Coverage Report

Created: 2024-10-16 07:58

/rust/registry/src/index.crates.io-6f17d22bba15001f/tracing-0.1.40/src/span.rs
Line
Count
Source (jump to first uncovered line)
1
//! Spans represent periods of time in which a program was executing in a
2
//! particular context.
3
//!
4
//! A span consists of [fields], user-defined key-value pairs of arbitrary data
5
//! that describe the context the span represents, and a set of fixed attributes
6
//! that describe all `tracing` spans and events. Attributes describing spans
7
//! include:
8
//!
9
//! - An [`Id`] assigned by the subscriber that uniquely identifies it in relation
10
//!   to other spans.
11
//! - The span's [parent] in the trace tree.
12
//! - [Metadata] that describes static characteristics of all spans
13
//!   originating from that callsite, such as its name, source code location,
14
//!   [verbosity level], and the names of its fields.
15
//!
16
//! # Creating Spans
17
//!
18
//! Spans are created using the [`span!`] macro. This macro is invoked with the
19
//! following arguments, in order:
20
//!
21
//! - The [`target`] and/or [`parent`][parent] attributes, if the user wishes to
22
//!   override their default values.
23
//! - The span's [verbosity level]
24
//! - A string literal providing the span's name.
25
//! - Finally, zero or more arbitrary key/value fields.
26
//!
27
//! [`target`]: super::Metadata::target
28
//!
29
//! For example:
30
//! ```rust
31
//! use tracing::{span, Level};
32
//!
33
//! /// Construct a new span at the `INFO` level named "my_span", with a single
34
//! /// field named answer , with the value `42`.
35
//! let my_span = span!(Level::INFO, "my_span", answer = 42);
36
//! ```
37
//!
38
//! The documentation for the [`span!`] macro provides additional examples of
39
//! the various options that exist when creating spans.
40
//!
41
//! The [`trace_span!`], [`debug_span!`], [`info_span!`], [`warn_span!`], and
42
//! [`error_span!`] exist as shorthand for constructing spans at various
43
//! verbosity levels.
44
//!
45
//! ## Recording Span Creation
46
//!
47
//! The [`Attributes`] type contains data associated with a span, and is
48
//! provided to the [`Subscriber`] when a new span is created. It contains
49
//! the span's metadata, the ID of [the span's parent][parent] if one was
50
//! explicitly set, and any fields whose values were recorded when the span was
51
//! constructed. The subscriber, which is responsible for recording `tracing`
52
//! data, can then store or record these values.
53
//!
54
//! # The Span Lifecycle
55
//!
56
//! ## Entering a Span
57
//!
58
//! A thread of execution is said to _enter_ a span when it begins executing,
59
//! and _exit_ the span when it switches to another context. Spans may be
60
//! entered through the [`enter`], [`entered`], and [`in_scope`] methods.
61
//!
62
//! The [`enter`] method enters a span, returning a [guard] that exits the span
63
//! when dropped
64
//! ```
65
//! # use tracing::{span, Level};
66
//! let my_var: u64 = 5;
67
//! let my_span = span!(Level::TRACE, "my_span", my_var);
68
//!
69
//! // `my_span` exists but has not been entered.
70
//!
71
//! // Enter `my_span`...
72
//! let _enter = my_span.enter();
73
//!
74
//! // Perform some work inside of the context of `my_span`...
75
//! // Dropping the `_enter` guard will exit the span.
76
//!```
77
//!
78
//! <div class="example-wrap" style="display:inline-block"><pre class="compile_fail" style="white-space:normal;font:inherit;">
79
//!     <strong>Warning</strong>: In asynchronous code that uses async/await syntax,
80
//!     <code>Span::enter</code> may produce incorrect traces if the returned drop
81
//!     guard is held across an await point. See
82
//!     <a href="struct.Span.html#in-asynchronous-code">the method documentation</a>
83
//!     for details.
84
//! </pre></div>
85
//!
86
//! The [`entered`] method is analogous to [`enter`], but moves the span into
87
//! the returned guard, rather than borrowing it. This allows creating and
88
//! entering a span in a single expression:
89
//!
90
//! ```
91
//! # use tracing::{span, Level};
92
//! // Create a span and enter it, returning a guard:
93
//! let span = span!(Level::INFO, "my_span").entered();
94
//!
95
//! // We are now inside the span! Like `enter()`, the guard returned by
96
//! // `entered()` will exit the span when it is dropped...
97
//!
98
//! // ...but, it can also be exited explicitly, returning the `Span`
99
//! // struct:
100
//! let span = span.exit();
101
//! ```
102
//!
103
//! Finally, [`in_scope`] takes a closure or function pointer and executes it
104
//! inside the span:
105
//!
106
//! ```
107
//! # use tracing::{span, Level};
108
//! let my_var: u64 = 5;
109
//! let my_span = span!(Level::TRACE, "my_span", my_var = &my_var);
110
//!
111
//! my_span.in_scope(|| {
112
//!     // perform some work in the context of `my_span`...
113
//! });
114
//!
115
//! // Perform some work outside of the context of `my_span`...
116
//!
117
//! my_span.in_scope(|| {
118
//!     // Perform some more work in the context of `my_span`.
119
//! });
120
//! ```
121
//!
122
//! <pre class="ignore" style="white-space:normal;font:inherit;">
123
//!     <strong>Note</strong>: Since entering a span takes <code>&self</code>, and
124
//!     <code>Span</code>s are <code>Clone</code>, <code>Send</code>, and
125
//!     <code>Sync</code>, it is entirely valid for multiple threads to enter the
126
//!     same span concurrently.
127
//! </pre>
128
//!
129
//! ## Span Relationships
130
//!
131
//! Spans form a tree structure — unless it is a root span, all spans have a
132
//! _parent_, and may have one or more _children_. When a new span is created,
133
//! the current span becomes the new span's parent. The total execution time of
134
//! a span consists of the time spent in that span and in the entire subtree
135
//! represented by its children. Thus, a parent span always lasts for at least
136
//! as long as the longest-executing span in its subtree.
137
//!
138
//! ```
139
//! # use tracing::{Level, span};
140
//! // this span is considered the "root" of a new trace tree:
141
//! span!(Level::INFO, "root").in_scope(|| {
142
//!     // since we are now inside "root", this span is considered a child
143
//!     // of "root":
144
//!     span!(Level::DEBUG, "outer_child").in_scope(|| {
145
//!         // this span is a child of "outer_child", which is in turn a
146
//!         // child of "root":
147
//!         span!(Level::TRACE, "inner_child").in_scope(|| {
148
//!             // and so on...
149
//!         });
150
//!     });
151
//!     // another span created here would also be a child of "root".
152
//! });
153
//!```
154
//!
155
//! In addition, the parent of a span may be explicitly specified in
156
//! the `span!` macro. For example:
157
//!
158
//! ```rust
159
//! # use tracing::{Level, span};
160
//! // Create, but do not enter, a span called "foo".
161
//! let foo = span!(Level::INFO, "foo");
162
//!
163
//! // Create and enter a span called "bar".
164
//! let bar = span!(Level::INFO, "bar");
165
//! let _enter = bar.enter();
166
//!
167
//! // Although we have currently entered "bar", "baz"'s parent span
168
//! // will be "foo".
169
//! let baz = span!(parent: &foo, Level::INFO, "baz");
170
//! ```
171
//!
172
//! A child span should typically be considered _part_ of its parent. For
173
//! example, if a subscriber is recording the length of time spent in various
174
//! spans, it should generally include the time spent in a span's children as
175
//! part of that span's duration.
176
//!
177
//! In addition to having zero or one parent, a span may also _follow from_ any
178
//! number of other spans. This indicates a causal relationship between the span
179
//! and the spans that it follows from, but a follower is *not* typically
180
//! considered part of the duration of the span it follows. Unlike the parent, a
181
//! span may record that it follows from another span after it is created, using
182
//! the [`follows_from`] method.
183
//!
184
//! As an example, consider a listener task in a server. As the listener accepts
185
//! incoming connections, it spawns new tasks that handle those connections. We
186
//! might want to have a span representing the listener, and instrument each
187
//! spawned handler task with its own span. We would want our instrumentation to
188
//! record that the handler tasks were spawned as a result of the listener task.
189
//! However, we might not consider the handler tasks to be _part_ of the time
190
//! spent in the listener task, so we would not consider those spans children of
191
//! the listener span. Instead, we would record that the handler tasks follow
192
//! from the listener, recording the causal relationship but treating the spans
193
//! as separate durations.
194
//!
195
//! ## Closing Spans
196
//!
197
//! Execution may enter and exit a span multiple times before that span is
198
//! _closed_. Consider, for example, a future which has an associated
199
//! span and enters that span every time it is polled:
200
//! ```rust
201
//! # use std::future::Future;
202
//! # use std::task::{Context, Poll};
203
//! # use std::pin::Pin;
204
//! struct MyFuture {
205
//!    // data
206
//!    span: tracing::Span,
207
//! }
208
//!
209
//! impl Future for MyFuture {
210
//!     type Output = ();
211
//!
212
//!     fn poll(self: Pin<&mut Self>, _cx: &mut Context<'_>) -> Poll<Self::Output> {
213
//!         let _enter = self.span.enter();
214
//!         // Do actual future work...
215
//! # Poll::Ready(())
216
//!     }
217
//! }
218
//! ```
219
//!
220
//! If this future was spawned on an executor, it might yield one or more times
221
//! before `poll` returns [`Poll::Ready`]. If the future were to yield, then
222
//! the executor would move on to poll the next future, which may _also_ enter
223
//! an associated span or series of spans. Therefore, it is valid for a span to
224
//! be entered repeatedly before it completes. Only the time when that span or
225
//! one of its children was the current span is considered to be time spent in
226
//! that span. A span which is not executing and has not yet been closed is said
227
//! to be _idle_.
228
//!
229
//! Because spans may be entered and exited multiple times before they close,
230
//! [`Subscriber`]s have separate trait methods which are called to notify them
231
//! of span exits and when span handles are dropped. When execution exits a
232
//! span, [`exit`] will always be called with that span's ID to notify the
233
//! subscriber that the span has been exited. When span handles are dropped, the
234
//! [`drop_span`] method is called with that span's ID. The subscriber may use
235
//! this to determine whether or not the span will be entered again.
236
//!
237
//! If there is only a single handle with the capacity to exit a span, dropping
238
//! that handle "closes" the span, since the capacity to enter it no longer
239
//! exists. For example:
240
//! ```
241
//! # use tracing::{Level, span};
242
//! {
243
//!     span!(Level::TRACE, "my_span").in_scope(|| {
244
//!         // perform some work in the context of `my_span`...
245
//!     }); // --> Subscriber::exit(my_span)
246
//!
247
//!     // The handle to `my_span` only lives inside of this block; when it is
248
//!     // dropped, the subscriber will be informed via `drop_span`.
249
//!
250
//! } // --> Subscriber::drop_span(my_span)
251
//! ```
252
//!
253
//! However, if multiple handles exist, the span can still be re-entered even if
254
//! one or more is dropped. For determining when _all_ handles to a span have
255
//! been dropped, `Subscriber`s have a [`clone_span`] method, which is called
256
//! every time a span handle is cloned. Combined with `drop_span`, this may be
257
//! used to track the number of handles to a given span — if `drop_span` has
258
//! been called one more time than the number of calls to `clone_span` for a
259
//! given ID, then no more handles to the span with that ID exist. The
260
//! subscriber may then treat it as closed.
261
//!
262
//! # When to use spans
263
//!
264
//! As a rule of thumb, spans should be used to represent discrete units of work
265
//! (e.g., a given request's lifetime in a server) or periods of time spent in a
266
//! given context (e.g., time spent interacting with an instance of an external
267
//! system, such as a database).
268
//!
269
//! Which scopes in a program correspond to new spans depend somewhat on user
270
//! intent. For example, consider the case of a loop in a program. Should we
271
//! construct one span and perform the entire loop inside of that span, like:
272
//!
273
//! ```rust
274
//! # use tracing::{Level, span};
275
//! # let n = 1;
276
//! let span = span!(Level::TRACE, "my_loop");
277
//! let _enter = span.enter();
278
//! for i in 0..n {
279
//!     # let _ = i;
280
//!     // ...
281
//! }
282
//! ```
283
//! Or, should we create a new span for each iteration of the loop, as in:
284
//! ```rust
285
//! # use tracing::{Level, span};
286
//! # let n = 1u64;
287
//! for i in 0..n {
288
//!     let span = span!(Level::TRACE, "my_loop", iteration = i);
289
//!     let _enter = span.enter();
290
//!     // ...
291
//! }
292
//! ```
293
//!
294
//! Depending on the circumstances, we might want to do either, or both. For
295
//! example, if we want to know how long was spent in the loop overall, we would
296
//! create a single span around the entire loop; whereas if we wanted to know how
297
//! much time was spent in each individual iteration, we would enter a new span
298
//! on every iteration.
299
//!
300
//! [fields]: super::field
301
//! [Metadata]: super::Metadata
302
//! [verbosity level]: super::Level
303
//! [`Poll::Ready`]: std::task::Poll::Ready
304
//! [`span!`]: super::span!
305
//! [`trace_span!`]: super::trace_span!
306
//! [`debug_span!`]: super::debug_span!
307
//! [`info_span!`]: super::info_span!
308
//! [`warn_span!`]: super::warn_span!
309
//! [`error_span!`]: super::error_span!
310
//! [`clone_span`]: super::subscriber::Subscriber::clone_span()
311
//! [`drop_span`]: super::subscriber::Subscriber::drop_span()
312
//! [`exit`]: super::subscriber::Subscriber::exit
313
//! [`Subscriber`]: super::subscriber::Subscriber
314
//! [`enter`]: Span::enter()
315
//! [`entered`]: Span::entered()
316
//! [`in_scope`]: Span::in_scope()
317
//! [`follows_from`]: Span::follows_from()
318
//! [guard]: Entered
319
//! [parent]: #span-relationships
320
pub use tracing_core::span::{Attributes, Id, Record};
321
322
use crate::stdlib::{
323
    cmp, fmt,
324
    hash::{Hash, Hasher},
325
    marker::PhantomData,
326
    mem,
327
    ops::Deref,
328
};
329
use crate::{
330
    dispatcher::{self, Dispatch},
331
    field, Metadata,
332
};
333
334
/// Trait implemented by types which have a span `Id`.
335
pub trait AsId: crate::sealed::Sealed {
336
    /// Returns the `Id` of the span that `self` corresponds to, or `None` if
337
    /// this corresponds to a disabled span.
338
    fn as_id(&self) -> Option<&Id>;
339
}
340
341
/// A handle representing a span, with the capability to enter the span if it
342
/// exists.
343
///
344
/// If the span was rejected by the current `Subscriber`'s filter, entering the
345
/// span will silently do nothing. Thus, the handle can be used in the same
346
/// manner regardless of whether or not the trace is currently being collected.
347
#[derive(Clone)]
348
pub struct Span {
349
    /// A handle used to enter the span when it is not executing.
350
    ///
351
    /// If this is `None`, then the span has either closed or was never enabled.
352
    inner: Option<Inner>,
353
    /// Metadata describing the span.
354
    ///
355
    /// This might be `Some` even if `inner` is `None`, in the case that the
356
    /// span is disabled but the metadata is needed for `log` support.
357
    meta: Option<&'static Metadata<'static>>,
358
}
359
360
/// A handle representing the capacity to enter a span which is known to exist.
361
///
362
/// Unlike `Span`, this type is only constructed for spans which _have_ been
363
/// enabled by the current filter. This type is primarily used for implementing
364
/// span handles; users should typically not need to interact with it directly.
365
#[derive(Debug)]
366
pub(crate) struct Inner {
367
    /// The span's ID, as provided by `subscriber`.
368
    id: Id,
369
370
    /// The subscriber that will receive events relating to this span.
371
    ///
372
    /// This should be the same subscriber that provided this span with its
373
    /// `id`.
374
    subscriber: Dispatch,
375
}
376
377
/// A guard representing a span which has been entered and is currently
378
/// executing.
379
///
380
/// When the guard is dropped, the span will be exited.
381
///
382
/// This is returned by the [`Span::enter`] function.
383
///
384
/// [`Span::enter`]: super::Span::enter
385
#[derive(Debug)]
386
#[must_use = "once a span has been entered, it should be exited"]
387
pub struct Entered<'a> {
388
    span: &'a Span,
389
}
390
391
/// An owned version of [`Entered`], a guard representing a span which has been
392
/// entered and is currently executing.
393
///
394
/// When the guard is dropped, the span will be exited.
395
///
396
/// This is returned by the [`Span::entered`] function.
397
///
398
/// [`Span::entered`]: super::Span::entered()
399
#[derive(Debug)]
400
#[must_use = "once a span has been entered, it should be exited"]
401
pub struct EnteredSpan {
402
    span: Span,
403
404
    /// ```compile_fail
405
    /// use tracing::span::*;
406
    /// trait AssertSend: Send {}
407
    ///
408
    /// impl AssertSend for EnteredSpan {}
409
    /// ```
410
    _not_send: PhantomNotSend,
411
}
412
413
/// `log` target for all span lifecycle (creation/enter/exit/close) records.
414
#[cfg(feature = "log")]
415
const LIFECYCLE_LOG_TARGET: &str = "tracing::span";
416
/// `log` target for span activity (enter/exit) records.
417
#[cfg(feature = "log")]
418
const ACTIVITY_LOG_TARGET: &str = "tracing::span::active";
419
420
// ===== impl Span =====
421
422
impl Span {
423
    /// Constructs a new `Span` with the given [metadata] and set of
424
    /// [field values].
425
    ///
426
    /// The new span will be constructed by the currently-active [`Subscriber`],
427
    /// with the current span as its parent (if one exists).
428
    ///
429
    /// After the span is constructed, [field values] and/or [`follows_from`]
430
    /// annotations may be added to it.
431
    ///
432
    /// [metadata]: super::Metadata
433
    /// [`Subscriber`]: super::subscriber::Subscriber
434
    /// [field values]: super::field::ValueSet
435
    /// [`follows_from`]: super::Span::follows_from
436
0
    pub fn new(meta: &'static Metadata<'static>, values: &field::ValueSet<'_>) -> Span {
437
0
        dispatcher::get_default(|dispatch| Self::new_with(meta, values, dispatch))
438
0
    }
439
440
    #[inline]
441
    #[doc(hidden)]
442
0
    pub fn new_with(
443
0
        meta: &'static Metadata<'static>,
444
0
        values: &field::ValueSet<'_>,
445
0
        dispatch: &Dispatch,
446
0
    ) -> Span {
447
0
        let new_span = Attributes::new(meta, values);
448
0
        Self::make_with(meta, new_span, dispatch)
449
0
    }
450
451
    /// Constructs a new `Span` as the root of its own trace tree, with the
452
    /// given [metadata] and set of [field values].
453
    ///
454
    /// After the span is constructed, [field values] and/or [`follows_from`]
455
    /// annotations may be added to it.
456
    ///
457
    /// [metadata]: super::Metadata
458
    /// [field values]: super::field::ValueSet
459
    /// [`follows_from`]: super::Span::follows_from
460
0
    pub fn new_root(meta: &'static Metadata<'static>, values: &field::ValueSet<'_>) -> Span {
461
0
        dispatcher::get_default(|dispatch| Self::new_root_with(meta, values, dispatch))
462
0
    }
463
464
    #[inline]
465
    #[doc(hidden)]
466
0
    pub fn new_root_with(
467
0
        meta: &'static Metadata<'static>,
468
0
        values: &field::ValueSet<'_>,
469
0
        dispatch: &Dispatch,
470
0
    ) -> Span {
471
0
        let new_span = Attributes::new_root(meta, values);
472
0
        Self::make_with(meta, new_span, dispatch)
473
0
    }
474
475
    /// Constructs a new `Span` as child of the given parent span, with the
476
    /// given [metadata] and set of [field values].
477
    ///
478
    /// After the span is constructed, [field values] and/or [`follows_from`]
479
    /// annotations may be added to it.
480
    ///
481
    /// [metadata]: super::Metadata
482
    /// [field values]: super::field::ValueSet
483
    /// [`follows_from`]: super::Span::follows_from
484
0
    pub fn child_of(
485
0
        parent: impl Into<Option<Id>>,
486
0
        meta: &'static Metadata<'static>,
487
0
        values: &field::ValueSet<'_>,
488
0
    ) -> Span {
489
0
        let mut parent = parent.into();
490
0
        dispatcher::get_default(move |dispatch| {
491
0
            Self::child_of_with(Option::take(&mut parent), meta, values, dispatch)
492
0
        })
493
0
    }
494
495
    #[inline]
496
    #[doc(hidden)]
497
0
    pub fn child_of_with(
498
0
        parent: impl Into<Option<Id>>,
499
0
        meta: &'static Metadata<'static>,
500
0
        values: &field::ValueSet<'_>,
501
0
        dispatch: &Dispatch,
502
0
    ) -> Span {
503
0
        let new_span = match parent.into() {
504
0
            Some(parent) => Attributes::child_of(parent, meta, values),
505
0
            None => Attributes::new_root(meta, values),
506
        };
507
0
        Self::make_with(meta, new_span, dispatch)
508
0
    }
509
510
    /// Constructs a new disabled span with the given `Metadata`.
511
    ///
512
    /// This should be used when a span is constructed from a known callsite,
513
    /// but the subscriber indicates that it is disabled.
514
    ///
515
    /// Entering, exiting, and recording values on this span will not notify the
516
    /// `Subscriber` but _may_ record log messages if the `log` feature flag is
517
    /// enabled.
518
    #[inline(always)]
519
    pub fn new_disabled(meta: &'static Metadata<'static>) -> Span {
520
        Self {
521
            inner: None,
522
            meta: Some(meta),
523
        }
524
    }
525
526
    /// Constructs a new span that is *completely disabled*.
527
    ///
528
    /// This can be used rather than `Option<Span>` to represent cases where a
529
    /// span is not present.
530
    ///
531
    /// Entering, exiting, and recording values on this span will do nothing.
532
    #[inline(always)]
533
0
    pub const fn none() -> Span {
534
0
        Self {
535
0
            inner: None,
536
0
            meta: None,
537
0
        }
538
0
    }
539
540
    /// Returns a handle to the span [considered by the `Subscriber`] to be the
541
    /// current span.
542
    ///
543
    /// If the subscriber indicates that it does not track the current span, or
544
    /// that the thread from which this function is called is not currently
545
    /// inside a span, the returned span will be disabled.
546
    ///
547
    /// [considered by the `Subscriber`]:
548
    ///     super::subscriber::Subscriber::current_span
549
0
    pub fn current() -> Span {
550
0
        dispatcher::get_default(|dispatch| {
551
0
            if let Some((id, meta)) = dispatch.current_span().into_inner() {
552
0
                let id = dispatch.clone_span(&id);
553
0
                Self {
554
0
                    inner: Some(Inner::new(id, dispatch)),
555
0
                    meta: Some(meta),
556
0
                }
557
            } else {
558
0
                Self::none()
559
            }
560
0
        })
561
0
    }
562
563
0
    fn make_with(
564
0
        meta: &'static Metadata<'static>,
565
0
        new_span: Attributes<'_>,
566
0
        dispatch: &Dispatch,
567
0
    ) -> Span {
568
0
        let attrs = &new_span;
569
0
        let id = dispatch.new_span(attrs);
570
0
        let inner = Some(Inner::new(id, dispatch));
571
0
572
0
        let span = Self {
573
0
            inner,
574
0
            meta: Some(meta),
575
0
        };
576
0
577
0
        if_log_enabled! { *meta.level(), {
578
0
            let target = if attrs.is_empty() {
579
0
                LIFECYCLE_LOG_TARGET
580
0
            } else {
581
0
                meta.target()
582
0
            };
583
0
            let values = attrs.values();
584
0
            span.log(
585
0
                target,
586
0
                level_to_log!(*meta.level()),
587
0
                format_args!("++ {};{}", meta.name(), crate::log::LogValueSet { values, is_first: false }),
588
0
            );
589
0
        }}
590
0
591
0
        span
592
0
    }
593
594
    /// Enters this span, returning a guard that will exit the span when dropped.
595
    ///
596
    /// If this span is enabled by the current subscriber, then this function will
597
    /// call [`Subscriber::enter`] with the span's [`Id`], and dropping the guard
598
    /// will call [`Subscriber::exit`]. If the span is disabled, this does
599
    /// nothing.
600
    ///
601
    /// # In Asynchronous Code
602
    ///
603
    /// **Warning**: in asynchronous code that uses [async/await syntax][syntax],
604
    /// `Span::enter` should be used very carefully or avoided entirely. Holding
605
    /// the drop guard returned by `Span::enter` across `.await` points will
606
    /// result in incorrect traces. For example,
607
    ///
608
    /// ```
609
    /// # use tracing::info_span;
610
    /// # async fn some_other_async_function() {}
611
    /// async fn my_async_function() {
612
    ///     let span = info_span!("my_async_function");
613
    ///
614
    ///     // WARNING: This span will remain entered until this
615
    ///     // guard is dropped...
616
    ///     let _enter = span.enter();
617
    ///     // ...but the `await` keyword may yield, causing the
618
    ///     // runtime to switch to another task, while remaining in
619
    ///     // this span!
620
    ///     some_other_async_function().await
621
    ///
622
    ///     // ...
623
    /// }
624
    /// ```
625
    ///
626
    /// The drop guard returned by `Span::enter` exits the span when it is
627
    /// dropped. When an async function or async block yields at an `.await`
628
    /// point, the current scope is _exited_, but values in that scope are
629
    /// **not** dropped (because the async block will eventually resume
630
    /// execution from that await point). This means that _another_ task will
631
    /// begin executing while _remaining_ in the entered span. This results in
632
    /// an incorrect trace.
633
    ///
634
    /// Instead of using `Span::enter` in asynchronous code, prefer the
635
    /// following:
636
    ///
637
    /// * To enter a span for a synchronous section of code within an async
638
    ///   block or function, prefer [`Span::in_scope`]. Since `in_scope` takes a
639
    ///   synchronous closure and exits the span when the closure returns, the
640
    ///   span will always be exited before the next await point. For example:
641
    ///   ```
642
    ///   # use tracing::info_span;
643
    ///   # async fn some_other_async_function(_: ()) {}
644
    ///   async fn my_async_function() {
645
    ///       let span = info_span!("my_async_function");
646
    ///
647
    ///       let some_value = span.in_scope(|| {
648
    ///           // run some synchronous code inside the span...
649
    ///       });
650
    ///
651
    ///       // This is okay! The span has already been exited before we reach
652
    ///       // the await point.
653
    ///       some_other_async_function(some_value).await;
654
    ///
655
    ///       // ...
656
    ///   }
657
    ///   ```
658
    /// * For instrumenting asynchronous code, `tracing` provides the
659
    ///   [`Future::instrument` combinator][instrument] for
660
    ///   attaching a span to a future (async function or block). This will
661
    ///   enter the span _every_ time the future is polled, and exit it whenever
662
    ///   the future yields.
663
    ///
664
    ///   `Instrument` can be used with an async block inside an async function:
665
    ///   ```ignore
666
    ///   # use tracing::info_span;
667
    ///   use tracing::Instrument;
668
    ///
669
    ///   # async fn some_other_async_function() {}
670
    ///   async fn my_async_function() {
671
    ///       let span = info_span!("my_async_function");
672
    ///       async move {
673
    ///          // This is correct! If we yield here, the span will be exited,
674
    ///          // and re-entered when we resume.
675
    ///          some_other_async_function().await;
676
    ///
677
    ///          //more asynchronous code inside the span...
678
    ///
679
    ///       }
680
    ///         // instrument the async block with the span...
681
    ///         .instrument(span)
682
    ///         // ...and await it.
683
    ///         .await
684
    ///   }
685
    ///   ```
686
    ///
687
    ///   It can also be used to instrument calls to async functions at the
688
    ///   callsite:
689
    ///   ```ignore
690
    ///   # use tracing::debug_span;
691
    ///   use tracing::Instrument;
692
    ///
693
    ///   # async fn some_other_async_function() {}
694
    ///   async fn my_async_function() {
695
    ///       let some_value = some_other_async_function()
696
    ///          .instrument(debug_span!("some_other_async_function"))
697
    ///          .await;
698
    ///
699
    ///       // ...
700
    ///   }
701
    ///   ```
702
    ///
703
    /// * The [`#[instrument]` attribute macro][attr] can automatically generate
704
    ///   correct code when used on an async function:
705
    ///
706
    ///   ```ignore
707
    ///   # async fn some_other_async_function() {}
708
    ///   #[tracing::instrument(level = "info")]
709
    ///   async fn my_async_function() {
710
    ///
711
    ///       // This is correct! If we yield here, the span will be exited,
712
    ///       // and re-entered when we resume.
713
    ///       some_other_async_function().await;
714
    ///
715
    ///       // ...
716
    ///
717
    ///   }
718
    ///   ```
719
    ///
720
    /// [syntax]: https://rust-lang.github.io/async-book/01_getting_started/04_async_await_primer.html
721
    /// [`Span::in_scope`]: Span::in_scope()
722
    /// [instrument]: crate::Instrument
723
    /// [attr]: macro@crate::instrument
724
    ///
725
    /// # Examples
726
    ///
727
    /// ```
728
    /// # use tracing::{span, Level};
729
    /// let span = span!(Level::INFO, "my_span");
730
    /// let guard = span.enter();
731
    ///
732
    /// // code here is within the span
733
    ///
734
    /// drop(guard);
735
    ///
736
    /// // code here is no longer within the span
737
    ///
738
    /// ```
739
    ///
740
    /// Guards need not be explicitly dropped:
741
    ///
742
    /// ```
743
    /// # use tracing::trace_span;
744
    /// fn my_function() -> String {
745
    ///     // enter a span for the duration of this function.
746
    ///     let span = trace_span!("my_function");
747
    ///     let _enter = span.enter();
748
    ///
749
    ///     // anything happening in functions we call is still inside the span...
750
    ///     my_other_function();
751
    ///
752
    ///     // returning from the function drops the guard, exiting the span.
753
    ///     return "Hello world".to_owned();
754
    /// }
755
    ///
756
    /// fn my_other_function() {
757
    ///     // ...
758
    /// }
759
    /// ```
760
    ///
761
    /// Sub-scopes may be created to limit the duration for which the span is
762
    /// entered:
763
    ///
764
    /// ```
765
    /// # use tracing::{info, info_span};
766
    /// let span = info_span!("my_great_span");
767
    ///
768
    /// {
769
    ///     let _enter = span.enter();
770
    ///
771
    ///     // this event occurs inside the span.
772
    ///     info!("i'm in the span!");
773
    ///
774
    ///     // exiting the scope drops the guard, exiting the span.
775
    /// }
776
    ///
777
    /// // this event is not inside the span.
778
    /// info!("i'm outside the span!")
779
    /// ```
780
    ///
781
    /// [`Subscriber::enter`]: super::subscriber::Subscriber::enter()
782
    /// [`Subscriber::exit`]: super::subscriber::Subscriber::exit()
783
    /// [`Id`]: super::Id
784
    #[inline(always)]
785
0
    pub fn enter(&self) -> Entered<'_> {
786
0
        self.do_enter();
787
0
        Entered { span: self }
788
0
    }
789
790
    /// Enters this span, consuming it and returning a [guard][`EnteredSpan`]
791
    /// that will exit the span when dropped.
792
    ///
793
    /// <pre class="compile_fail" style="white-space:normal;font:inherit;">
794
    ///     <strong>Warning</strong>: In asynchronous code that uses async/await syntax,
795
    ///     <code>Span::entered</code> may produce incorrect traces if the returned drop
796
    ///     guard is held across an await point. See <a href="#in-asynchronous-code">the
797
    ///     <code>Span::enter</code> documentation</a> for details.
798
    /// </pre>
799
    ///
800
    ///
801
    /// If this span is enabled by the current subscriber, then this function will
802
    /// call [`Subscriber::enter`] with the span's [`Id`], and dropping the guard
803
    /// will call [`Subscriber::exit`]. If the span is disabled, this does
804
    /// nothing.
805
    ///
806
    /// This is similar to the [`Span::enter`] method, except that it moves the
807
    /// span by value into the returned guard, rather than borrowing it.
808
    /// Therefore, this method can be used to create and enter a span in a
809
    /// single expression, without requiring a `let`-binding. For example:
810
    ///
811
    /// ```
812
    /// # use tracing::info_span;
813
    /// let _span = info_span!("something_interesting").entered();
814
    /// ```
815
    /// rather than:
816
    /// ```
817
    /// # use tracing::info_span;
818
    /// let span = info_span!("something_interesting");
819
    /// let _e = span.enter();
820
    /// ```
821
    ///
822
    /// Furthermore, `entered` may be used when the span must be stored in some
823
    /// other struct or be passed to a function while remaining entered.
824
    ///
825
    /// <pre class="ignore" style="white-space:normal;font:inherit;">
826
    ///     <strong>Note</strong>: The returned <a href="../struct.EnteredSpan.html">
827
    ///     <code>EnteredSpan</code></a> guard does not implement <code>Send</code>.
828
    ///     Dropping the guard will exit <em>this</em> span, and if the guard is sent
829
    ///     to another thread and dropped there, that thread may never have entered
830
    ///     this span. Thus, <code>EnteredSpan</code>s should not be sent between threads.
831
    /// </pre>
832
    ///
833
    /// [syntax]: https://rust-lang.github.io/async-book/01_getting_started/04_async_await_primer.html
834
    ///
835
    /// # Examples
836
    ///
837
    /// The returned guard can be [explicitly exited][EnteredSpan::exit],
838
    /// returning the un-entered span:
839
    ///
840
    /// ```
841
    /// # use tracing::{Level, span};
842
    /// let span = span!(Level::INFO, "doing_something").entered();
843
    ///
844
    /// // code here is within the span
845
    ///
846
    /// // explicitly exit the span, returning it
847
    /// let span = span.exit();
848
    ///
849
    /// // code here is no longer within the span
850
    ///
851
    /// // enter the span again
852
    /// let span = span.entered();
853
    ///
854
    /// // now we are inside the span once again
855
    /// ```
856
    ///
857
    /// Guards need not be explicitly dropped:
858
    ///
859
    /// ```
860
    /// # use tracing::trace_span;
861
    /// fn my_function() -> String {
862
    ///     // enter a span for the duration of this function.
863
    ///     let span = trace_span!("my_function").entered();
864
    ///
865
    ///     // anything happening in functions we call is still inside the span...
866
    ///     my_other_function();
867
    ///
868
    ///     // returning from the function drops the guard, exiting the span.
869
    ///     return "Hello world".to_owned();
870
    /// }
871
    ///
872
    /// fn my_other_function() {
873
    ///     // ...
874
    /// }
875
    /// ```
876
    ///
877
    /// Since the [`EnteredSpan`] guard can dereference to the [`Span`] itself,
878
    /// the span may still be accessed while entered. For example:
879
    ///
880
    /// ```rust
881
    /// # use tracing::info_span;
882
    /// use tracing::field;
883
    ///
884
    /// // create the span with an empty field, and enter it.
885
    /// let span = info_span!("my_span", some_field = field::Empty).entered();
886
    ///
887
    /// // we can still record a value for the field while the span is entered.
888
    /// span.record("some_field", &"hello world!");
889
    /// ```
890
    ///
891
892
    /// [`Subscriber::enter`]: super::subscriber::Subscriber::enter()
893
    /// [`Subscriber::exit`]: super::subscriber::Subscriber::exit()
894
    /// [`Id`]: super::Id
895
    #[inline(always)]
896
    pub fn entered(self) -> EnteredSpan {
897
        self.do_enter();
898
        EnteredSpan {
899
            span: self,
900
            _not_send: PhantomNotSend,
901
        }
902
    }
903
904
    /// Returns this span, if it was [enabled] by the current [`Subscriber`], or
905
    /// the [current span] (whose lexical distance may be further than expected),
906
    ///  if this span [is disabled].
907
    ///
908
    /// This method can be useful when propagating spans to spawned threads or
909
    /// [async tasks]. Consider the following:
910
    ///
911
    /// ```
912
    /// let _parent_span = tracing::info_span!("parent").entered();
913
    ///
914
    /// // ...
915
    ///
916
    /// let child_span = tracing::debug_span!("child");
917
    ///
918
    /// std::thread::spawn(move || {
919
    ///     let _entered = child_span.entered();
920
    ///
921
    ///     tracing::info!("spawned a thread!");
922
    ///
923
    ///     // ...
924
    /// });
925
    /// ```
926
    ///
927
    /// If the current [`Subscriber`] enables the [`DEBUG`] level, then both
928
    /// the "parent" and "child" spans will be enabled. Thus, when the "spawaned
929
    /// a thread!" event occurs, it will be inside of the "child" span. Because
930
    /// "parent" is the parent of "child", the event will _also_ be inside of
931
    /// "parent".
932
    ///
933
    /// However, if the [`Subscriber`] only enables the [`INFO`] level, the "child"
934
    /// span will be disabled. When the thread is spawned, the
935
    /// `child_span.entered()` call will do nothing, since "child" is not
936
    /// enabled. In this case, the "spawned a thread!" event occurs outside of
937
    /// *any* span, since the "child" span was responsible for propagating its
938
    /// parent to the spawned thread.
939
    ///
940
    /// If this is not the desired behavior, `Span::or_current` can be used to
941
    /// ensure that the "parent" span is propagated in both cases, either as a
942
    /// parent of "child" _or_ directly. For example:
943
    ///
944
    /// ```
945
    /// let _parent_span = tracing::info_span!("parent").entered();
946
    ///
947
    /// // ...
948
    ///
949
    /// // If DEBUG is enabled, then "child" will be enabled, and `or_current`
950
    /// // returns "child". Otherwise, if DEBUG is not enabled, "child" will be
951
    /// // disabled, and `or_current` returns "parent".
952
    /// let child_span = tracing::debug_span!("child").or_current();
953
    ///
954
    /// std::thread::spawn(move || {
955
    ///     let _entered = child_span.entered();
956
    ///
957
    ///     tracing::info!("spawned a thread!");
958
    ///
959
    ///     // ...
960
    /// });
961
    /// ```
962
    ///
963
    /// When spawning [asynchronous tasks][async tasks], `Span::or_current` can
964
    /// be used similarly, in combination with [`instrument`]:
965
    ///
966
    /// ```
967
    /// use tracing::Instrument;
968
    /// # // lol
969
    /// # mod tokio {
970
    /// #     pub(super) fn spawn(_: impl std::future::Future) {}
971
    /// # }
972
    ///
973
    /// let _parent_span = tracing::info_span!("parent").entered();
974
    ///
975
    /// // ...
976
    ///
977
    /// let child_span = tracing::debug_span!("child");
978
    ///
979
    /// tokio::spawn(
980
    ///     async {
981
    ///         tracing::info!("spawned a task!");
982
    ///
983
    ///         // ...
984
    ///
985
    ///     }.instrument(child_span.or_current())
986
    /// );
987
    /// ```
988
    ///
989
    /// In general, `or_current` should be preferred over nesting an
990
    /// [`instrument`]  call inside of an [`in_current_span`] call, as using
991
    /// `or_current` will be more efficient.
992
    ///
993
    /// ```
994
    /// use tracing::Instrument;
995
    /// # // lol
996
    /// # mod tokio {
997
    /// #     pub(super) fn spawn(_: impl std::future::Future) {}
998
    /// # }
999
    /// async fn my_async_fn() {
1000
    ///     // ...
1001
    /// }
1002
    ///
1003
    /// let _parent_span = tracing::info_span!("parent").entered();
1004
    ///
1005
    /// // Do this:
1006
    /// tokio::spawn(
1007
    ///     my_async_fn().instrument(tracing::debug_span!("child").or_current())
1008
    /// );
1009
    ///
1010
    /// // ...rather than this:
1011
    /// tokio::spawn(
1012
    ///     my_async_fn()
1013
    ///         .instrument(tracing::debug_span!("child"))
1014
    ///         .in_current_span()
1015
    /// );
1016
    /// ```
1017
    ///
1018
    /// [enabled]: crate::Subscriber::enabled
1019
    /// [`Subscriber`]: crate::Subscriber
1020
    /// [current span]: Span::current
1021
    /// [is disabled]: Span::is_disabled
1022
    /// [`INFO`]: crate::Level::INFO
1023
    /// [`DEBUG`]: crate::Level::DEBUG
1024
    /// [async tasks]: std::task
1025
    /// [`instrument`]: crate::instrument::Instrument::instrument
1026
    /// [`in_current_span`]: crate::instrument::Instrument::in_current_span
1027
0
    pub fn or_current(self) -> Self {
1028
0
        if self.is_disabled() {
1029
0
            return Self::current();
1030
0
        }
1031
0
        self
1032
0
    }
1033
1034
    #[inline(always)]
1035
0
    fn do_enter(&self) {
1036
0
        if let Some(inner) = self.inner.as_ref() {
1037
0
            inner.subscriber.enter(&inner.id);
1038
0
        }
1039
1040
0
        if_log_enabled! { crate::Level::TRACE, {
1041
0
            if let Some(_meta) = self.meta {
1042
0
                self.log(ACTIVITY_LOG_TARGET, log::Level::Trace, format_args!("-> {};", _meta.name()));
1043
0
            }
1044
0
        }}
1045
0
    }
1046
1047
    // Called from [`Entered`] and [`EnteredSpan`] drops.
1048
    //
1049
    // Running this behaviour on drop rather than with an explicit function
1050
    // call means that spans may still be exited when unwinding.
1051
    #[inline(always)]
1052
0
    fn do_exit(&self) {
1053
0
        if let Some(inner) = self.inner.as_ref() {
1054
0
            inner.subscriber.exit(&inner.id);
1055
0
        }
1056
1057
0
        if_log_enabled! { crate::Level::TRACE, {
1058
0
            if let Some(_meta) = self.meta {
1059
0
                self.log(ACTIVITY_LOG_TARGET, log::Level::Trace, format_args!("<- {};", _meta.name()));
1060
0
            }
1061
0
        }}
1062
0
    }
1063
1064
    /// Executes the given function in the context of this span.
1065
    ///
1066
    /// If this span is enabled, then this function enters the span, invokes `f`
1067
    /// and then exits the span. If the span is disabled, `f` will still be
1068
    /// invoked, but in the context of the currently-executing span (if there is
1069
    /// one).
1070
    ///
1071
    /// Returns the result of evaluating `f`.
1072
    ///
1073
    /// # Examples
1074
    ///
1075
    /// ```
1076
    /// # use tracing::{trace, span, Level};
1077
    /// let my_span = span!(Level::TRACE, "my_span");
1078
    ///
1079
    /// my_span.in_scope(|| {
1080
    ///     // this event occurs within the span.
1081
    ///     trace!("i'm in the span!");
1082
    /// });
1083
    ///
1084
    /// // this event occurs outside the span.
1085
    /// trace!("i'm not in the span!");
1086
    /// ```
1087
    ///
1088
    /// Calling a function and returning the result:
1089
    /// ```
1090
    /// # use tracing::{info_span, Level};
1091
    /// fn hello_world() -> String {
1092
    ///     "Hello world!".to_owned()
1093
    /// }
1094
    ///
1095
    /// let span = info_span!("hello_world");
1096
    /// // the span will be entered for the duration of the call to
1097
    /// // `hello_world`.
1098
    /// let a_string = span.in_scope(hello_world);
1099
    ///
1100
0
    pub fn in_scope<F: FnOnce() -> T, T>(&self, f: F) -> T {
1101
0
        let _enter = self.enter();
1102
0
        f()
1103
0
    }
1104
1105
    /// Returns a [`Field`][super::field::Field] for the field with the
1106
    /// given `name`, if one exists,
1107
0
    pub fn field<Q: ?Sized>(&self, field: &Q) -> Option<field::Field>
1108
0
    where
1109
0
        Q: field::AsField,
1110
0
    {
1111
0
        self.metadata().and_then(|meta| field.as_field(meta))
1112
0
    }
1113
1114
    /// Returns true if this `Span` has a field for the given
1115
    /// [`Field`][super::field::Field] or field name.
1116
    #[inline]
1117
0
    pub fn has_field<Q: ?Sized>(&self, field: &Q) -> bool
1118
0
    where
1119
0
        Q: field::AsField,
1120
0
    {
1121
0
        self.field(field).is_some()
1122
0
    }
1123
1124
    /// Records that the field described by `field` has the value `value`.
1125
    ///
1126
    /// This may be used with [`field::Empty`] to declare fields whose values
1127
    /// are not known when the span is created, and record them later:
1128
    /// ```
1129
    /// use tracing::{trace_span, field};
1130
    ///
1131
    /// // Create a span with two fields: `greeting`, with the value "hello world", and
1132
    /// // `parting`, without a value.
1133
    /// let span = trace_span!("my_span", greeting = "hello world", parting = field::Empty);
1134
    ///
1135
    /// // ...
1136
    ///
1137
    /// // Now, record a value for parting as well.
1138
    /// // (note that the field name is passed as a string slice)
1139
    /// span.record("parting", "goodbye world!");
1140
    /// ```
1141
    /// However, it may also be used to record a _new_ value for a field whose
1142
    /// value was already recorded:
1143
    /// ```
1144
    /// use tracing::info_span;
1145
    /// # fn do_something() -> Result<(), ()> { Err(()) }
1146
    ///
1147
    /// // Initially, let's assume that our attempt to do something is going okay...
1148
    /// let span = info_span!("doing_something", is_okay = true);
1149
    /// let _e = span.enter();
1150
    ///
1151
    /// match do_something() {
1152
    ///     Ok(something) => {
1153
    ///         // ...
1154
    ///     }
1155
    ///     Err(_) => {
1156
    ///         // Things are no longer okay!
1157
    ///         span.record("is_okay", false);
1158
    ///     }
1159
    /// }
1160
    /// ```
1161
    ///
1162
    /// <pre class="ignore" style="white-space:normal;font:inherit;">
1163
    ///     <strong>Note</strong>: The fields associated with a span are part
1164
    ///     of its <a href="../struct.Metadata.html"><code>Metadata</code></a>.
1165
    ///     The <a href="../struct.Metadata.html"><code>Metadata</code></a>
1166
    ///     describing a particular span is constructed statically when the span
1167
    ///     is created and cannot be extended later to add new fields. Therefore,
1168
    ///     you cannot record a value for a field that was not specified when the
1169
    ///     span was created:
1170
    /// </pre>
1171
    ///
1172
    /// ```
1173
    /// use tracing::{trace_span, field};
1174
    ///
1175
    /// // Create a span with two fields: `greeting`, with the value "hello world", and
1176
    /// // `parting`, without a value.
1177
    /// let span = trace_span!("my_span", greeting = "hello world", parting = field::Empty);
1178
    ///
1179
    /// // ...
1180
    ///
1181
    /// // Now, you try to record a value for a new field, `new_field`, which was not
1182
    /// // declared as `Empty` or populated when you created `span`.
1183
    /// // You won't get any error, but the assignment will have no effect!
1184
    /// span.record("new_field", "interesting_value_you_really_need");
1185
    ///
1186
    /// // Instead, all fields that may be recorded after span creation should be declared up front,
1187
    /// // using field::Empty when a value is not known, as we did for `parting`.
1188
    /// // This `record` call will indeed replace field::Empty with "you will be remembered".
1189
    /// span.record("parting", "you will be remembered");
1190
    /// ```
1191
    ///
1192
    /// [`field::Empty`]: super::field::Empty
1193
    /// [`Metadata`]: super::Metadata
1194
0
    pub fn record<Q: ?Sized, V>(&self, field: &Q, value: V) -> &Self
1195
0
    where
1196
0
        Q: field::AsField,
1197
0
        V: field::Value,
1198
0
    {
1199
0
        if let Some(meta) = self.meta {
1200
0
            if let Some(field) = field.as_field(meta) {
1201
0
                self.record_all(
1202
0
                    &meta
1203
0
                        .fields()
1204
0
                        .value_set(&[(&field, Some(&value as &dyn field::Value))]),
1205
0
                );
1206
0
            }
1207
0
        }
1208
1209
0
        self
1210
0
    }
1211
1212
    /// Records all the fields in the provided `ValueSet`.
1213
0
    pub fn record_all(&self, values: &field::ValueSet<'_>) -> &Self {
1214
0
        let record = Record::new(values);
1215
0
        if let Some(ref inner) = self.inner {
1216
0
            inner.record(&record);
1217
0
        }
1218
1219
0
        if let Some(_meta) = self.meta {
1220
0
            if_log_enabled! { *_meta.level(), {
1221
0
                let target = if record.is_empty() {
1222
0
                    LIFECYCLE_LOG_TARGET
1223
0
                } else {
1224
0
                    _meta.target()
1225
0
                };
1226
0
                self.log(
1227
0
                    target,
1228
0
                    level_to_log!(*_meta.level()),
1229
0
                    format_args!("{};{}", _meta.name(), crate::log::LogValueSet { values, is_first: false }),
1230
0
                );
1231
0
            }}
1232
0
        }
1233
1234
0
        self
1235
0
    }
1236
1237
    /// Returns `true` if this span was disabled by the subscriber and does not
1238
    /// exist.
1239
    ///
1240
    /// See also [`is_none`].
1241
    ///
1242
    /// [`is_none`]: Span::is_none()
1243
    #[inline]
1244
0
    pub fn is_disabled(&self) -> bool {
1245
0
        self.inner.is_none()
1246
0
    }
1247
1248
    /// Returns `true` if this span was constructed by [`Span::none`] and is
1249
    /// empty.
1250
    ///
1251
    /// If `is_none` returns `true` for a given span, then [`is_disabled`] will
1252
    /// also return `true`. However, when a span is disabled by the subscriber
1253
    /// rather than constructed by `Span::none`, this method will return
1254
    /// `false`, while `is_disabled` will return `true`.
1255
    ///
1256
    /// [`Span::none`]: Span::none()
1257
    /// [`is_disabled`]: Span::is_disabled()
1258
    #[inline]
1259
0
    pub fn is_none(&self) -> bool {
1260
0
        self.is_disabled() && self.meta.is_none()
1261
0
    }
1262
1263
    /// Indicates that the span with the given ID has an indirect causal
1264
    /// relationship with this span.
1265
    ///
1266
    /// This relationship differs somewhat from the parent-child relationship: a
1267
    /// span may have any number of prior spans, rather than a single one; and
1268
    /// spans are not considered to be executing _inside_ of the spans they
1269
    /// follow from. This means that a span may close even if subsequent spans
1270
    /// that follow from it are still open, and time spent inside of a
1271
    /// subsequent span should not be included in the time its precedents were
1272
    /// executing. This is used to model causal relationships such as when a
1273
    /// single future spawns several related background tasks, et cetera.
1274
    ///
1275
    /// If this span is disabled, or the resulting follows-from relationship
1276
    /// would be invalid, this function will do nothing.
1277
    ///
1278
    /// # Examples
1279
    ///
1280
    /// Setting a `follows_from` relationship with a `Span`:
1281
    /// ```
1282
    /// # use tracing::{span, Id, Level, Span};
1283
    /// let span1 = span!(Level::INFO, "span_1");
1284
    /// let span2 = span!(Level::DEBUG, "span_2");
1285
    /// span2.follows_from(span1);
1286
    /// ```
1287
    ///
1288
    /// Setting a `follows_from` relationship with the current span:
1289
    /// ```
1290
    /// # use tracing::{span, Id, Level, Span};
1291
    /// let span = span!(Level::INFO, "hello!");
1292
    /// span.follows_from(Span::current());
1293
    /// ```
1294
    ///
1295
    /// Setting a `follows_from` relationship with a `Span` reference:
1296
    /// ```
1297
    /// # use tracing::{span, Id, Level, Span};
1298
    /// let span = span!(Level::INFO, "hello!");
1299
    /// let curr = Span::current();
1300
    /// span.follows_from(&curr);
1301
    /// ```
1302
    ///
1303
    /// Setting a `follows_from` relationship with an `Id`:
1304
    /// ```
1305
    /// # use tracing::{span, Id, Level, Span};
1306
    /// let span = span!(Level::INFO, "hello!");
1307
    /// let id = span.id();
1308
    /// span.follows_from(id);
1309
    /// ```
1310
0
    pub fn follows_from(&self, from: impl Into<Option<Id>>) -> &Self {
1311
0
        if let Some(ref inner) = self.inner {
1312
0
            if let Some(from) = from.into() {
1313
0
                inner.follows_from(&from);
1314
0
            }
1315
0
        }
1316
0
        self
1317
0
    }
1318
1319
    /// Returns this span's `Id`, if it is enabled.
1320
0
    pub fn id(&self) -> Option<Id> {
1321
0
        self.inner.as_ref().map(Inner::id)
1322
0
    }
1323
1324
    /// Returns this span's `Metadata`, if it is enabled.
1325
0
    pub fn metadata(&self) -> Option<&'static Metadata<'static>> {
1326
0
        self.meta
1327
0
    }
1328
1329
    #[cfg(feature = "log")]
1330
    #[inline]
1331
    fn log(&self, target: &str, level: log::Level, message: fmt::Arguments<'_>) {
1332
        if let Some(meta) = self.meta {
1333
            if level_to_log!(*meta.level()) <= log::max_level() {
1334
                let logger = log::logger();
1335
                let log_meta = log::Metadata::builder().level(level).target(target).build();
1336
                if logger.enabled(&log_meta) {
1337
                    if let Some(ref inner) = self.inner {
1338
                        logger.log(
1339
                            &log::Record::builder()
1340
                                .metadata(log_meta)
1341
                                .module_path(meta.module_path())
1342
                                .file(meta.file())
1343
                                .line(meta.line())
1344
                                .args(format_args!("{} span={}", message, inner.id.into_u64()))
1345
                                .build(),
1346
                        );
1347
                    } else {
1348
                        logger.log(
1349
                            &log::Record::builder()
1350
                                .metadata(log_meta)
1351
                                .module_path(meta.module_path())
1352
                                .file(meta.file())
1353
                                .line(meta.line())
1354
                                .args(message)
1355
                                .build(),
1356
                        );
1357
                    }
1358
                }
1359
            }
1360
        }
1361
    }
1362
1363
    /// Invokes a function with a reference to this span's ID and subscriber.
1364
    ///
1365
    /// if this span is enabled, the provided function is called, and the result is returned.
1366
    /// If the span is disabled, the function is not called, and this method returns `None`
1367
    /// instead.
1368
0
    pub fn with_subscriber<T>(&self, f: impl FnOnce((&Id, &Dispatch)) -> T) -> Option<T> {
1369
0
        self.inner
1370
0
            .as_ref()
1371
0
            .map(|inner| f((&inner.id, &inner.subscriber)))
1372
0
    }
1373
}
1374
1375
impl cmp::PartialEq for Span {
1376
0
    fn eq(&self, other: &Self) -> bool {
1377
0
        match (&self.meta, &other.meta) {
1378
0
            (Some(this), Some(that)) => {
1379
0
                this.callsite() == that.callsite() && self.inner == other.inner
1380
            }
1381
0
            _ => false,
1382
        }
1383
0
    }
1384
}
1385
1386
impl Hash for Span {
1387
0
    fn hash<H: Hasher>(&self, hasher: &mut H) {
1388
0
        self.inner.hash(hasher);
1389
0
    }
1390
}
1391
1392
impl fmt::Debug for Span {
1393
0
    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
1394
0
        let mut span = f.debug_struct("Span");
1395
0
        if let Some(meta) = self.meta {
1396
0
            span.field("name", &meta.name())
1397
0
                .field("level", &meta.level())
1398
0
                .field("target", &meta.target());
1399
1400
0
            if let Some(ref inner) = self.inner {
1401
0
                span.field("id", &inner.id());
1402
0
            } else {
1403
0
                span.field("disabled", &true);
1404
0
            }
1405
1406
0
            if let Some(ref path) = meta.module_path() {
1407
0
                span.field("module_path", &path);
1408
0
            }
1409
1410
0
            if let Some(ref line) = meta.line() {
1411
0
                span.field("line", &line);
1412
0
            }
1413
1414
0
            if let Some(ref file) = meta.file() {
1415
0
                span.field("file", &file);
1416
0
            }
1417
0
        } else {
1418
0
            span.field("none", &true);
1419
0
        }
1420
1421
0
        span.finish()
1422
0
    }
1423
}
1424
1425
impl<'a> From<&'a Span> for Option<&'a Id> {
1426
0
    fn from(span: &'a Span) -> Self {
1427
0
        span.inner.as_ref().map(|inner| &inner.id)
1428
0
    }
1429
}
1430
1431
impl<'a> From<&'a Span> for Option<Id> {
1432
0
    fn from(span: &'a Span) -> Self {
1433
0
        span.inner.as_ref().map(Inner::id)
1434
0
    }
1435
}
1436
1437
impl From<Span> for Option<Id> {
1438
0
    fn from(span: Span) -> Self {
1439
0
        span.inner.as_ref().map(Inner::id)
1440
0
    }
1441
}
1442
1443
impl<'a> From<&'a EnteredSpan> for Option<&'a Id> {
1444
0
    fn from(span: &'a EnteredSpan) -> Self {
1445
0
        span.inner.as_ref().map(|inner| &inner.id)
1446
0
    }
1447
}
1448
1449
impl<'a> From<&'a EnteredSpan> for Option<Id> {
1450
0
    fn from(span: &'a EnteredSpan) -> Self {
1451
0
        span.inner.as_ref().map(Inner::id)
1452
0
    }
1453
}
1454
1455
impl Drop for Span {
1456
    #[inline(always)]
1457
0
    fn drop(&mut self) {
1458
        if let Some(Inner {
1459
0
            ref id,
1460
0
            ref subscriber,
1461
0
        }) = self.inner
1462
0
        {
1463
0
            subscriber.try_close(id.clone());
1464
0
        }
1465
1466
0
        if_log_enabled! { crate::Level::TRACE, {
1467
0
            if let Some(meta) = self.meta {
1468
0
                self.log(
1469
0
                    LIFECYCLE_LOG_TARGET,
1470
0
                    log::Level::Trace,
1471
0
                    format_args!("-- {};", meta.name()),
1472
0
                );
1473
0
            }
1474
0
        }}
1475
0
    }
1476
}
1477
1478
// ===== impl Inner =====
1479
1480
impl Inner {
1481
    /// Indicates that the span with the given ID has an indirect causal
1482
    /// relationship with this span.
1483
    ///
1484
    /// This relationship differs somewhat from the parent-child relationship: a
1485
    /// span may have any number of prior spans, rather than a single one; and
1486
    /// spans are not considered to be executing _inside_ of the spans they
1487
    /// follow from. This means that a span may close even if subsequent spans
1488
    /// that follow from it are still open, and time spent inside of a
1489
    /// subsequent span should not be included in the time its precedents were
1490
    /// executing. This is used to model causal relationships such as when a
1491
    /// single future spawns several related background tasks, et cetera.
1492
    ///
1493
    /// If this span is disabled, this function will do nothing. Otherwise, it
1494
    /// returns `Ok(())` if the other span was added as a precedent of this
1495
    /// span, or an error if this was not possible.
1496
0
    fn follows_from(&self, from: &Id) {
1497
0
        self.subscriber.record_follows_from(&self.id, from)
1498
0
    }
1499
1500
    /// Returns the span's ID.
1501
0
    fn id(&self) -> Id {
1502
0
        self.id.clone()
1503
0
    }
1504
1505
0
    fn record(&self, values: &Record<'_>) {
1506
0
        self.subscriber.record(&self.id, values)
1507
0
    }
1508
1509
0
    fn new(id: Id, subscriber: &Dispatch) -> Self {
1510
0
        Inner {
1511
0
            id,
1512
0
            subscriber: subscriber.clone(),
1513
0
        }
1514
0
    }
1515
}
1516
1517
impl cmp::PartialEq for Inner {
1518
0
    fn eq(&self, other: &Self) -> bool {
1519
0
        self.id == other.id
1520
0
    }
1521
}
1522
1523
impl Hash for Inner {
1524
0
    fn hash<H: Hasher>(&self, state: &mut H) {
1525
0
        self.id.hash(state);
1526
0
    }
1527
}
1528
1529
impl Clone for Inner {
1530
0
    fn clone(&self) -> Self {
1531
0
        Inner {
1532
0
            id: self.subscriber.clone_span(&self.id),
1533
0
            subscriber: self.subscriber.clone(),
1534
0
        }
1535
0
    }
1536
}
1537
1538
// ===== impl Entered =====
1539
1540
impl EnteredSpan {
1541
    /// Returns this span's `Id`, if it is enabled.
1542
0
    pub fn id(&self) -> Option<Id> {
1543
0
        self.inner.as_ref().map(Inner::id)
1544
0
    }
1545
1546
    /// Exits this span, returning the underlying [`Span`].
1547
    #[inline]
1548
0
    pub fn exit(mut self) -> Span {
1549
0
        // One does not simply move out of a struct with `Drop`.
1550
0
        let span = mem::replace(&mut self.span, Span::none());
1551
0
        span.do_exit();
1552
0
        span
1553
0
    }
1554
}
1555
1556
impl Deref for EnteredSpan {
1557
    type Target = Span;
1558
1559
    #[inline]
1560
0
    fn deref(&self) -> &Span {
1561
0
        &self.span
1562
0
    }
1563
}
1564
1565
impl<'a> Drop for Entered<'a> {
1566
    #[inline(always)]
1567
0
    fn drop(&mut self) {
1568
0
        self.span.do_exit()
1569
0
    }
1570
}
1571
1572
impl Drop for EnteredSpan {
1573
    #[inline(always)]
1574
0
    fn drop(&mut self) {
1575
0
        self.span.do_exit()
1576
0
    }
1577
}
1578
1579
/// Technically, `EnteredSpan` _can_ implement both `Send` *and*
1580
/// `Sync` safely. It doesn't, because it has a `PhantomNotSend` field,
1581
/// specifically added in order to make it `!Send`.
1582
///
1583
/// Sending an `EnteredSpan` guard between threads cannot cause memory unsafety.
1584
/// However, it *would* result in incorrect behavior, so we add a
1585
/// `PhantomNotSend` to prevent it from being sent between threads. This is
1586
/// because it must be *dropped* on the same thread that it was created;
1587
/// otherwise, the span will never be exited on the thread where it was entered,
1588
/// and it will attempt to exit the span on a thread that may never have entered
1589
/// it. However, we still want them to be `Sync` so that a struct holding an
1590
/// `Entered` guard can be `Sync`.
1591
///
1592
/// Thus, this is totally safe.
1593
#[derive(Debug)]
1594
struct PhantomNotSend {
1595
    ghost: PhantomData<*mut ()>,
1596
}
1597
1598
#[allow(non_upper_case_globals)]
1599
const PhantomNotSend: PhantomNotSend = PhantomNotSend { ghost: PhantomData };
1600
1601
/// # Safety
1602
///
1603
/// Trivially safe, as `PhantomNotSend` doesn't have any API.
1604
unsafe impl Sync for PhantomNotSend {}
1605
1606
#[cfg(test)]
1607
mod test {
1608
    use super::*;
1609
1610
    trait AssertSend: Send {}
1611
    impl AssertSend for Span {}
1612
1613
    trait AssertSync: Sync {}
1614
    impl AssertSync for Span {}
1615
    impl AssertSync for Entered<'_> {}
1616
    impl AssertSync for EnteredSpan {}
1617
1618
    #[test]
1619
    fn test_record_backwards_compat() {
1620
        Span::current().record("some-key", "some text");
1621
        Span::current().record("some-key", false);
1622
    }
1623
}