atomic::fence(Ordering::SeqCst); |
995 | | } |
996 | | |
997 | | let guard = &epoch::pin(); |
998 | | |
999 | | // Load the back index. |
1000 | | let b = self.inner.back.load(Ordering::Acquire); |
1001 | | |
1002 | | // Is the queue empty? |
1003 | | let len = b.wrapping_sub(f); |
1004 | | if len <= 0 { |
1005 | | return Steal::Empty; |
1006 | | } |
1007 | | |
1008 | | // Reserve capacity for the stolen batch. |
1009 | | let batch_size = cmp::min((len as usize - 1) / 2, limit - 1); |
1010 | | dest.reserve(batch_size); |
1011 | | let mut batch_size = batch_size as isize; |
1012 | | |
1013 | | // Get the destination buffer and back index. |
1014 | | let dest_buffer = dest.buffer.get(); |
1015 | | let mut dest_b = dest.inner.back.load(Ordering::Relaxed); |
1016 | | |
1017 | | // Load the buffer |
1018 | | let buffer = self.inner.buffer.load(Ordering::Acquire, guard); |
1019 | | |
1020 | | // Read the task at the front. |
1021 | | let mut task = unsafe { buffer.deref().read(f) }; |
1022 | | |
1023 | | match self.flavor { |
1024 | | // Steal a batch of tasks from the front at once. |
1025 | | Flavor::Fifo => { |
1026 | | // Copy the batch from the source to the destination buffer. |
1027 | | match dest.flavor { |
1028 | | Flavor::Fifo => { |
1029 | | for i in 0..batch_size { |
1030 | | unsafe { |
1031 | | let task = buffer.deref().read(f.wrapping_add(i + 1)); |
1032 | | dest_buffer.write(dest_b.wrapping_add(i), task); |
1033 | | } |
1034 | | } |
1035 | | } |
1036 | | Flavor::Lifo => { |
1037 | | for i in 0..batch_size { |
1038 | | unsafe { |
1039 | | let task = buffer.deref().read(f.wrapping_add(i + 1)); |
1040 | | dest_buffer.write(dest_b.wrapping_add(batch_size - 1 - i), task); |
1041 | | } |
1042 | | } |
1043 | | } |
1044 | | } |
1045 | | |
1046 | | // Try incrementing the front index to steal the task. |
1047 | | // If the buffer has been swapped or the increment fails, we retry. |
1048 | | if self.inner.buffer.load(Ordering::Acquire, guard) != buffer |
1049 | | || self |
1050 | | .inner |
1051 | | .front |
1052 | | .compare_exchange( |
1053 | | f, |
1054 | | f.wrapping_add(batch_size + 1), |
1055 | | Ordering::SeqCst, |
1056 | | Ordering::Relaxed, |
1057 | | ) |
1058 | | .is_err() |
1059 | | { |
1060 | | // We didn't steal this task, forget it. |
1061 | | return Steal::Retry; |
1062 | | } |
1063 | | |
1064 | | dest_b = dest_b.wrapping_add(batch_size); |
1065 | | } |
1066 | | |
1067 | | // Steal a batch of tasks from the front one by one. |
1068 | | Flavor::Lifo => { |
1069 | | // Try incrementing the front index to steal the task. |
1070 | | if self |
1071 | | .inner |
1072 | | .front |
1073 | | .compare_exchange(f, f.wrapping_add(1), Ordering::SeqCst, Ordering::Relaxed) |
1074 | | .is_err() |
1075 | | { |
1076 | | // We didn't steal this task, forget it. |
1077 | | return Steal::Retry; |
1078 | | } |
1079 | | |
1080 | | // Move the front index one step forward. |
1081 | | f = f.wrapping_add(1); |
1082 | | |
1083 | | // Repeat the same procedure for the batch steals. |
1084 | | // |
1085 | | // This loop may modify the batch_size, which triggers a clippy lint warning. |
1086 | | // Use a new variable to avoid the warning, and to make it clear we aren't |
1087 | | // modifying the loop exit condition during iteration. |
1088 | | let original_batch_size = batch_size; |
1089 | | for i in 0..original_batch_size { |
1090 | | // We've already got the current front index. Now execute the fence to |
1091 | | // synchronize with other threads. |
1092 | | atomic::fence(Ordering::SeqCst); |
1093 | | |
1094 | | // Load the back index. |
1095 | | let b = self.inner.back.load(Ordering::Acquire); |
1096 | | |
1097 | | // Is the queue empty? |
1098 | | if b.wrapping_sub(f) <= 0 { |
1099 | | batch_size = i; |
1100 | | break; |
1101 | | } |
1102 | | |
1103 | | // Read the task at the front. |
1104 | | let tmp = unsafe { buffer.deref().read(f) }; |
1105 | | |
1106 | | // Try incrementing the front index to steal the task. |
1107 | | // If the buffer has been swapped or the increment fails, we retry. |
1108 | | if self.inner.buffer.load(Ordering::Acquire, guard) != buffer |
1109 | | || self |
1110 | | .inner |
1111 | | .front |
1112 | | .compare_exchange( |
1113 | | f, |
1114 | | f.wrapping_add(1), |
1115 | | Ordering::SeqCst, |
1116 | | Ordering::Relaxed, |
1117 | | ) |
1118 | | .is_err() |
1119 | | { |
1120 | | // We didn't steal this task, forget it and break from the loop. |
1121 | | batch_size = i; |
1122 | | break; |
1123 | | } |
1124 | | |
1125 | | // Write the previously stolen task into the destination buffer. |
1126 | | unsafe { |
1127 | | dest_buffer.write(dest_b, mem::replace(&mut task, tmp)); |
1128 | | } |
1129 | | |
1130 | | // Move the source front index and the destination back index one step forward. |
1131 | | f = f.wrapping_add(1); |
1132 | | dest_b = dest_b.wrapping_add(1); |
1133 | | } |
1134 | | |
1135 | | // If stealing into a FIFO queue, stolen tasks need to be reversed. |
1136 | | if dest.flavor == Flavor::Fifo { |
1137 | | for i in 0..batch_size / 2 { |
1138 | | unsafe { |
1139 | | let i1 = dest_b.wrapping_sub(batch_size - i); |
1140 | | let i2 = dest_b.wrapping_sub(i + 1); |
1141 | | let t1 = dest_buffer.read(i1); |
1142 | | let t2 = dest_buffer.read(i2); |
1143 | | dest_buffer.write(i1, t2); |
1144 | | dest_buffer.write(i2, t1); |
1145 | | } |
1146 | | } |
1147 | | } |
1148 | | } |
1149 | | } |
1150 | | |
1151 | | atomic::fence(Ordering::Release); |
1152 | | |
1153 | | // Update the back index in the destination queue. |
1154 | | // |
1155 | | // This ordering could be `Relaxed`, but then thread sanitizer would falsely report data |
1156 | | // races because it doesn't understand fences. |
1157 | | dest.inner.back.store(dest_b, Ordering::Release); |
1158 | | |
1159 | | // Return with success. |
1160 | | Steal::Success(unsafe { task.assume_init() }) |
1161 | | } |
1162 | | } |
1163 | | |
1164 | | impl<T> Clone for Stealer<T> { |
1165 | | fn clone(&self) -> Stealer<T> { |
1166 | | Stealer { |
1167 | | inner: self.inner.clone(), |
1168 | | flavor: self.flavor, |
1169 | | } |
1170 | | } |
1171 | | } |
1172 | | |
1173 | | impl<T> fmt::Debug for Stealer<T> { |
1174 | | fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result { |
1175 | | f.pad("Stealer { .. }") |
1176 | | } |
1177 | | } |
1178 | | |
1179 | | // Bits indicating the state of a slot: |
1180 | | // * If a task has been written into the slot, `WRITE` is set. |
1181 | | // * If a task has been read from the slot, `READ` is set. |
1182 | | // * If the block is being destroyed, `DESTROY` is set. |
1183 | | const WRITE: usize = 1; |
1184 | | const READ: usize = 2; |
1185 | | const DESTROY: usize = 4; |
1186 | | |
1187 | | // Each block covers one "lap" of indices. |
1188 | | const LAP: usize = 64; |
1189 | | // The maximum number of values a block can hold. |
1190 | | const BLOCK_CAP: usize = LAP - 1; |
1191 | | // How many lower bits are reserved for metadata. |
1192 | | const SHIFT: usize = 1; |
1193 | | // Indicates that the block is not the last one. |
1194 | | const HAS_NEXT: usize = 1; |
1195 | | |
1196 | | /// A slot in a block. |
1197 | | struct Slot<T> { |
1198 | | /// The task. |
1199 | | task: UnsafeCell<MaybeUninit<T>>, |
1200 | | |
1201 | | /// The state of the slot. |
1202 | | state: AtomicUsize, |
1203 | | } |
1204 | | |
1205 | | impl<T> Slot<T> { |
1206 | | const UNINIT: Self = Self { |
1207 | | task: UnsafeCell::new(MaybeUninit::uninit()), |
1208 | | state: AtomicUsize::new(0), |
1209 | | }; |
1210 | | |
1211 | | /// Waits until a task is written into the slot. |
1212 | 33.4k | fn wait_write(&self) { |
1213 | 33.4k | let backoff = Backoff::new(); |
1214 | 33.5k | while self.state.load(Ordering::Acquire) & WRITE == 0 { |
1215 | 34 | backoff.snooze(); |
1216 | 34 | } |
1217 | 33.4k | } |
1218 | | } |
1219 | | |
1220 | | /// A block in a linked list. |
1221 | | /// |
1222 | | /// Each block in the list can hold up to `BLOCK_CAP` values. |
1223 | | struct Block<T> { |
1224 | | /// The next block in the linked list. |
1225 | | next: AtomicPtr<Block<T>>, |
1226 | | |
1227 | | /// Slots for values. |
1228 | | slots: [Slot<T>; BLOCK_CAP], |
1229 | | } |
1230 | | |
1231 | | impl<T> Block<T> { |
1232 | | /// Creates an empty block that starts at `start_index`. |
1233 | 629 | fn new() -> Block<T> { |
1234 | 629 | Self { |
1235 | 629 | next: AtomicPtr::new(ptr::null_mut()), |
1236 | 629 | slots: [Slot::UNINIT; BLOCK_CAP], |
1237 | 629 | } |
1238 | 629 | } |
1239 | | |
1240 | | /// Waits until the next pointer is set. |
1241 | 530 | fn wait_next(&self) -> *mut Block<T> { |
1242 | 530 | let backoff = Backoff::new(); |
1243 | | loop { |
1244 | 530 | let next = self.next.load(Ordering::Acquire); |
1245 | 530 | if !next.is_null() { |
1246 | 530 | return next; |
1247 | 0 | } |
1248 | 0 | backoff.snooze(); |
1249 | | } |
1250 | 530 | } |
1251 | | |
1252 | | /// Sets the `DESTROY` bit in slots starting from `start` and destroys the block. |
1253 | 530 | unsafe fn destroy(this: *mut Block<T>, count: usize) { |
1254 | | // It is not necessary to set the `DESTROY` bit in the last slot because that slot has |
1255 | | // begun destruction of the block. |
1256 | 32.8k | for i in (0..count).rev() { |
1257 | 32.8k | let slot = (*this).slots.get_unchecked(i); |
1258 | 32.8k | |
1259 | 32.8k | // Mark the `DESTROY` bit if a thread is still using the slot. |
1260 | 32.8k | if slot.state.load(Ordering::Acquire) & READ == 0 |
1261 | 0 | && slot.state.fetch_or(DESTROY, Ordering::AcqRel) & READ == 0 |
1262 | | { |
1263 | | // If a thread is still using the slot, it will continue destruction of the block. |
1264 | 0 | return; |
1265 | 32.8k | } |
1266 | | } |
1267 | | |
1268 | | // No thread is using the block, now it is safe to destroy it. |
1269 | 530 | drop(Box::from_raw(this)); |
1270 | 530 | } |
1271 | | } |
1272 | | |
1273 | | /// A position in a queue. |
1274 | | struct Position<T> { |
1275 | | /// The index in the queue. |
1276 | | index: AtomicUsize, |
1277 | | |
1278 | | /// The block in the linked list. |
1279 | | block: AtomicPtr<Block<T>>, |
1280 | | } |
1281 | | |
1282 | | /// An injector queue. |
1283 | | /// |
1284 | | /// This is a FIFO queue that can be shared among multiple threads. Task schedulers typically have |
1285 | | /// a single injector queue, which is the entry point for new tasks. |
1286 | | /// |
1287 | | /// # Examples |
1288 | | /// |
1289 | | /// ``` |
1290 | | /// use crossbeam_deque::{Injector, Steal}; |
1291 | | /// |
1292 | | /// let q = Injector::new(); |
1293 | | /// q.push(1); |
1294 | | /// q.push(2); |
1295 | | /// |
1296 | | /// assert_eq!(q.steal(), Steal::Success(1)); |
1297 | | /// assert_eq!(q.steal(), Steal::Success(2)); |
1298 | | /// assert_eq!(q.steal(), Steal::Empty); |
1299 | | /// ``` |
1300 | | pub struct Injector<T> { |
1301 | | /// The head of the queue. |
1302 | | head: CachePadded<Position<T>>, |
1303 | | |
1304 | | /// The tail of the queue. |
1305 | | tail: CachePadded<Position<T>>, |
1306 | | |
1307 | | /// Indicates that dropping a `Injector<T>` may drop values of type `T`. |
1308 | | _marker: PhantomData<T>, |
1309 | | } |
1310 | | |
1311 | | unsafe impl<T: Send> Send for Injector<T> {} |
1312 | | unsafe impl<T: Send> Sync for Injector<T> {} |
1313 | | |
1314 | | impl<T> Default for Injector<T> { |
1315 | 99 | fn default() -> Self { |
1316 | 99 | let block = Box::into_raw(Box::new(Block::<T>::new())); |
1317 | 99 | Self { |
1318 | 99 | head: CachePadded::new(Position { |
1319 | 99 | block: AtomicPtr::new(block), |
1320 | 99 | index: AtomicUsize::new(0), |
1321 | 99 | }), |
1322 | 99 | tail: CachePadded::new(Position { |
1323 | 99 | block: AtomicPtr::new(block), |
1324 | 99 | index: AtomicUsize::new(0), |
1325 | 99 | }), |
1326 | 99 | _marker: PhantomData, |
1327 | 99 | } |
1328 | 99 | } |
1329 | | } |
1330 | | |
1331 | | impl<T> Injector<T> { |
1332 | | /// Creates a new injector queue. |
1333 | | /// |
1334 | | /// # Examples |
1335 | | /// |
1336 | | /// ``` |
1337 | | /// use crossbeam_deque::Injector; |
1338 | | /// |
1339 | | /// let q = Injector::<i32>::new(); |
1340 | | /// ``` |
1341 | 99 | pub fn new() -> Injector<T> { |
1342 | 99 | Self::default() |
1343 | 99 | } |
1344 | | |
1345 | | /// Pushes a task into the queue. |
1346 | | /// |
1347 | | /// # Examples |
1348 | | /// |
1349 | | /// ``` |
1350 | | /// use crossbeam_deque::Injector; |
1351 | | /// |
1352 | | /// let w = Injector::new(); |
1353 | | /// w.push(1); |
1354 | | /// w.push(2); |
1355 | | /// ``` |
1356 | 33.4k | pub fn push(&self, task: T) { |
1357 | 33.4k | let backoff = Backoff::new(); |
1358 | 33.4k | let mut tail = self.tail.index.load(Ordering::Acquire); |
1359 | 33.4k | let mut block = self.tail.block.load(Ordering::Acquire); |
1360 | 33.4k | let mut next_block = None; |
1361 | | |
1362 | 33.4k | loop { |
1363 | 33.4k | // Calculate the offset of the index into the block. |
1364 | 33.4k | let offset = (tail >> SHIFT) % LAP; |
1365 | 33.4k | |
1366 | 33.4k | // If we reached the end of the block, wait until the next one is installed. |
1367 | 33.4k | if offset == BLOCK_CAP { |
1368 | 0 | backoff.snooze(); |
1369 | 0 | tail = self.tail.index.load(Ordering::Acquire); |
1370 | 0 | block = self.tail.block.load(Ordering::Acquire); |
1371 | 0 | continue; |
1372 | 33.4k | } |
1373 | 33.4k | |
1374 | 33.4k | // If we're going to have to install the next block, allocate it in advance in order to |
1375 | 33.4k | // make the wait for other threads as short as possible. |
1376 | 33.4k | if offset + 1 == BLOCK_CAP && next_block.is_none() { |
1377 | 530 | next_block = Some(Box::new(Block::<T>::new())); |
1378 | 32.9k | } |
1379 | | |
1380 | 33.4k | let new_tail = tail + (1 << SHIFT); |
1381 | 33.4k | |
1382 | 33.4k | // Try advancing the tail forward. |
1383 | 33.4k | match self.tail.index.compare_exchange_weak( |
1384 | 33.4k | tail, |
1385 | 33.4k | new_tail, |
1386 | 33.4k | Ordering::SeqCst, |
1387 | 33.4k | Ordering::Acquire, |
1388 | 33.4k | ) { |
1389 | | Ok(_) => unsafe { |
1390 | | // If we've reached the end of the block, install the next one. |
1391 | 33.4k | if offset + 1 == BLOCK_CAP { |
1392 | 530 | let next_block = Box::into_raw(next_block.unwrap()); |
1393 | 530 | let next_index = new_tail.wrapping_add(1 << SHIFT); |
1394 | 530 | |
1395 | 530 | self.tail.block.store(next_block, Ordering::Release); |
1396 | 530 | self.tail.index.store(next_index, Ordering::Release); |
1397 | 530 | (*block).next.store(next_block, Ordering::Release); |
1398 | 32.9k | } |
1399 | | |
1400 | | // Write the task into the slot. |
1401 | 33.4k | let slot = (*block).slots.get_unchecked(offset); |
1402 | 33.4k | slot.task.get().write(MaybeUninit::new(task)); |
1403 | 33.4k | slot.state.fetch_or(WRITE, Ordering::Release); |
1404 | 33.4k | |
1405 | 33.4k | return; |
1406 | | }, |
1407 | 0 | Err(t) => { |
1408 | 0 | tail = t; |
1409 | 0 | block = self.tail.block.load(Ordering::Acquire); |
1410 | 0 | backoff.spin(); |
1411 | 0 | } |
1412 | | } |
1413 | | } |
1414 | 33.4k | } |
1415 | | |
1416 | | /// Steals a task from the queue. |
1417 | | /// |
1418 | | /// # Examples |
1419 | | /// |
1420 | | /// ``` |
1421 | | /// use crossbeam_deque::{Injector, Steal}; |
1422 | | /// |
1423 | | /// let q = Injector::new(); |
1424 | | /// q.push(1); |
1425 | | /// q.push(2); |
1426 | | /// |
1427 | | /// assert_eq!(q.steal(), Steal::Success(1)); |
1428 | | /// assert_eq!(q.steal(), Steal::Success(2)); |
1429 | | /// assert_eq!(q.steal(), Steal::Empty); |
1430 | | /// ``` |
1431 | 23.9M | pub fn steal(&self) -> Steal<T> { |
1432 | 23.9M | let mut head; |
1433 | 23.9M | let mut block; |
1434 | 23.9M | let mut offset; |
1435 | 23.9M | |
1436 | 23.9M | let backoff = Backoff::new(); |
1437 | 23.9M | loop { |
1438 | 23.9M | head = self.head.index.load(Ordering::Acquire); |
1439 | 23.9M | block = self.head.block.load(Ordering::Acquire); |
1440 | 23.9M | |
1441 | 23.9M | // Calculate the offset of the index into the block. |
1442 | 23.9M | offset = (head >> SHIFT) % LAP; |
1443 | 23.9M | |
1444 | 23.9M | // If we reached the end of the block, wait until the next one is installed. |
1445 | 23.9M | if offset == BLOCK_CAP { |
1446 | 38 | backoff.snooze(); |
1447 | 38 | } else { |
1448 | 23.9M | break; |
1449 | 23.9M | } |
1450 | 23.9M | } |
1451 | 23.9M | |
1452 | 23.9M | let mut new_head = head + (1 << SHIFT); |
1453 | 23.9M | |
1454 | 23.9M | if new_head & HAS_NEXT == 0 { |
1455 | 23.9M | atomic::fence(Ordering::SeqCst); |
1456 | 23.9M | let tail = self.tail.index.load(Ordering::Relaxed); |
1457 | 23.9M | |
1458 | 23.9M | // If the tail equals the head, that means the queue is empty. |
1459 | 23.9M | if head >> SHIFT == tail >> SHIFT { |
1460 | 23.9M | return Steal::Empty; |
1461 | 33.8k | } |
1462 | 33.8k | |
1463 | 33.8k | // If head and tail are not in the same block, set `HAS_NEXT` in head. |
1464 | 33.8k | if (head >> SHIFT) / LAP != (tail >> SHIFT) / LAP { |
1465 | 539 | new_head |= HAS_NEXT; |
1466 | 33.3k | } |
1467 | 0 | } |
1468 | | |
1469 | | // Try moving the head index forward. |
1470 | 33.8k | if self |
1471 | 33.8k | .head |
1472 | 33.8k | .index |
1473 | 33.8k | .compare_exchange_weak(head, new_head, Ordering::SeqCst, Ordering::Acquire) |
1474 | 33.8k | .is_err() |
1475 | | { |
1476 | 402 | return Steal::Retry; |
1477 | 33.4k | } |
1478 | 33.4k | |
1479 | 33.4k | unsafe { |
1480 | 33.4k | // If we've reached the end of the block, move to the next one. |
1481 | 33.4k | if offset + 1 == BLOCK_CAP { |
1482 | 530 | let next = (*block).wait_next(); |
1483 | 530 | let mut next_index = (new_head & !HAS_NEXT).wrapping_add(1 << SHIFT); |
1484 | 530 | if !(*next).next.load(Ordering::Relaxed).is_null() { |
1485 | 0 | next_index |= HAS_NEXT; |
1486 | 530 | } |
1487 | | |
1488 | 530 | self.head.block.store(next, Ordering::Release); |
1489 | 530 | self.head.index.store(next_index, Ordering::Release); |
1490 | 32.9k | } |
1491 | | |
1492 | | // Read the task. |
1493 | 33.4k | let slot = (*block).slots.get_unchecked(offset); |
1494 | 33.4k | slot.wait_write(); |
1495 | 33.4k | let task = slot.task.get().read().assume_init(); |
1496 | 33.4k | |
1497 | 33.4k | // Destroy the block if we've reached the end, or if another thread wanted to destroy |
1498 | 33.4k | // but couldn't because we were busy reading from the slot. |
1499 | 33.4k | if (offset + 1 == BLOCK_CAP) |
1500 | 32.9k | || (slot.state.fetch_or(READ, Ordering::AcqRel) & DESTROY != 0) |
1501 | 530 | { |
1502 | 530 | Block::destroy(block, offset); |
1503 | 32.9k | } |
1504 | | |
1505 | 33.4k | Steal::Success(task) |
1506 | | } |
1507 | 23.9M | } |
1508 | | |
1509 | | /// Steals a batch of tasks and pushes them into a worker. |
1510 | | /// |
1511 | | /// How many tasks exactly will be stolen is not specified. That said, this method will try to |
1512 | | /// steal around half of the tasks in the queue, but also not more than some constant limit. |
1513 | | /// |
1514 | | /// # Examples |
1515 | | /// |
1516 | | /// ``` |
1517 | | /// use crossbeam_deque::{Injector, Worker}; |
1518 | | /// |
1519 | | /// let q = Injector::new(); |
1520 | | /// q.push(1); |
1521 | | /// q.push(2); |
1522 | | /// q.push(3); |
1523 | | /// q.push(4); |
1524 | | /// |
1525 | | /// let w = Worker::new_fifo(); |
1526 | | /// let _ = q.steal_batch(&w); |
1527 | | /// assert_eq!(w.pop(), Some(1)); |
1528 | | /// assert_eq!(w.pop(), Some(2)); |
1529 | | /// ``` |
1530 | | pub fn steal_batch(&self, dest: &Worker<T>) -> Steal<()> { |
1531 | | self.steal_batch_with_limit(dest, MAX_BATCH) |
1532 | | } |
1533 | | |
1534 | | /// Steals no more than of tasks and pushes them into a worker. |
1535 | | /// |
1536 | | /// How many tasks exactly will be stolen is not specified. That said, this method will try to |
1537 | | /// steal around half of the tasks in the queue, but also not more than some constant limit. |
1538 | | /// |
1539 | | /// # Examples |
1540 | | /// |
1541 | | /// ``` |
1542 | | /// use crossbeam_deque::{Injector, Worker}; |
1543 | | /// |
1544 | | /// let q = Injector::new(); |
1545 | | /// q.push(1); |
1546 | | /// q.push(2); |
1547 | | /// q.push(3); |
1548 | | /// q.push(4); |
1549 | | /// q.push(5); |
1550 | | /// q.push(6); |
1551 | | /// |
1552 | | /// let w = Worker::new_fifo(); |
1553 | | /// let _ = q.steal_batch_with_limit(&w, 2); |
1554 | | /// assert_eq!(w.pop(), Some(1)); |
1555 | | /// assert_eq!(w.pop(), Some(2)); |
1556 | | /// assert_eq!(w.pop(), None); |
1557 | | /// |
1558 | | /// q.push(7); |
1559 | | /// q.push(8); |
1560 | | /// // Setting a large limit does not guarantee that all elements will be popped. In this case, |
1561 | | /// // half of the elements are currently popped, but the number of popped elements is considered |
1562 | | /// // an implementation detail that may be changed in the future. |
1563 | | /// let _ = q.steal_batch_with_limit(&w, std::usize::MAX); |
1564 | | /// assert_eq!(w.len(), 3); |
1565 | | /// ``` |
1566 | | pub fn steal_batch_with_limit(&self, dest: &Worker<T>, limit: usize) -> Steal<()> { |
1567 | | assert!(limit > 0); |
1568 | | let mut head; |
1569 | | let mut block; |
1570 | | let mut offset; |
1571 | | |
1572 | | let backoff = Backoff::new(); |
1573 | | loop { |
1574 | | head = self.head.index.load(Ordering::Acquire); |
1575 | | block = self.head.block.load(Ordering::Acquire); |
1576 | | |
1577 | | // Calculate the offset of the index into the block. |
1578 | | offset = (head >> SHIFT) % LAP; |
1579 | | |
1580 | | // If we reached the end of the block, wait until the next one is installed. |
1581 | | if offset == BLOCK_CAP { |
1582 | | backoff.snooze(); |
1583 | | } else { |
1584 | | break; |
1585 | | } |
1586 | | } |
1587 | | |
1588 | | let mut new_head = head; |
1589 | | let advance; |
1590 | | |
1591 | | if new_head & HAS_NEXT == 0 { |
1592 | | atomic::fence(Ordering::SeqCst); |
1593 | | let tail = self.tail.index.load(Ordering::Relaxed); |
1594 | | |
1595 | | // If the tail equals the head, that means the queue is empty. |
1596 | | if head >> SHIFT == tail >> SHIFT { |
1597 | | return Steal::Empty; |
1598 | | } |
1599 | | |
1600 | | // If head and tail are not in the same block, set `HAS_NEXT` in head. Also, calculate |
1601 | | // the right batch size to steal. |
1602 | | if (head >> SHIFT) / LAP != (tail >> SHIFT) / LAP { |
1603 | | new_head |= HAS_NEXT; |
1604 | | // We can steal all tasks till the end of the block. |
1605 | | advance = (BLOCK_CAP - offset).min(limit); |
1606 | | } else { |
1607 | | let len = (tail - head) >> SHIFT; |
1608 | | // Steal half of the available tasks. |
1609 | | advance = ((len + 1) / 2).min(limit); |
1610 | | } |
1611 | | } else { |
1612 | | // We can steal all tasks till the end of the block. |
1613 | | advance = (BLOCK_CAP - offset).min(limit); |
1614 | | } |
1615 | | |
1616 | | new_head += advance << SHIFT; |
1617 | | let new_offset = offset + advance; |
1618 | | |
1619 | | // Try moving the head index forward. |
1620 | | if self |
1621 | | .head |
1622 | | .index |
1623 | | .compare_exchange_weak(head, new_head, Ordering::SeqCst, Ordering::Acquire) |
1624 | | .is_err() |
1625 | | { |
1626 | | return Steal::Retry; |
1627 | | } |
1628 | | |
1629 | | // Reserve capacity for the stolen batch. |
1630 | | let batch_size = new_offset - offset; |
1631 | | dest.reserve(batch_size); |
1632 | | |
1633 | | // Get the destination buffer and back index. |
1634 | | let dest_buffer = dest.buffer.get(); |
1635 | | let dest_b = dest.inner.back.load(Ordering::Relaxed); |
1636 | | |
1637 | | unsafe { |
1638 | | // If we've reached the end of the block, move to the next one. |
1639 | | if new_offset == BLOCK_CAP { |
1640 | | let next = (*block).wait_next(); |
1641 | | let mut next_index = (new_head & !HAS_NEXT).wrapping_add(1 << SHIFT); |
1642 | | if !(*next).next.load(Ordering::Relaxed).is_null() { |
1643 | | next_index |= HAS_NEXT; |
1644 | | } |
1645 | | |
1646 | | self.head.block.store(next, Ordering::Release); |
1647 | | self.head.index.store(next_index, Ordering::Release); |
1648 | | } |
1649 | | |
1650 | | // Copy values from the injector into the destination queue. |
1651 | | match dest.flavor { |
1652 | | Flavor::Fifo => { |
1653 | | for i in 0..batch_size { |
1654 | | // Read the task. |
1655 | | let slot = (*block).slots.get_unchecked(offset + i); |
1656 | | slot.wait_write(); |
1657 | | let task = slot.task.get().read(); |
1658 | | |
1659 | | // Write it into the destination queue. |
1660 | | dest_buffer.write(dest_b.wrapping_add(i as isize), task); |
1661 | | } |
1662 | | } |
1663 | | |
1664 | | Flavor::Lifo => { |
1665 | | for i in 0..batch_size { |
1666 | | // Read the task. |
1667 | | let slot = (*block).slots.get_unchecked(offset + i); |
1668 | | slot.wait_write(); |
1669 | | let task = slot.task.get().read(); |
1670 | | |
1671 | | // Write it into the destination queue. |
1672 | | dest_buffer.write(dest_b.wrapping_add((batch_size - 1 - i) as isize), task); |
1673 | | } |
1674 | | } |
1675 | | } |
1676 | | |
1677 | | atomic::fence(Ordering::Release); |
1678 | | |
1679 | | // Update the back index in the destination queue. |
1680 | | // |
1681 | | // This ordering could be `Relaxed`, but then thread sanitizer would falsely report |
1682 | | // data races because it doesn't understand fences. |
1683 | | dest.inner |
1684 | | .back |
1685 | | .store(dest_b.wrapping_add(batch_size as isize), Ordering::Release); |
1686 | | |
1687 | | // Destroy the block if we've reached the end, or if another thread wanted to destroy |
1688 | | // but couldn't because we were busy reading from the slot. |
1689 | | if new_offset == BLOCK_CAP { |
1690 | | Block::destroy(block, offset); |
1691 | | } else { |
1692 | | for i in offset..new_offset { |
1693 | | let slot = (*block).slots.get_unchecked(i); |
1694 | | |
1695 | | if slot.state.fetch_or(READ, Ordering::AcqRel) & DESTROY != 0 { |
1696 | | Block::destroy(block, offset); |
1697 | | break; |
1698 | | } |
1699 | | } |
1700 | | } |
1701 | | |
1702 | | Steal::Success(()) |
1703 | | } |
1704 | | } |
1705 | | |
1706 | | /// Steals a batch of tasks, pushes them into a worker, and pops a task from that worker. |
1707 | | /// |
1708 | | /// How many tasks exactly will be stolen is not specified. That said, this method will try to |
1709 | | /// steal around half of the tasks in the queue, but also not more than some constant limit. |
1710 | | /// |
1711 | | /// # Examples |
1712 | | /// |
1713 | | /// ``` |
1714 | | /// use crossbeam_deque::{Injector, Steal, Worker}; |
1715 | | /// |
1716 | | /// let q = Injector::new(); |
1717 | | /// q.push(1); |
1718 | | /// q.push(2); |
1719 | | /// q.push(3); |
1720 | | /// q.push(4); |
1721 | | /// |
1722 | | /// let w = Worker::new_fifo(); |
1723 | | /// assert_eq!(q.steal_batch_and_pop(&w), Steal::Success(1)); |
1724 | | /// assert_eq!(w.pop(), Some(2)); |
1725 | | /// ``` |
1726 | | pub fn steal_batch_and_pop(&self, dest: &Worker<T>) -> Steal<T> { |
1727 | | // TODO: we use `MAX_BATCH + 1` as the hard limit for Injecter as the performance is slightly |
1728 | | // better, but we may change it in the future to be compatible with the same method in Stealer. |
1729 | | self.steal_batch_with_limit_and_pop(dest, MAX_BATCH + 1) |
1730 | | } |
1731 | | |
1732 | | /// Steals no more than `limit` of tasks, pushes them into a worker, and pops a task from that worker. |
1733 | | /// |
1734 | | /// How many tasks exactly will be stolen is not specified. That said, this method will try to |
1735 | | /// steal around half of the tasks in the queue, but also not more than the given limit. |
1736 | | /// |
1737 | | /// # Examples |
1738 | | /// |
1739 | | /// ``` |
1740 | | /// use crossbeam_deque::{Injector, Steal, Worker}; |
1741 | | /// |
1742 | | /// let q = Injector::new(); |
1743 | | /// q.push(1); |
1744 | | /// q.push(2); |
1745 | | /// q.push(3); |
1746 | | /// q.push(4); |
1747 | | /// q.push(5); |
1748 | | /// q.push(6); |
1749 | | /// |
1750 | | /// let w = Worker::new_fifo(); |
1751 | | /// assert_eq!(q.steal_batch_with_limit_and_pop(&w, 2), Steal::Success(1)); |
1752 | | /// assert_eq!(w.pop(), Some(2)); |
1753 | | /// assert_eq!(w.pop(), None); |
1754 | | /// |
1755 | | /// q.push(7); |
1756 | | /// // Setting a large limit does not guarantee that all elements will be popped. In this case, |
1757 | | /// // half of the elements are currently popped, but the number of popped elements is considered |
1758 | | /// // an implementation detail that may be changed in the future. |
1759 | | /// assert_eq!(q.steal_batch_with_limit_and_pop(&w, std::usize::MAX), Steal::Success(3)); |
1760 | | /// assert_eq!(w.pop(), Some(4)); |
1761 | | /// assert_eq!(w.pop(), Some(5)); |
1762 | | /// assert_eq!(w.pop(), None); |
1763 | | /// ``` |
1764 | | pub fn steal_batch_with_limit_and_pop(&self, dest: &Worker<T>, limit: usize) -> Steal<T> { |
1765 | | assert!(limit > 0); |
1766 | | let mut head; |
1767 | | let mut block; |
1768 | | let mut offset; |
1769 | | |
1770 | | let backoff = Backoff::new(); |
1771 | | loop { |
1772 | | head = self.head.index.load(Ordering::Acquire); |
1773 | | block = self.head.block.load(Ordering::Acquire); |
1774 | | |
1775 | | // Calculate the offset of the index into the block. |
1776 | | offset = (head >> SHIFT) % LAP; |
1777 | | |
1778 | | // If we reached the end of the block, wait until the next one is installed. |
1779 | | if offset == BLOCK_CAP { |
1780 | | backoff.snooze(); |
1781 | | } else { |
1782 | | break; |
1783 | | } |
1784 | | } |
1785 | | |
1786 | | let mut new_head = head; |
1787 | | let advance; |
1788 | | |
1789 | | if new_head & HAS_NEXT == 0 { |
1790 | | atomic::fence(Ordering::SeqCst); |
1791 | | let tail = self.tail.index.load(Ordering::Relaxed); |
1792 | | |
1793 | | // If the tail equals the head, that means the queue is empty. |
1794 | | if head >> SHIFT == tail >> SHIFT { |
1795 | | return Steal::Empty; |
1796 | | } |
1797 | | |
1798 | | // If head and tail are not in the same block, set `HAS_NEXT` in head. |
1799 | | if (head >> SHIFT) / LAP != (tail >> SHIFT) / LAP { |
1800 | | new_head |= HAS_NEXT; |
1801 | | // We can steal all tasks till the end of the block. |
1802 | | advance = (BLOCK_CAP - offset).min(limit); |
1803 | | } else { |
1804 | | let len = (tail - head) >> SHIFT; |
1805 | | // Steal half of the available tasks. |
1806 | | advance = ((len + 1) / 2).min(limit); |
1807 | | } |
1808 | | } else { |
1809 | | // We can steal all tasks till the end of the block. |
1810 | | advance = (BLOCK_CAP - offset).min(limit); |
1811 | | } |
1812 | | |
1813 | | new_head += advance << SHIFT; |
1814 | | let new_offset = offset + advance; |
1815 | | |
1816 | | // Try moving the head index forward. |
1817 | | if self |
1818 | | .head |
1819 | | .index |
1820 | | .compare_exchange_weak(head, new_head, Ordering::SeqCst, Ordering::Acquire) |
1821 | | .is_err() |
1822 | | { |
1823 | | return Steal::Retry; |
1824 | | } |
1825 | | |
1826 | | // Reserve capacity for the stolen batch. |
1827 | | let batch_size = new_offset - offset - 1; |
1828 | | dest.reserve(batch_size); |
1829 | | |
1830 | | // Get the destination buffer and back index. |
1831 | | let dest_buffer = dest.buffer.get(); |
1832 | | let dest_b = dest.inner.back.load(Ordering::Relaxed); |
1833 | | |
1834 | | unsafe { |
1835 | | // If we've reached the end of the block, move to the next one. |
1836 | | if new_offset == BLOCK_CAP { |
1837 | | let next = (*block).wait_next(); |
1838 | | let mut next_index = (new_head & !HAS_NEXT).wrapping_add(1 << SHIFT); |
1839 | | if !(*next).next.load(Ordering::Relaxed).is_null() { |
1840 | | next_index |= HAS_NEXT; |
1841 | | } |
1842 | | |
1843 | | self.head.block.store(next, Ordering::Release); |
1844 | | self.head.index.store(next_index, Ordering::Release); |
1845 | | } |
1846 | | |
1847 | | // Read the task. |
1848 | | let slot = (*block).slots.get_unchecked(offset); |
1849 | | slot.wait_write(); |
1850 | | let task = slot.task.get().read(); |
1851 | | |
1852 | | match dest.flavor { |
1853 | | Flavor::Fifo => { |
1854 | | // Copy values from the injector into the destination queue. |
1855 | | for i in 0..batch_size { |
1856 | | // Read the task. |
1857 | | let slot = (*block).slots.get_unchecked(offset + i + 1); |
1858 | | slot.wait_write(); |
1859 | | let task = slot.task.get().read(); |
1860 | | |
1861 | | // Write it into the destination queue. |
1862 | | dest_buffer.write(dest_b.wrapping_add(i as isize), task); |
1863 | | } |
1864 | | } |
1865 | | |
1866 | | Flavor::Lifo => { |
1867 | | // Copy values from the injector into the destination queue. |
1868 | | for i in 0..batch_size { |
1869 | | // Read the task. |
1870 | | let slot = (*block).slots.get_unchecked(offset + i + 1); |
1871 | | slot.wait_write(); |
1872 | | let task = slot.task.get().read(); |
1873 | | |
1874 | | // Write it into the destination queue. |
1875 | | dest_buffer.write(dest_b.wrapping_add((batch_size - 1 - i) as isize), task); |
1876 | | } |
1877 | | } |
1878 | | } |
1879 | | |
1880 | | atomic::fence(Ordering::Release); |
1881 | | |
1882 | | // Update the back index in the destination queue. |
1883 | | // |
1884 | | // This ordering could be `Relaxed`, but then thread sanitizer would falsely report |
1885 | | // data races because it doesn't understand fences. |
1886 | | dest.inner |
1887 | | .back |
1888 | | .store(dest_b.wrapping_add(batch_size as isize), Ordering::Release); |
1889 | | |
1890 | | // Destroy the block if we've reached the end, or if another thread wanted to destroy |
1891 | | // but couldn't because we were busy reading from the slot. |
1892 | | if new_offset == BLOCK_CAP { |
1893 | | Block::destroy(block, offset); |
1894 | | } else { |
1895 | | for i in offset..new_offset { |
1896 | | let slot = (*block).slots.get_unchecked(i); |
1897 | | |
1898 | | if slot.state.fetch_or(READ, Ordering::AcqRel) & DESTROY != 0 { |
1899 | | Block::destroy(block, offset); |
1900 | | break; |
1901 | | } |
1902 | | } |
1903 | | } |
1904 | | |
1905 | | Steal::Success(task.assume_init()) |
1906 | | } |
1907 | | } |
1908 | | |
1909 | | /// Returns `true` if the queue is empty. |
1910 | | /// |
1911 | | /// # Examples |
1912 | | /// |
1913 | | /// ``` |
1914 | | /// use crossbeam_deque::Injector; |
1915 | | /// |
1916 | | /// let q = Injector::new(); |
1917 | | /// |
1918 | | /// assert!(q.is_empty()); |
1919 | | /// q.push(1); |
1920 | | /// assert!(!q.is_empty()); |
1921 | | /// ``` |
1922 | 663k | pub fn is_empty(&self) -> bool { |
1923 | 663k | let head = self.head.index.load(Ordering::SeqCst); |
1924 | 663k | let tail = self.tail.index.load(Ordering::SeqCst); |
1925 | 663k | head >> SHIFT == tail >> SHIFT |
1926 | 663k | } |
1927 | | |
1928 | | /// Returns the number of tasks in the queue. |
1929 | | /// |
1930 | | /// # Examples |
1931 | | /// |
1932 | | /// ``` |
1933 | | /// use crossbeam_deque::Injector; |
1934 | | /// |
1935 | | /// let q = Injector::new(); |
1936 | | /// |
1937 | | /// assert_eq!(q.len(), 0); |
1938 | | /// q.push(1); |
1939 | | /// assert_eq!(q.len(), 1); |
1940 | | /// q.push(1); |
1941 | | /// assert_eq!(q.len(), 2); |
1942 | | /// ``` |
1943 | | pub fn len(&self) -> usize { |
1944 | | loop { |
1945 | | // Load the tail index, then load the head index. |
1946 | | let mut tail = self.tail.index.load(Ordering::SeqCst); |
1947 | | let mut head = self.head.index.load(Ordering::SeqCst); |
1948 | | |
1949 | | // If the tail index didn't change, we've got consistent indices to work with. |
1950 | | if self.tail.index.load(Ordering::SeqCst) == tail { |
1951 | | // Erase the lower bits. |
1952 | | tail &= !((1 << SHIFT) - 1); |
1953 | | head &= !((1 << SHIFT) - 1); |
1954 | | |
1955 | | // Fix up indices if they fall onto block ends. |
1956 | | if (tail >> SHIFT) & (LAP - 1) == LAP - 1 { |
1957 | | tail = tail.wrapping_add(1 << SHIFT); |
1958 | | } |
1959 | | if (head >> SHIFT) & (LAP - 1) == LAP - 1 { |
1960 | | head = head.wrapping_add(1 << SHIFT); |
1961 | | } |
1962 | | |
1963 | | // Rotate indices so that head falls into the first block. |
1964 | | let lap = (head >> SHIFT) / LAP; |
1965 | | tail = tail.wrapping_sub((lap * LAP) << SHIFT); |
1966 | | head = head.wrapping_sub((lap * LAP) << SHIFT); |
1967 | | |
1968 | | // Remove the lower bits. |
1969 | | tail >>= SHIFT; |
1970 | | head >>= SHIFT; |
1971 | | |
1972 | | // Return the difference minus the number of blocks between tail and head. |
1973 | | return tail - head - tail / LAP; |
1974 | | } |
1975 | | } |
1976 | | } |
1977 | | } |
1978 | | |
1979 | | impl<T> Drop for Injector<T> { |
1980 | 0 | fn drop(&mut self) { |
1981 | 0 | let mut head = *self.head.index.get_mut(); |
1982 | 0 | let mut tail = *self.tail.index.get_mut(); |
1983 | 0 | let mut block = *self.head.block.get_mut(); |
1984 | 0 |
|
1985 | 0 | // Erase the lower bits. |
1986 | 0 | head &= !((1 << SHIFT) - 1); |
1987 | 0 | tail &= !((1 << SHIFT) - 1); |
1988 | | |
1989 | | unsafe { |
1990 | | // Drop all values between `head` and `tail` and deallocate the heap-allocated blocks. |
1991 | 0 | while head != tail { |
1992 | 0 | let offset = (head >> SHIFT) % LAP; |
1993 | 0 |
|
1994 | 0 | if offset < BLOCK_CAP { |
1995 | 0 | // Drop the task in the slot. |
1996 | 0 | let slot = (*block).slots.get_unchecked(offset); |
1997 | 0 | (*slot.task.get()).assume_init_drop(); |
1998 | 0 | } else { |
1999 | 0 | // Deallocate the block and move to the next one. |
2000 | 0 | let next = *(*block).next.get_mut(); |
2001 | 0 | drop(Box::from_raw(block)); |
2002 | 0 | block = next; |
2003 | 0 | } |
2004 | | |
2005 | 0 | head = head.wrapping_add(1 << SHIFT); |
2006 | | } |
2007 | | |
2008 | | // Deallocate the last remaining block. |
2009 | 0 | drop(Box::from_raw(block)); |
2010 | 0 | } |
2011 | 0 | } Unexecuted instantiation: <crossbeam_deque::deque::Injector<rayon_core::job::JobRef> as core::ops::drop::Drop>::drop Unexecuted instantiation: <crossbeam_deque::deque::Injector<rayon_core::job::JobRef> as core::ops::drop::Drop>::drop Unexecuted instantiation: <crossbeam_deque::deque::Injector<rayon_core::job::JobRef> as core::ops::drop::Drop>::drop Unexecuted instantiation: <crossbeam_deque::deque::Injector<rayon_core::job::JobRef> as core::ops::drop::Drop>::drop Unexecuted instantiation: <crossbeam_deque::deque::Injector<rayon_core::job::JobRef> as core::ops::drop::Drop>::drop Unexecuted instantiation: <crossbeam_deque::deque::Injector<rayon_core::job::JobRef> as core::ops::drop::Drop>::drop |
2012 | | } |
2013 | | |
2014 | | impl<T> fmt::Debug for Injector<T> { |
2015 | | fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result { |
2016 | | f.pad("Worker { .. }") |
2017 | | } |
2018 | | } |
2019 | | |
2020 | | /// Possible outcomes of a steal operation. |
2021 | | /// |
2022 | | /// # Examples |
2023 | | /// |
2024 | | /// There are lots of ways to chain results of steal operations together: |
2025 | | /// |
2026 | | /// ``` |
2027 | | /// use crossbeam_deque::Steal::{self, Empty, Retry, Success}; |
2028 | | /// |
2029 | | /// let collect = |v: Vec<Steal<i32>>| v.into_iter().collect::<Steal<i32>>(); |
2030 | | /// |
2031 | | /// assert_eq!(collect(vec![Empty, Empty, Empty]), Empty); |
2032 | | /// assert_eq!(collect(vec![Empty, Retry, Empty]), Retry); |
2033 | | /// assert_eq!(collect(vec![Retry, Success(1), Empty]), Success(1)); |
2034 | | /// |
2035 | | /// assert_eq!(collect(vec![Empty, Empty]).or_else(|| Retry), Retry); |
2036 | | /// assert_eq!(collect(vec![Retry, Empty]).or_else(|| Success(1)), Success(1)); |
2037 | | /// ``` |
2038 | | #[must_use] |
2039 | | #[derive(PartialEq, Eq, Copy, Clone)] |
2040 | | pub enum Steal<T> { |
2041 | | /// The queue was empty at the time of stealing. |
2042 | | Empty, |
2043 | | |
2044 | | /// At least one task was successfully stolen. |
2045 | | Success(T), |
2046 | | |
2047 | | /// The steal operation needs to be retried. |
2048 | | Retry, |
2049 | | } |
2050 | | |
2051 | | impl<T> Steal<T> { |
2052 | | /// Returns `true` if the queue was empty at the time of stealing. |
2053 | | /// |
2054 | | /// # Examples |
2055 | | /// |
2056 | | /// ``` |
2057 | | /// use crossbeam_deque::Steal::{Empty, Retry, Success}; |
2058 | | /// |
2059 | | /// assert!(!Success(7).is_empty()); |
2060 | | /// assert!(!Retry::<i32>.is_empty()); |
2061 | | /// |
2062 | | /// assert!(Empty::<i32>.is_empty()); |
2063 | | /// ``` |
2064 | | pub fn is_empty(&self) -> bool { |
2065 | | match self { |
2066 | | Steal::Empty => true, |
2067 | | _ => false, |
2068 | | } |
2069 | | } |
2070 | | |
2071 | | /// Returns `true` if at least one task was stolen. |
2072 | | /// |
2073 | | /// # Examples |
2074 | | /// |
2075 | | /// ``` |
2076 | | /// use crossbeam_deque::Steal::{Empty, Retry, Success}; |
2077 | | /// |
2078 | | /// assert!(!Empty::<i32>.is_success()); |
2079 | | /// assert!(!Retry::<i32>.is_success()); |
2080 | | /// |
2081 | | /// assert!(Success(7).is_success()); |
2082 | | /// ``` |
2083 | | pub fn is_success(&self) -> bool { |
2084 | | match self { |
2085 | | Steal::Success(_) => true, |
2086 | | _ => false, |
2087 | | } |
2088 | | } |
2089 | | |
2090 | | /// Returns `true` if the steal operation needs to be retried. |
2091 | | /// |
2092 | | /// # Examples |
2093 | | /// |
2094 | | /// ``` |
2095 | | /// use crossbeam_deque::Steal::{Empty, Retry, Success}; |
2096 | | /// |
2097 | | /// assert!(!Empty::<i32>.is_retry()); |
2098 | | /// assert!(!Success(7).is_retry()); |
2099 | | /// |
2100 | | /// assert!(Retry::<i32>.is_retry()); |
2101 | | /// ``` |
2102 | | pub fn is_retry(&self) -> bool { |
2103 | | match self { |
2104 | | Steal::Retry => true, |
2105 | | _ => false, |
2106 | | } |
2107 | | } |
2108 | | |
2109 | | /// Returns the result of the operation, if successful. |
2110 | | /// |
2111 | | /// # Examples |
2112 | | /// |
2113 | | /// ``` |
2114 | | /// use crossbeam_deque::Steal::{Empty, Retry, Success}; |
2115 | | /// |
2116 | | /// assert_eq!(Empty::<i32>.success(), None); |
2117 | | /// assert_eq!(Retry::<i32>.success(), None); |
2118 | | /// |
2119 | | /// assert_eq!(Success(7).success(), Some(7)); |
2120 | | /// ``` |
2121 | | pub fn success(self) -> Option<T> { |
2122 | | match self { |
2123 | | Steal::Success(res) => Some(res), |
2124 | | _ => None, |
2125 | | } |
2126 | | } |
2127 | | |
2128 | | /// If no task was stolen, attempts another steal operation. |
2129 | | /// |
2130 | | /// Returns this steal result if it is `Success`. Otherwise, closure `f` is invoked and then: |
2131 | | /// |
2132 | | /// * If the second steal resulted in `Success`, it is returned. |
2133 | | /// * If both steals were unsuccessful but any resulted in `Retry`, then `Retry` is returned. |
2134 | | /// * If both resulted in `None`, then `None` is returned. |
2135 | | /// |
2136 | | /// # Examples |
2137 | | /// |
2138 | | /// ``` |
2139 | | /// use crossbeam_deque::Steal::{Empty, Retry, Success}; |
2140 | | /// |
2141 | | /// assert_eq!(Success(1).or_else(|| Success(2)), Success(1)); |
2142 | | /// assert_eq!(Retry.or_else(|| Success(2)), Success(2)); |
2143 | | /// |
2144 | | /// assert_eq!(Retry.or_else(|| Empty), Retry::<i32>); |
2145 | | /// assert_eq!(Empty.or_else(|| Retry), Retry::<i32>); |
2146 | | /// |
2147 | | /// assert_eq!(Empty.or_else(|| Empty), Empty::<i32>); |
2148 | | /// ``` |
2149 | | pub fn or_else<F>(self, f: F) -> Steal<T> |
2150 | | where |
2151 | | F: FnOnce() -> Steal<T>, |
2152 | | { |
2153 | | match self { |
2154 | | Steal::Empty => f(), |
2155 | | Steal::Success(_) => self, |
2156 | | Steal::Retry => { |
2157 | | if let Steal::Success(res) = f() { |
2158 | | Steal::Success(res) |
2159 | | } else { |
2160 | | Steal::Retry |
2161 | | } |
2162 | | } |
2163 | | } |
2164 | | } |
2165 | | } |
2166 | | |
2167 | | impl<T> fmt::Debug for Steal<T> { |
2168 | | fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result { |
2169 | | match self { |
2170 | | Steal::Empty => f.pad("Empty"), |
2171 | | Steal::Success(_) => f.pad("Success(..)"), |
2172 | | Steal::Retry => f.pad("Retry"), |
2173 | | } |
2174 | | } |
2175 | | } |
2176 | | |
2177 | | impl<T> FromIterator<Steal<T>> for Steal<T> { |
2178 | | /// Consumes items until a `Success` is found and returns it. |
2179 | | /// |
2180 | | /// If no `Success` was found, but there was at least one `Retry`, then returns `Retry`. |
2181 | | /// Otherwise, `Empty` is returned. |
2182 | | fn from_iter<I>(iter: I) -> Steal<T> |
2183 | | where |
2184 | | I: IntoIterator<Item = Steal<T>>, |
2185 | | { |
2186 | | let mut retry = false; |
2187 | | for s in iter { |
2188 | | match &s { |
2189 | | Steal::Empty => {} |
2190 | | Steal::Success(_) => return s, |
2191 | | Steal::Retry => retry = true, |
2192 | | } |
2193 | | } |
2194 | | |
2195 | | if retry { |
2196 | | Steal::Retry |
2197 | | } else { |
2198 | | Steal::Empty |
2199 | | } |
2200 | | } |
2201 | | } |