Coverage Report

Created: 2026-02-14 07:33

next uncovered line (L), next uncovered region (R), next uncovered branch (B)
/rust/registry/src/index.crates.io-1949cf8c6b5b557f/bumpalo-3.19.1/src/lib.rs
Line
Count
Source
1
#![doc = include_str!("../README.md")]
2
#![deny(missing_debug_implementations)]
3
#![deny(missing_docs)]
4
#![cfg_attr(not(feature = "std"), no_std)]
5
#![cfg_attr(feature = "allocator_api", feature(allocator_api))]
6
7
#[doc(hidden)]
8
pub extern crate alloc as core_alloc;
9
10
#[cfg(feature = "boxed")]
11
pub mod boxed;
12
#[cfg(feature = "collections")]
13
pub mod collections;
14
15
mod alloc;
16
17
use core::cell::Cell;
18
use core::cmp::Ordering;
19
use core::fmt::Display;
20
use core::iter;
21
use core::marker::PhantomData;
22
use core::mem;
23
use core::ptr::{self, NonNull};
24
use core::slice;
25
use core::str;
26
use core_alloc::alloc::{alloc, dealloc, Layout};
27
28
#[cfg(feature = "allocator_api")]
29
use core_alloc::alloc::{AllocError, Allocator};
30
31
#[cfg(all(feature = "allocator-api2", not(feature = "allocator_api")))]
32
use allocator_api2::alloc::{AllocError, Allocator};
33
34
pub use alloc::AllocErr;
35
36
/// An error returned from [`Bump::try_alloc_try_with`].
37
#[derive(Clone, PartialEq, Eq, Debug)]
38
pub enum AllocOrInitError<E> {
39
    /// Indicates that the initial allocation failed.
40
    Alloc(AllocErr),
41
    /// Indicates that the initializer failed with the contained error after
42
    /// allocation.
43
    ///
44
    /// It is possible but not guaranteed that the allocated memory has been
45
    /// released back to the allocator at this point.
46
    Init(E),
47
}
48
impl<E> From<AllocErr> for AllocOrInitError<E> {
49
0
    fn from(e: AllocErr) -> Self {
50
0
        Self::Alloc(e)
51
0
    }
52
}
53
impl<E: Display> Display for AllocOrInitError<E> {
54
0
    fn fmt(&self, f: &mut core::fmt::Formatter<'_>) -> core::fmt::Result {
55
0
        match self {
56
0
            AllocOrInitError::Alloc(err) => err.fmt(f),
57
0
            AllocOrInitError::Init(err) => write!(f, "initialization failed: {}", err),
58
        }
59
0
    }
60
}
61
62
/// An arena to bump allocate into.
63
///
64
/// ## No `Drop`s
65
///
66
/// Objects that are bump-allocated will never have their [`Drop`] implementation
67
/// called &mdash; unless you do it manually yourself. This makes it relatively
68
/// easy to leak memory or other resources.
69
///
70
/// If you have a type which internally manages
71
///
72
/// * an allocation from the global heap (e.g. [`Vec<T>`]),
73
/// * open file descriptors (e.g. [`std::fs::File`]), or
74
/// * any other resource that must be cleaned up (e.g. an `mmap`)
75
///
76
/// and relies on its `Drop` implementation to clean up the internal resource,
77
/// then if you allocate that type with a `Bump`, you need to find a new way to
78
/// clean up after it yourself.
79
///
80
/// Potential solutions are:
81
///
82
/// * Using [`bumpalo::boxed::Box::new_in`] instead of [`Bump::alloc`], that
83
///   will drop wrapped values similarly to [`std::boxed::Box`]. Note that this
84
///   requires enabling the `"boxed"` Cargo feature for this crate. **This is
85
///   often the easiest solution.**
86
///
87
/// * Calling [`drop_in_place`][drop_in_place] or using
88
///   [`std::mem::ManuallyDrop`][manuallydrop] to manually drop these types.
89
///
90
/// * Using [`bumpalo::collections::Vec`] instead of [`std::vec::Vec`].
91
///
92
/// * Avoiding allocating these problematic types within a `Bump`.
93
///
94
/// Note that not calling `Drop` is memory safe! Destructors are never
95
/// guaranteed to run in Rust, you can't rely on them for enforcing memory
96
/// safety.
97
///
98
/// [`Drop`]: https://doc.rust-lang.org/std/ops/trait.Drop.html
99
/// [`Vec<T>`]: https://doc.rust-lang.org/std/vec/struct.Vec.html
100
/// [`std::fs::File`]: https://doc.rust-lang.org/std/fs/struct.File.html
101
/// [drop_in_place]: https://doc.rust-lang.org/std/ptr/fn.drop_in_place.html
102
/// [manuallydrop]: https://doc.rust-lang.org/std/mem/struct.ManuallyDrop.html
103
/// [`bumpalo::collections::Vec`]: collections/vec/struct.Vec.html
104
/// [`std::vec::Vec`]: https://doc.rust-lang.org/std/vec/struct.Vec.html
105
/// [`bumpalo::boxed::Box::new_in`]: boxed/struct.Box.html#method.new_in
106
/// [`std::boxed::Box`]: https://doc.rust-lang.org/std/boxed/struct.Box.html
107
///
108
/// ## Example
109
///
110
/// ```
111
/// use bumpalo::Bump;
112
///
113
/// // Create a new bump arena.
114
/// let bump = Bump::new();
115
///
116
/// // Allocate values into the arena.
117
/// let forty_two = bump.alloc(42);
118
/// assert_eq!(*forty_two, 42);
119
///
120
/// // Mutable references are returned from allocation.
121
/// let mut s = bump.alloc("bumpalo");
122
/// *s = "the bump allocator; and also is a buffalo";
123
/// ```
124
///
125
/// ## Allocation Methods Come in Many Flavors
126
///
127
/// There are various allocation methods on `Bump`, the simplest being
128
/// [`alloc`][Bump::alloc]. The others exist to satisfy some combination of
129
/// fallible allocation and initialization. The allocation methods are
130
/// summarized in the following table:
131
///
132
/// <table>
133
///   <thead>
134
///     <tr>
135
///       <th></th>
136
///       <th>Infallible Allocation</th>
137
///       <th>Fallible Allocation</th>
138
///     </tr>
139
///   </thead>
140
///     <tr>
141
///       <th>By Value</th>
142
///       <td><a href="#method.alloc"><code>alloc</code></a></td>
143
///       <td><a href="#method.try_alloc"><code>try_alloc</code></a></td>
144
///     </tr>
145
///     <tr>
146
///       <th>Infallible Initializer Function</th>
147
///       <td><a href="#method.alloc_with"><code>alloc_with</code></a></td>
148
///       <td><a href="#method.try_alloc_with"><code>try_alloc_with</code></a></td>
149
///     </tr>
150
///     <tr>
151
///       <th>Fallible Initializer Function</th>
152
///       <td><a href="#method.alloc_try_with"><code>alloc_try_with</code></a></td>
153
///       <td><a href="#method.try_alloc_try_with"><code>try_alloc_try_with</code></a></td>
154
///     </tr>
155
///   <tbody>
156
///   </tbody>
157
/// </table>
158
///
159
/// ### Fallible Allocation: The `try_alloc_` Method Prefix
160
///
161
/// These allocation methods let you recover from out-of-memory (OOM)
162
/// scenarios, rather than raising a panic on OOM.
163
///
164
/// ```
165
/// use bumpalo::Bump;
166
///
167
/// let bump = Bump::new();
168
///
169
/// match bump.try_alloc(MyStruct {
170
///     // ...
171
/// }) {
172
///     Ok(my_struct) => {
173
///         // Allocation succeeded.
174
///     }
175
///     Err(e) => {
176
///         // Out of memory.
177
///     }
178
/// }
179
///
180
/// struct MyStruct {
181
///     // ...
182
/// }
183
/// ```
184
///
185
/// ### Initializer Functions: The `_with` Method Suffix
186
///
187
/// Calling one of the generic `…alloc(x)` methods is essentially equivalent to
188
/// the matching [`…alloc_with(|| x)`](?search=alloc_with). However if you use
189
/// `…alloc_with`, then the closure will not be invoked until after allocating
190
/// space for storing `x` on the heap.
191
///
192
/// This can be useful in certain edge-cases related to compiler optimizations.
193
/// When evaluating for example `bump.alloc(x)`, semantically `x` is first put
194
/// on the stack and then moved onto the heap. In some cases, the compiler is
195
/// able to optimize this into constructing `x` directly on the heap, however
196
/// in many cases it does not.
197
///
198
/// The `…alloc_with` functions try to help the compiler be smarter. In most
199
/// cases doing for example `bump.try_alloc_with(|| x)` on release mode will be
200
/// enough to help the compiler realize that this optimization is valid and
201
/// to construct `x` directly onto the heap.
202
///
203
/// #### Warning
204
///
205
/// These functions critically depend on compiler optimizations to achieve their
206
/// desired effect. This means that it is not an effective tool when compiling
207
/// without optimizations on.
208
///
209
/// Even when optimizations are on, these functions do not **guarantee** that
210
/// the value is constructed on the heap. To the best of our knowledge no such
211
/// guarantee can be made in stable Rust as of 1.54.
212
///
213
/// ### Fallible Initialization: The `_try_with` Method Suffix
214
///
215
/// The generic [`…alloc_try_with(|| x)`](?search=_try_with) methods behave
216
/// like the purely `_with` suffixed methods explained above. However, they
217
/// allow for fallible initialization by accepting a closure that returns a
218
/// [`Result`] and will attempt to undo the initial allocation if this closure
219
/// returns [`Err`].
220
///
221
/// #### Warning
222
///
223
/// If the inner closure returns [`Ok`], space for the entire [`Result`] remains
224
/// allocated inside `self`. This can be a problem especially if the [`Err`]
225
/// variant is larger, but even otherwise there may be overhead for the
226
/// [`Result`]'s discriminant.
227
///
228
/// <p><details><summary>Undoing the allocation in the <code>Err</code> case
229
/// always fails if <code>f</code> successfully made any additional allocations
230
/// in <code>self</code>.</summary>
231
///
232
/// For example, the following will always leak also space for the [`Result`]
233
/// into this `Bump`, even though the inner reference isn't kept and the [`Err`]
234
/// payload is returned semantically by value:
235
///
236
/// ```rust
237
/// let bump = bumpalo::Bump::new();
238
///
239
/// let r: Result<&mut [u8; 1000], ()> = bump.alloc_try_with(|| {
240
///     let _ = bump.alloc(0_u8);
241
///     Err(())
242
/// });
243
///
244
/// assert!(r.is_err());
245
/// ```
246
///
247
///</details></p>
248
///
249
/// Since [`Err`] payloads are first placed on the heap and then moved to the
250
/// stack, `bump.…alloc_try_with(|| x)?` is likely to execute more slowly than
251
/// the matching `bump.…alloc(x?)` in case of initialization failure. If this
252
/// happens frequently, using the plain un-suffixed method may perform better.
253
///
254
/// [`Result`]: https://doc.rust-lang.org/std/result/enum.Result.html
255
/// [`Ok`]: https://doc.rust-lang.org/std/result/enum.Result.html#variant.Ok
256
/// [`Err`]: https://doc.rust-lang.org/std/result/enum.Result.html#variant.Err
257
///
258
/// ### `Bump` Allocation Limits
259
///
260
/// `bumpalo` supports setting a limit on the maximum bytes of memory that can
261
/// be allocated for use in a particular `Bump` arena. This limit can be set and removed with
262
/// [`set_allocation_limit`][Bump::set_allocation_limit].
263
/// The allocation limit is only enforced when allocating new backing chunks for
264
/// a `Bump`. Updating the allocation limit will not affect existing allocations
265
/// or any future allocations within the `Bump`'s current chunk.
266
///
267
/// #### Example
268
///
269
/// ```
270
/// let bump = bumpalo::Bump::new();
271
///
272
/// assert_eq!(bump.allocation_limit(), None);
273
/// bump.set_allocation_limit(Some(0));
274
///
275
/// assert!(bump.try_alloc(5).is_err());
276
///
277
/// bump.set_allocation_limit(Some(6));
278
///
279
/// assert_eq!(bump.allocation_limit(), Some(6));
280
///
281
/// bump.set_allocation_limit(None);
282
///
283
/// assert_eq!(bump.allocation_limit(), None);
284
/// ```
285
///
286
/// #### Warning
287
///
288
/// Because of backwards compatibility, allocations that fail
289
/// due to allocation limits will not present differently than
290
/// errors due to resource exhaustion.
291
#[derive(Debug)]
292
pub struct Bump<const MIN_ALIGN: usize = 1> {
293
    // The current chunk we are bump allocating within.
294
    current_chunk_footer: Cell<NonNull<ChunkFooter>>,
295
    allocation_limit: Cell<Option<usize>>,
296
}
297
298
#[repr(C)]
299
#[derive(Debug)]
300
struct ChunkFooter {
301
    // Pointer to the start of this chunk allocation. This footer is always at
302
    // the end of the chunk.
303
    data: NonNull<u8>,
304
305
    // The layout of this chunk's allocation.
306
    layout: Layout,
307
308
    // Link to the previous chunk.
309
    //
310
    // Note that the last node in the `prev` linked list is the canonical empty
311
    // chunk, whose `prev` link points to itself.
312
    prev: Cell<NonNull<ChunkFooter>>,
313
314
    // Bump allocation finger that is always in the range `self.data..=self`.
315
    ptr: Cell<NonNull<u8>>,
316
317
    // The bytes allocated in all chunks so far, the canonical empty chunk has
318
    // a size of 0 and for all other chunks, `allocated_bytes` will be
319
    // the allocated_bytes of the current chunk plus the allocated bytes
320
    // of the `prev` chunk.
321
    allocated_bytes: usize,
322
}
323
324
/// A wrapper type for the canonical, statically allocated empty chunk.
325
///
326
/// For the canonical empty chunk to be `static`, its type must be `Sync`, which
327
/// is the purpose of this wrapper type. This is safe because the empty chunk is
328
/// immutable and never actually modified.
329
#[repr(transparent)]
330
struct EmptyChunkFooter(ChunkFooter);
331
332
unsafe impl Sync for EmptyChunkFooter {}
333
334
static EMPTY_CHUNK: EmptyChunkFooter = EmptyChunkFooter(ChunkFooter {
335
    // This chunk is empty (except the foot itself).
336
    layout: Layout::new::<ChunkFooter>(),
337
338
    // The start of the (empty) allocatable region for this chunk is itself.
339
    data: unsafe { NonNull::new_unchecked(&EMPTY_CHUNK as *const EmptyChunkFooter as *mut u8) },
340
341
    // The end of the (empty) allocatable region for this chunk is also itself.
342
    ptr: Cell::new(unsafe {
343
        NonNull::new_unchecked(&EMPTY_CHUNK as *const EmptyChunkFooter as *mut u8)
344
    }),
345
346
    // Invariant: the last chunk footer in all `ChunkFooter::prev` linked lists
347
    // is the empty chunk footer, whose `prev` points to itself.
348
    prev: Cell::new(unsafe {
349
        NonNull::new_unchecked(&EMPTY_CHUNK as *const EmptyChunkFooter as *mut ChunkFooter)
350
    }),
351
352
    // Empty chunks count as 0 allocated bytes in an arena.
353
    allocated_bytes: 0,
354
});
355
356
impl EmptyChunkFooter {
357
3.62M
    fn get(&'static self) -> NonNull<ChunkFooter> {
358
3.62M
        NonNull::from(&self.0)
359
3.62M
    }
360
}
361
362
impl ChunkFooter {
363
    // Returns the start and length of the currently allocated region of this
364
    // chunk.
365
0
    fn as_raw_parts(&self) -> (*const u8, usize) {
366
0
        let data = self.data.as_ptr() as *const u8;
367
0
        let ptr = self.ptr.get().as_ptr() as *const u8;
368
0
        debug_assert!(data <= ptr);
369
0
        debug_assert!(ptr <= self as *const ChunkFooter as *const u8);
370
0
        let len = unsafe { (self as *const ChunkFooter as *const u8).offset_from(ptr) as usize };
371
0
        (ptr, len)
372
0
    }
373
374
    /// Is this chunk the last empty chunk?
375
2.76M
    fn is_empty(&self) -> bool {
376
2.76M
        ptr::eq(self, EMPTY_CHUNK.get().as_ptr())
377
2.76M
    }
378
}
379
380
impl<const MIN_ALIGN: usize> Default for Bump<MIN_ALIGN> {
381
430k
    fn default() -> Self {
382
430k
        Self::with_min_align()
383
430k
    }
<bumpalo::Bump as core::default::Default>::default
Line
Count
Source
381
96.6k
    fn default() -> Self {
382
96.6k
        Self::with_min_align()
383
96.6k
    }
Unexecuted instantiation: <bumpalo::Bump as core::default::Default>::default
Unexecuted instantiation: <bumpalo::Bump<_> as core::default::Default>::default
<bumpalo::Bump as core::default::Default>::default
Line
Count
Source
381
333k
    fn default() -> Self {
382
333k
        Self::with_min_align()
383
333k
    }
384
}
385
386
impl<const MIN_ALIGN: usize> Drop for Bump<MIN_ALIGN> {
387
860k
    fn drop(&mut self) {
388
860k
        unsafe {
389
860k
            dealloc_chunk_list(self.current_chunk_footer.get());
390
860k
        }
391
860k
    }
<bumpalo::Bump as core::ops::drop::Drop>::drop
Line
Count
Source
387
96.6k
    fn drop(&mut self) {
388
96.6k
        unsafe {
389
96.6k
            dealloc_chunk_list(self.current_chunk_footer.get());
390
96.6k
        }
391
96.6k
    }
<bumpalo::Bump as core::ops::drop::Drop>::drop
Line
Count
Source
387
430k
    fn drop(&mut self) {
388
430k
        unsafe {
389
430k
            dealloc_chunk_list(self.current_chunk_footer.get());
390
430k
        }
391
430k
    }
Unexecuted instantiation: <bumpalo::Bump as core::ops::drop::Drop>::drop
Unexecuted instantiation: <bumpalo::Bump as core::ops::drop::Drop>::drop
Unexecuted instantiation: <bumpalo::Bump<_> as core::ops::drop::Drop>::drop
<bumpalo::Bump as core::ops::drop::Drop>::drop
Line
Count
Source
387
333k
    fn drop(&mut self) {
388
333k
        unsafe {
389
333k
            dealloc_chunk_list(self.current_chunk_footer.get());
390
333k
        }
391
333k
    }
392
}
393
394
#[inline]
395
860k
unsafe fn dealloc_chunk_list(mut footer: NonNull<ChunkFooter>) {
396
2.33M
    while !footer.as_ref().is_empty() {
397
1.47M
        let f = footer;
398
1.47M
        footer = f.as_ref().prev.get();
399
1.47M
        dealloc(f.as_ref().data.as_ptr(), f.as_ref().layout);
400
1.47M
    }
401
860k
}
402
403
// `Bump`s are safe to send between threads because nothing aliases its owned
404
// chunks until you start allocating from it. But by the time you allocate from
405
// it, the returned references to allocations borrow the `Bump` and therefore
406
// prevent sending the `Bump` across threads until the borrows end.
407
unsafe impl<const MIN_ALIGN: usize> Send for Bump<MIN_ALIGN> {}
408
409
#[inline]
410
0
fn is_pointer_aligned_to<T>(pointer: *mut T, align: usize) -> bool {
411
0
    debug_assert!(align.is_power_of_two());
412
413
0
    let pointer = pointer as usize;
414
0
    let pointer_aligned = round_down_to(pointer, align);
415
0
    pointer == pointer_aligned
416
0
}
Unexecuted instantiation: bumpalo::is_pointer_aligned_to::<u8>
Unexecuted instantiation: bumpalo::is_pointer_aligned_to::<_>
417
418
#[inline]
419
46.1M
pub(crate) const fn round_up_to(n: usize, divisor: usize) -> Option<usize> {
420
46.1M
    debug_assert!(divisor > 0);
421
46.1M
    debug_assert!(divisor.is_power_of_two());
422
46.1M
    match n.checked_add(divisor - 1) {
423
46.1M
        Some(x) => Some(x & !(divisor - 1)),
424
0
        None => None,
425
    }
426
46.1M
}
427
428
/// Like `round_up_to` but turns overflow into undefined behavior rather than
429
/// returning `None`.
430
#[inline]
431
42.6M
pub(crate) unsafe fn round_up_to_unchecked(n: usize, divisor: usize) -> usize {
432
42.6M
    match round_up_to(n, divisor) {
433
42.6M
        Some(x) => x,
434
        None => {
435
0
            debug_assert!(false, "round_up_to_unchecked failed");
436
0
            core::hint::unreachable_unchecked()
437
        }
438
    }
439
42.6M
}
440
441
#[inline]
442
1.80M
pub(crate) fn round_down_to(n: usize, divisor: usize) -> usize {
443
1.80M
    debug_assert!(divisor > 0);
444
1.80M
    debug_assert!(divisor.is_power_of_two());
445
1.80M
    n & !(divisor - 1)
446
1.80M
}
447
448
/// Same as `round_down_to` but preserves pointer provenance.
449
#[inline]
450
43.6M
pub(crate) fn round_mut_ptr_down_to(ptr: *mut u8, divisor: usize) -> *mut u8 {
451
43.6M
    debug_assert!(divisor > 0);
452
43.6M
    debug_assert!(divisor.is_power_of_two());
453
43.6M
    ptr.wrapping_sub(ptr as usize & (divisor - 1))
454
43.6M
}
455
456
#[inline]
457
458k
pub(crate) unsafe fn round_mut_ptr_up_to_unchecked(ptr: *mut u8, divisor: usize) -> *mut u8 {
458
458k
    debug_assert!(divisor > 0);
459
458k
    debug_assert!(divisor.is_power_of_two());
460
458k
    let aligned = round_up_to_unchecked(ptr as usize, divisor);
461
458k
    let delta = aligned - (ptr as usize);
462
458k
    ptr.add(delta)
463
458k
}
464
465
// The typical page size these days.
466
//
467
// Note that we don't need to exactly match page size for correctness, and it is
468
// okay if this is smaller than the real page size in practice. It isn't worth
469
// the portability concerns and lack of const propagation that dynamically
470
// looking up the actual page size implies.
471
const TYPICAL_PAGE_SIZE: usize = 0x1000;
472
473
// We only support alignments of up to 16 bytes for iter_allocated_chunks.
474
const SUPPORTED_ITER_ALIGNMENT: usize = 16;
475
const CHUNK_ALIGN: usize = SUPPORTED_ITER_ALIGNMENT;
476
const FOOTER_SIZE: usize = mem::size_of::<ChunkFooter>();
477
478
// Assert that `ChunkFooter` is at most the supported alignment. This will give a
479
// compile time error if it is not the case
480
const _FOOTER_ALIGN_ASSERTION: () = {
481
    assert!(mem::align_of::<ChunkFooter>() <= CHUNK_ALIGN);
482
};
483
484
// Maximum typical overhead per allocation imposed by allocators.
485
const MALLOC_OVERHEAD: usize = 16;
486
487
// This is the overhead from malloc, footer and alignment. For instance, if
488
// we want to request a chunk of memory that has at least X bytes usable for
489
// allocations (where X is aligned to CHUNK_ALIGN), then we expect that the
490
// after adding a footer, malloc overhead and alignment, the chunk of memory
491
// the allocator actually sets aside for us is X+OVERHEAD rounded up to the
492
// nearest suitable size boundary.
493
const OVERHEAD: usize = match round_up_to(MALLOC_OVERHEAD + FOOTER_SIZE, CHUNK_ALIGN) {
494
    Some(x) => x,
495
    None => panic!(),
496
};
497
498
// The target size of our first allocation, including our overhead. The
499
// available bump capacity will be smaller.
500
const FIRST_ALLOCATION_GOAL: usize = 1 << 9;
501
502
// The actual size of the first allocation is going to be a bit smaller than the
503
// goal. We need to make room for the footer, and we also need take the
504
// alignment into account. We're trying to avoid this kind of situation:
505
// https://blog.mozilla.org/nnethercote/2011/08/05/clownshoes-available-in-sizes-2101-and-up/
506
const DEFAULT_CHUNK_SIZE_WITHOUT_FOOTER: usize = FIRST_ALLOCATION_GOAL - OVERHEAD;
507
508
/// The memory size and alignment details for a potential new chunk
509
/// allocation.
510
#[derive(Debug, Clone, Copy)]
511
struct NewChunkMemoryDetails {
512
    new_size_without_footer: usize,
513
    align: usize,
514
    size: usize,
515
}
516
517
/// Wrapper around `Layout::from_size_align` that adds debug assertions.
518
#[inline]
519
2.04M
fn layout_from_size_align(size: usize, align: usize) -> Result<Layout, AllocErr> {
520
2.04M
    Layout::from_size_align(size, align).map_err(|_| AllocErr)
521
2.04M
}
522
523
#[cold]
524
#[inline(never)]
525
0
fn allocation_size_overflow<T>() -> T {
526
0
    panic!("requested allocation size overflowed")
527
}
528
529
// NB: We don't have constructors as methods on `impl<N> Bump<N>` that return
530
// `Self` because then `rustc` can't infer the `N` if it isn't explicitly
531
// provided, even though it has a default value. There doesn't seem to be a good
532
// workaround, other than putting constructors on the `Bump<DEFAULT>`; even
533
// `std` does this same thing with `HashMap`, for example.
534
impl Bump<1> {
535
    /// Construct a new arena to bump allocate into.
536
    ///
537
    /// ## Example
538
    ///
539
    /// ```
540
    /// let bump = bumpalo::Bump::new();
541
    /// # let _ = bump;
542
    /// ```
543
0
    pub fn new() -> Self {
544
0
        Self::with_capacity(0)
545
0
    }
546
547
    /// Attempt to construct a new arena to bump allocate into.
548
    ///
549
    /// ## Example
550
    ///
551
    /// ```
552
    /// let bump = bumpalo::Bump::try_new();
553
    /// # let _ = bump.unwrap();
554
    /// ```
555
0
    pub fn try_new() -> Result<Self, AllocErr> {
556
0
        Bump::try_with_capacity(0)
557
0
    }
558
559
    /// Construct a new arena with the specified byte capacity to bump allocate
560
    /// into.
561
    ///
562
    /// ## Example
563
    ///
564
    /// ```
565
    /// let bump = bumpalo::Bump::with_capacity(100);
566
    /// # let _ = bump;
567
    /// ```
568
    ///
569
    /// ## Panics
570
    ///
571
    /// Panics if allocating the initial capacity fails.
572
430k
    pub fn with_capacity(capacity: usize) -> Self {
573
430k
        Self::try_with_capacity(capacity).unwrap_or_else(|_| oom())
574
430k
    }
575
576
    /// Attempt to construct a new arena with the specified byte capacity to
577
    /// bump allocate into.
578
    ///
579
    /// Propagates errors when allocating the initial capacity.
580
    ///
581
    /// ## Example
582
    ///
583
    /// ```
584
    /// # fn _foo() -> Result<(), bumpalo::AllocErr> {
585
    /// let bump = bumpalo::Bump::try_with_capacity(100)?;
586
    /// # let _ = bump;
587
    /// # Ok(())
588
    /// # }
589
    /// ```
590
430k
    pub fn try_with_capacity(capacity: usize) -> Result<Self, AllocErr> {
591
430k
        Self::try_with_min_align_and_capacity(capacity)
592
430k
    }
593
}
594
595
impl<const MIN_ALIGN: usize> Bump<MIN_ALIGN> {
596
    /// Create a new `Bump` that enforces a minimum alignment.
597
    ///
598
    /// The minimum alignment must be a power of two and no larger than `16`.
599
    ///
600
    /// Enforcing a minimum alignment can speed up allocation of objects with
601
    /// alignment less than or equal to the minimum alignment. This comes at the
602
    /// cost of introducing otherwise-unnecessary padding between allocations of
603
    /// objects with alignment less than the minimum.
604
    ///
605
    /// # Example
606
    ///
607
    /// ```
608
    /// type BumpAlign8 = bumpalo::Bump<8>;
609
    /// let bump = BumpAlign8::with_min_align();
610
    /// for x in 0..u8::MAX {
611
    ///     let x = bump.alloc(x);
612
    ///     assert_eq!((x as *mut _ as usize) % 8, 0, "x is aligned to 8");
613
    /// }
614
    /// ```
615
    ///
616
    /// # Panics
617
    ///
618
    /// Panics on invalid minimum alignments.
619
    //
620
    // Because of `rustc`'s poor type inference for default type/const
621
    // parameters (see the comment above the `impl Bump` block with no const
622
    // `MIN_ALIGN` parameter) and because we don't want to force everyone to
623
    // specify a minimum alignment with `Bump::new()` et al, we have a separate
624
    // constructor for specifying the minimum alignment.
625
430k
    pub fn with_min_align() -> Self {
626
430k
        assert!(
627
430k
            MIN_ALIGN.is_power_of_two(),
628
            "MIN_ALIGN must be a power of two; found {MIN_ALIGN}"
629
        );
630
430k
        assert!(
631
430k
            MIN_ALIGN <= CHUNK_ALIGN,
632
            "MIN_ALIGN may not be larger than {CHUNK_ALIGN}; found {MIN_ALIGN}"
633
        );
634
635
430k
        Bump {
636
430k
            current_chunk_footer: Cell::new(EMPTY_CHUNK.get()),
637
430k
            allocation_limit: Cell::new(None),
638
430k
        }
639
430k
    }
<bumpalo::Bump>::with_min_align
Line
Count
Source
625
96.6k
    pub fn with_min_align() -> Self {
626
96.6k
        assert!(
627
96.6k
            MIN_ALIGN.is_power_of_two(),
628
            "MIN_ALIGN must be a power of two; found {MIN_ALIGN}"
629
        );
630
96.6k
        assert!(
631
96.6k
            MIN_ALIGN <= CHUNK_ALIGN,
632
            "MIN_ALIGN may not be larger than {CHUNK_ALIGN}; found {MIN_ALIGN}"
633
        );
634
635
96.6k
        Bump {
636
96.6k
            current_chunk_footer: Cell::new(EMPTY_CHUNK.get()),
637
96.6k
            allocation_limit: Cell::new(None),
638
96.6k
        }
639
96.6k
    }
Unexecuted instantiation: <bumpalo::Bump>::with_min_align
Unexecuted instantiation: <bumpalo::Bump<_>>::with_min_align
<bumpalo::Bump>::with_min_align
Line
Count
Source
625
333k
    pub fn with_min_align() -> Self {
626
333k
        assert!(
627
333k
            MIN_ALIGN.is_power_of_two(),
628
            "MIN_ALIGN must be a power of two; found {MIN_ALIGN}"
629
        );
630
333k
        assert!(
631
333k
            MIN_ALIGN <= CHUNK_ALIGN,
632
            "MIN_ALIGN may not be larger than {CHUNK_ALIGN}; found {MIN_ALIGN}"
633
        );
634
635
333k
        Bump {
636
333k
            current_chunk_footer: Cell::new(EMPTY_CHUNK.get()),
637
333k
            allocation_limit: Cell::new(None),
638
333k
        }
639
333k
    }
640
641
    /// Create a new `Bump` that enforces a minimum alignment and starts with
642
    /// room for at least `capacity` bytes.
643
    ///
644
    /// The minimum alignment must be a power of two and no larger than `16`.
645
    ///
646
    /// Enforcing a minimum alignment can speed up allocation of objects with
647
    /// alignment less than or equal to the minimum alignment. This comes at the
648
    /// cost of introducing otherwise-unnecessary padding between allocations of
649
    /// objects with alignment less than the minimum.
650
    ///
651
    /// # Example
652
    ///
653
    /// ```
654
    /// type BumpAlign8 = bumpalo::Bump<8>;
655
    /// let mut bump = BumpAlign8::with_min_align_and_capacity(8 * 100);
656
    /// for x in 0..100_u64 {
657
    ///     let x = bump.alloc(x);
658
    ///     assert_eq!((x as *mut _ as usize) % 8, 0, "x is aligned to 8");
659
    /// }
660
    /// assert_eq!(
661
    ///     bump.iter_allocated_chunks().count(), 1,
662
    ///     "initial chunk had capacity for all allocations",
663
    /// );
664
    /// ```
665
    ///
666
    /// # Panics
667
    ///
668
    /// Panics on invalid minimum alignments.
669
    ///
670
    /// Panics if allocating the initial capacity fails.
671
0
    pub fn with_min_align_and_capacity(capacity: usize) -> Self {
672
0
        Self::try_with_min_align_and_capacity(capacity).unwrap_or_else(|_| oom())
673
0
    }
674
675
    /// Create a new `Bump` that enforces a minimum alignment and starts with
676
    /// room for at least `capacity` bytes.
677
    ///
678
    /// The minimum alignment must be a power of two and no larger than `16`.
679
    ///
680
    /// Enforcing a minimum alignment can speed up allocation of objects with
681
    /// alignment less than or equal to the minimum alignment. This comes at the
682
    /// cost of introducing otherwise-unnecessary padding between allocations of
683
    /// objects with alignment less than the minimum.
684
    ///
685
    /// # Example
686
    ///
687
    /// ```
688
    /// # fn _foo() -> Result<(), bumpalo::AllocErr> {
689
    /// type BumpAlign8 = bumpalo::Bump<8>;
690
    /// let mut bump = BumpAlign8::try_with_min_align_and_capacity(8 * 100)?;
691
    /// for x in 0..100_u64 {
692
    ///     let x = bump.alloc(x);
693
    ///     assert_eq!((x as *mut _ as usize) % 8, 0, "x is aligned to 8");
694
    /// }
695
    /// assert_eq!(
696
    ///     bump.iter_allocated_chunks().count(), 1,
697
    ///     "initial chunk had capacity for all allocations",
698
    /// );
699
    /// # Ok(())
700
    /// # }
701
    /// ```
702
    ///
703
    /// # Panics
704
    ///
705
    /// Panics on invalid minimum alignments.
706
    ///
707
    /// Panics if allocating the initial capacity fails.
708
430k
    pub fn try_with_min_align_and_capacity(capacity: usize) -> Result<Self, AllocErr> {
709
430k
        assert!(
710
430k
            MIN_ALIGN.is_power_of_two(),
711
            "MIN_ALIGN must be a power of two; found {MIN_ALIGN}"
712
        );
713
430k
        assert!(
714
430k
            MIN_ALIGN <= CHUNK_ALIGN,
715
            "MIN_ALIGN may not be larger than {CHUNK_ALIGN}; found {MIN_ALIGN}"
716
        );
717
718
430k
        if capacity == 0 {
719
0
            return Ok(Bump {
720
0
                current_chunk_footer: Cell::new(EMPTY_CHUNK.get()),
721
0
                allocation_limit: Cell::new(None),
722
0
            });
723
430k
        }
724
725
430k
        let layout = layout_from_size_align(capacity, MIN_ALIGN)?;
726
727
430k
        let chunk_footer = unsafe {
728
430k
            Self::new_chunk(
729
430k
                Self::new_chunk_memory_details(None, layout).ok_or(AllocErr)?,
730
430k
                layout,
731
430k
                EMPTY_CHUNK.get(),
732
            )
733
430k
            .ok_or(AllocErr)?
734
        };
735
736
430k
        Ok(Bump {
737
430k
            current_chunk_footer: Cell::new(chunk_footer),
738
430k
            allocation_limit: Cell::new(None),
739
430k
        })
740
430k
    }
741
742
    /// Get this bump arena's minimum alignment.
743
    ///
744
    /// All objects allocated in this arena get aligned to this value.
745
    ///
746
    /// ## Example
747
    ///
748
    /// ```
749
    /// let bump2 = bumpalo::Bump::<2>::with_min_align();
750
    /// assert_eq!(bump2.min_align(), 2);
751
    ///
752
    /// let bump4 = bumpalo::Bump::<4>::with_min_align();
753
    /// assert_eq!(bump4.min_align(), 4);
754
    /// ```
755
    #[inline]
756
0
    pub fn min_align(&self) -> usize {
757
0
        MIN_ALIGN
758
0
    }
759
760
    /// The allocation limit for this arena in bytes.
761
    ///
762
    /// ## Example
763
    ///
764
    /// ```
765
    /// let bump = bumpalo::Bump::with_capacity(0);
766
    ///
767
    /// assert_eq!(bump.allocation_limit(), None);
768
    ///
769
    /// bump.set_allocation_limit(Some(6));
770
    ///
771
    /// assert_eq!(bump.allocation_limit(), Some(6));
772
    ///
773
    /// bump.set_allocation_limit(None);
774
    ///
775
    /// assert_eq!(bump.allocation_limit(), None);
776
    /// ```
777
1.04M
    pub fn allocation_limit(&self) -> Option<usize> {
778
1.04M
        self.allocation_limit.get()
779
1.04M
    }
<bumpalo::Bump>::allocation_limit
Line
Count
Source
777
1.04M
    pub fn allocation_limit(&self) -> Option<usize> {
778
1.04M
        self.allocation_limit.get()
779
1.04M
    }
Unexecuted instantiation: <bumpalo::Bump>::allocation_limit
Unexecuted instantiation: <bumpalo::Bump<_>>::allocation_limit
780
781
    /// Set the allocation limit in bytes for this arena.
782
    ///
783
    /// The allocation limit is only enforced when allocating new backing chunks for
784
    /// a `Bump`. Updating the allocation limit will not affect existing allocations
785
    /// or any future allocations within the `Bump`'s current chunk.
786
    ///
787
    /// ## Example
788
    ///
789
    /// ```
790
    /// let bump = bumpalo::Bump::with_capacity(0);
791
    ///
792
    /// bump.set_allocation_limit(Some(0));
793
    ///
794
    /// assert!(bump.try_alloc(5).is_err());
795
    /// ```
796
0
    pub fn set_allocation_limit(&self, limit: Option<usize>) {
797
0
        self.allocation_limit.set(limit);
798
0
    }
799
800
    /// How much headroom an arena has before it hits its allocation
801
    /// limit.
802
1.04M
    fn allocation_limit_remaining(&self) -> Option<usize> {
803
1.04M
        self.allocation_limit.get().and_then(|allocation_limit| {
804
0
            let allocated_bytes = self.allocated_bytes();
805
0
            if allocated_bytes > allocation_limit {
806
0
                None
807
            } else {
808
0
                Some(usize::abs_diff(allocation_limit, allocated_bytes))
809
            }
810
0
        })
Unexecuted instantiation: <bumpalo::Bump>::allocation_limit_remaining::{closure#0}
Unexecuted instantiation: <bumpalo::Bump>::allocation_limit_remaining::{closure#0}
Unexecuted instantiation: <bumpalo::Bump<_>>::allocation_limit_remaining::{closure#0}
811
1.04M
    }
<bumpalo::Bump>::allocation_limit_remaining
Line
Count
Source
802
1.04M
    fn allocation_limit_remaining(&self) -> Option<usize> {
803
1.04M
        self.allocation_limit.get().and_then(|allocation_limit| {
804
            let allocated_bytes = self.allocated_bytes();
805
            if allocated_bytes > allocation_limit {
806
                None
807
            } else {
808
                Some(usize::abs_diff(allocation_limit, allocated_bytes))
809
            }
810
        })
811
1.04M
    }
Unexecuted instantiation: <bumpalo::Bump>::allocation_limit_remaining
Unexecuted instantiation: <bumpalo::Bump<_>>::allocation_limit_remaining
812
813
    /// Whether a request to allocate a new chunk with a given size for a given
814
    /// requested layout will fit under the allocation limit set on a `Bump`.
815
1.04M
    fn chunk_fits_under_limit(
816
1.04M
        allocation_limit_remaining: Option<usize>,
817
1.04M
        new_chunk_memory_details: NewChunkMemoryDetails,
818
1.04M
    ) -> bool {
819
1.04M
        allocation_limit_remaining
820
1.04M
            .map(|allocation_limit_left| {
821
0
                allocation_limit_left >= new_chunk_memory_details.new_size_without_footer
822
0
            })
Unexecuted instantiation: <bumpalo::Bump>::chunk_fits_under_limit::{closure#0}
Unexecuted instantiation: <bumpalo::Bump>::chunk_fits_under_limit::{closure#0}
Unexecuted instantiation: <bumpalo::Bump<_>>::chunk_fits_under_limit::{closure#0}
823
1.04M
            .unwrap_or(true)
824
1.04M
    }
<bumpalo::Bump>::chunk_fits_under_limit
Line
Count
Source
815
1.04M
    fn chunk_fits_under_limit(
816
1.04M
        allocation_limit_remaining: Option<usize>,
817
1.04M
        new_chunk_memory_details: NewChunkMemoryDetails,
818
1.04M
    ) -> bool {
819
1.04M
        allocation_limit_remaining
820
1.04M
            .map(|allocation_limit_left| {
821
                allocation_limit_left >= new_chunk_memory_details.new_size_without_footer
822
            })
823
1.04M
            .unwrap_or(true)
824
1.04M
    }
Unexecuted instantiation: <bumpalo::Bump>::chunk_fits_under_limit
Unexecuted instantiation: <bumpalo::Bump<_>>::chunk_fits_under_limit
825
826
    /// Determine the memory details including final size, alignment and final
827
    /// size without footer for a new chunk that would be allocated to fulfill
828
    /// an allocation request.
829
1.47M
    fn new_chunk_memory_details(
830
1.47M
        new_size_without_footer: Option<usize>,
831
1.47M
        requested_layout: Layout,
832
1.47M
    ) -> Option<NewChunkMemoryDetails> {
833
        // We must have `CHUNK_ALIGN` or better alignment...
834
1.47M
        let align = CHUNK_ALIGN
835
            // and we have to have at least our configured minimum alignment...
836
1.47M
            .max(MIN_ALIGN)
837
            // and make sure we satisfy the requested allocation's alignment.
838
1.47M
            .max(requested_layout.align());
839
840
1.47M
        let mut new_size_without_footer =
841
1.47M
            new_size_without_footer.unwrap_or(DEFAULT_CHUNK_SIZE_WITHOUT_FOOTER);
842
843
1.47M
        let requested_size =
844
1.47M
            round_up_to(requested_layout.size(), align).unwrap_or_else(allocation_size_overflow);
845
1.47M
        new_size_without_footer = new_size_without_footer.max(requested_size);
846
847
        // We want our allocations to play nice with the memory allocator, and
848
        // waste as little memory as possible. For small allocations, this means
849
        // that the entire allocation including the chunk footer and mallocs
850
        // internal overhead is as close to a power of two as we can go without
851
        // going over. For larger allocations, we only need to get close to a
852
        // page boundary without going over.
853
1.47M
        if new_size_without_footer < TYPICAL_PAGE_SIZE {
854
1.38M
            new_size_without_footer =
855
1.38M
                (new_size_without_footer + OVERHEAD).next_power_of_two() - OVERHEAD;
856
1.38M
        } else {
857
            new_size_without_footer =
858
89.7k
                round_up_to(new_size_without_footer + OVERHEAD, TYPICAL_PAGE_SIZE)? - OVERHEAD;
859
        }
860
861
1.47M
        debug_assert_eq!(align % CHUNK_ALIGN, 0);
862
1.47M
        debug_assert_eq!(new_size_without_footer % CHUNK_ALIGN, 0);
863
1.47M
        let size = new_size_without_footer
864
1.47M
            .checked_add(FOOTER_SIZE)
865
1.47M
            .unwrap_or_else(allocation_size_overflow);
866
867
1.47M
        Some(NewChunkMemoryDetails {
868
1.47M
            new_size_without_footer,
869
1.47M
            size,
870
1.47M
            align,
871
1.47M
        })
872
1.47M
    }
<bumpalo::Bump>::new_chunk_memory_details
Line
Count
Source
829
1.04M
    fn new_chunk_memory_details(
830
1.04M
        new_size_without_footer: Option<usize>,
831
1.04M
        requested_layout: Layout,
832
1.04M
    ) -> Option<NewChunkMemoryDetails> {
833
        // We must have `CHUNK_ALIGN` or better alignment...
834
1.04M
        let align = CHUNK_ALIGN
835
            // and we have to have at least our configured minimum alignment...
836
1.04M
            .max(MIN_ALIGN)
837
            // and make sure we satisfy the requested allocation's alignment.
838
1.04M
            .max(requested_layout.align());
839
840
1.04M
        let mut new_size_without_footer =
841
1.04M
            new_size_without_footer.unwrap_or(DEFAULT_CHUNK_SIZE_WITHOUT_FOOTER);
842
843
1.04M
        let requested_size =
844
1.04M
            round_up_to(requested_layout.size(), align).unwrap_or_else(allocation_size_overflow);
845
1.04M
        new_size_without_footer = new_size_without_footer.max(requested_size);
846
847
        // We want our allocations to play nice with the memory allocator, and
848
        // waste as little memory as possible. For small allocations, this means
849
        // that the entire allocation including the chunk footer and mallocs
850
        // internal overhead is as close to a power of two as we can go without
851
        // going over. For larger allocations, we only need to get close to a
852
        // page boundary without going over.
853
1.04M
        if new_size_without_footer < TYPICAL_PAGE_SIZE {
854
953k
            new_size_without_footer =
855
953k
                (new_size_without_footer + OVERHEAD).next_power_of_two() - OVERHEAD;
856
953k
        } else {
857
            new_size_without_footer =
858
88.5k
                round_up_to(new_size_without_footer + OVERHEAD, TYPICAL_PAGE_SIZE)? - OVERHEAD;
859
        }
860
861
1.04M
        debug_assert_eq!(align % CHUNK_ALIGN, 0);
862
1.04M
        debug_assert_eq!(new_size_without_footer % CHUNK_ALIGN, 0);
863
1.04M
        let size = new_size_without_footer
864
1.04M
            .checked_add(FOOTER_SIZE)
865
1.04M
            .unwrap_or_else(allocation_size_overflow);
866
867
1.04M
        Some(NewChunkMemoryDetails {
868
1.04M
            new_size_without_footer,
869
1.04M
            size,
870
1.04M
            align,
871
1.04M
        })
872
1.04M
    }
Unexecuted instantiation: <bumpalo::Bump>::new_chunk_memory_details
<bumpalo::Bump>::new_chunk_memory_details
Line
Count
Source
829
430k
    fn new_chunk_memory_details(
830
430k
        new_size_without_footer: Option<usize>,
831
430k
        requested_layout: Layout,
832
430k
    ) -> Option<NewChunkMemoryDetails> {
833
        // We must have `CHUNK_ALIGN` or better alignment...
834
430k
        let align = CHUNK_ALIGN
835
            // and we have to have at least our configured minimum alignment...
836
430k
            .max(MIN_ALIGN)
837
            // and make sure we satisfy the requested allocation's alignment.
838
430k
            .max(requested_layout.align());
839
840
430k
        let mut new_size_without_footer =
841
430k
            new_size_without_footer.unwrap_or(DEFAULT_CHUNK_SIZE_WITHOUT_FOOTER);
842
843
430k
        let requested_size =
844
430k
            round_up_to(requested_layout.size(), align).unwrap_or_else(allocation_size_overflow);
845
430k
        new_size_without_footer = new_size_without_footer.max(requested_size);
846
847
        // We want our allocations to play nice with the memory allocator, and
848
        // waste as little memory as possible. For small allocations, this means
849
        // that the entire allocation including the chunk footer and mallocs
850
        // internal overhead is as close to a power of two as we can go without
851
        // going over. For larger allocations, we only need to get close to a
852
        // page boundary without going over.
853
430k
        if new_size_without_footer < TYPICAL_PAGE_SIZE {
854
429k
            new_size_without_footer =
855
429k
                (new_size_without_footer + OVERHEAD).next_power_of_two() - OVERHEAD;
856
429k
        } else {
857
            new_size_without_footer =
858
1.11k
                round_up_to(new_size_without_footer + OVERHEAD, TYPICAL_PAGE_SIZE)? - OVERHEAD;
859
        }
860
861
430k
        debug_assert_eq!(align % CHUNK_ALIGN, 0);
862
430k
        debug_assert_eq!(new_size_without_footer % CHUNK_ALIGN, 0);
863
430k
        let size = new_size_without_footer
864
430k
            .checked_add(FOOTER_SIZE)
865
430k
            .unwrap_or_else(allocation_size_overflow);
866
867
430k
        Some(NewChunkMemoryDetails {
868
430k
            new_size_without_footer,
869
430k
            size,
870
430k
            align,
871
430k
        })
872
430k
    }
873
874
    /// Allocate a new chunk and return its initialized footer.
875
    ///
876
    /// If given, `layouts` is a tuple of the current chunk size and the
877
    /// layout of the allocation request that triggered us to fall back to
878
    /// allocating a new chunk of memory.
879
1.47M
    unsafe fn new_chunk(
880
1.47M
        new_chunk_memory_details: NewChunkMemoryDetails,
881
1.47M
        requested_layout: Layout,
882
1.47M
        prev: NonNull<ChunkFooter>,
883
1.47M
    ) -> Option<NonNull<ChunkFooter>> {
884
        let NewChunkMemoryDetails {
885
1.47M
            new_size_without_footer,
886
1.47M
            align,
887
1.47M
            size,
888
1.47M
        } = new_chunk_memory_details;
889
890
1.47M
        let layout = layout_from_size_align(size, align).ok()?;
891
892
1.47M
        debug_assert!(size >= requested_layout.size());
893
894
1.47M
        let data = alloc(layout);
895
1.47M
        let data = NonNull::new(data)?;
896
897
        // The `ChunkFooter` is at the end of the chunk.
898
1.47M
        let footer_ptr = data.as_ptr().add(new_size_without_footer);
899
1.47M
        debug_assert_eq!((data.as_ptr() as usize) % align, 0);
900
1.47M
        debug_assert_eq!(footer_ptr as usize % CHUNK_ALIGN, 0);
901
1.47M
        let footer_ptr = footer_ptr as *mut ChunkFooter;
902
903
        // The bump pointer is initialized to the end of the range we will bump
904
        // out of, rounded down to the minimum alignment. It is the
905
        // `NewChunkMemoryDetails` constructor's responsibility to ensure that
906
        // even after this rounding we have enough non-zero capacity in the
907
        // chunk.
908
1.47M
        let ptr = round_mut_ptr_down_to(footer_ptr.cast::<u8>(), MIN_ALIGN);
909
1.47M
        debug_assert_eq!(ptr as usize % MIN_ALIGN, 0);
910
1.47M
        debug_assert!(
911
0
            data.as_ptr() < ptr,
912
            "bump pointer {ptr:#p} should still be greater than or equal to the \
913
             start of the bump chunk {data:#p}"
914
        );
915
1.47M
        debug_assert_eq!(
916
0
            (ptr as usize) - (data.as_ptr() as usize),
917
            new_size_without_footer
918
        );
919
920
1.47M
        let ptr = Cell::new(NonNull::new_unchecked(ptr));
921
922
        // The `allocated_bytes` of a new chunk counts the total size
923
        // of the chunks, not how much of the chunks are used.
924
1.47M
        let allocated_bytes = prev.as_ref().allocated_bytes + new_size_without_footer;
925
926
1.47M
        ptr::write(
927
1.47M
            footer_ptr,
928
1.47M
            ChunkFooter {
929
1.47M
                data,
930
1.47M
                layout,
931
1.47M
                prev: Cell::new(prev),
932
1.47M
                ptr,
933
1.47M
                allocated_bytes,
934
1.47M
            },
935
        );
936
937
1.47M
        Some(NonNull::new_unchecked(footer_ptr))
938
1.47M
    }
<bumpalo::Bump>::new_chunk
Line
Count
Source
879
1.04M
    unsafe fn new_chunk(
880
1.04M
        new_chunk_memory_details: NewChunkMemoryDetails,
881
1.04M
        requested_layout: Layout,
882
1.04M
        prev: NonNull<ChunkFooter>,
883
1.04M
    ) -> Option<NonNull<ChunkFooter>> {
884
        let NewChunkMemoryDetails {
885
1.04M
            new_size_without_footer,
886
1.04M
            align,
887
1.04M
            size,
888
1.04M
        } = new_chunk_memory_details;
889
890
1.04M
        let layout = layout_from_size_align(size, align).ok()?;
891
892
1.04M
        debug_assert!(size >= requested_layout.size());
893
894
1.04M
        let data = alloc(layout);
895
1.04M
        let data = NonNull::new(data)?;
896
897
        // The `ChunkFooter` is at the end of the chunk.
898
1.04M
        let footer_ptr = data.as_ptr().add(new_size_without_footer);
899
1.04M
        debug_assert_eq!((data.as_ptr() as usize) % align, 0);
900
1.04M
        debug_assert_eq!(footer_ptr as usize % CHUNK_ALIGN, 0);
901
1.04M
        let footer_ptr = footer_ptr as *mut ChunkFooter;
902
903
        // The bump pointer is initialized to the end of the range we will bump
904
        // out of, rounded down to the minimum alignment. It is the
905
        // `NewChunkMemoryDetails` constructor's responsibility to ensure that
906
        // even after this rounding we have enough non-zero capacity in the
907
        // chunk.
908
1.04M
        let ptr = round_mut_ptr_down_to(footer_ptr.cast::<u8>(), MIN_ALIGN);
909
1.04M
        debug_assert_eq!(ptr as usize % MIN_ALIGN, 0);
910
1.04M
        debug_assert!(
911
0
            data.as_ptr() < ptr,
912
            "bump pointer {ptr:#p} should still be greater than or equal to the \
913
             start of the bump chunk {data:#p}"
914
        );
915
1.04M
        debug_assert_eq!(
916
0
            (ptr as usize) - (data.as_ptr() as usize),
917
            new_size_without_footer
918
        );
919
920
1.04M
        let ptr = Cell::new(NonNull::new_unchecked(ptr));
921
922
        // The `allocated_bytes` of a new chunk counts the total size
923
        // of the chunks, not how much of the chunks are used.
924
1.04M
        let allocated_bytes = prev.as_ref().allocated_bytes + new_size_without_footer;
925
926
1.04M
        ptr::write(
927
1.04M
            footer_ptr,
928
1.04M
            ChunkFooter {
929
1.04M
                data,
930
1.04M
                layout,
931
1.04M
                prev: Cell::new(prev),
932
1.04M
                ptr,
933
1.04M
                allocated_bytes,
934
1.04M
            },
935
        );
936
937
1.04M
        Some(NonNull::new_unchecked(footer_ptr))
938
1.04M
    }
Unexecuted instantiation: <bumpalo::Bump>::new_chunk
<bumpalo::Bump>::new_chunk
Line
Count
Source
879
430k
    unsafe fn new_chunk(
880
430k
        new_chunk_memory_details: NewChunkMemoryDetails,
881
430k
        requested_layout: Layout,
882
430k
        prev: NonNull<ChunkFooter>,
883
430k
    ) -> Option<NonNull<ChunkFooter>> {
884
        let NewChunkMemoryDetails {
885
430k
            new_size_without_footer,
886
430k
            align,
887
430k
            size,
888
430k
        } = new_chunk_memory_details;
889
890
430k
        let layout = layout_from_size_align(size, align).ok()?;
891
892
430k
        debug_assert!(size >= requested_layout.size());
893
894
430k
        let data = alloc(layout);
895
430k
        let data = NonNull::new(data)?;
896
897
        // The `ChunkFooter` is at the end of the chunk.
898
430k
        let footer_ptr = data.as_ptr().add(new_size_without_footer);
899
430k
        debug_assert_eq!((data.as_ptr() as usize) % align, 0);
900
430k
        debug_assert_eq!(footer_ptr as usize % CHUNK_ALIGN, 0);
901
430k
        let footer_ptr = footer_ptr as *mut ChunkFooter;
902
903
        // The bump pointer is initialized to the end of the range we will bump
904
        // out of, rounded down to the minimum alignment. It is the
905
        // `NewChunkMemoryDetails` constructor's responsibility to ensure that
906
        // even after this rounding we have enough non-zero capacity in the
907
        // chunk.
908
430k
        let ptr = round_mut_ptr_down_to(footer_ptr.cast::<u8>(), MIN_ALIGN);
909
430k
        debug_assert_eq!(ptr as usize % MIN_ALIGN, 0);
910
430k
        debug_assert!(
911
0
            data.as_ptr() < ptr,
912
            "bump pointer {ptr:#p} should still be greater than or equal to the \
913
             start of the bump chunk {data:#p}"
914
        );
915
430k
        debug_assert_eq!(
916
0
            (ptr as usize) - (data.as_ptr() as usize),
917
            new_size_without_footer
918
        );
919
920
430k
        let ptr = Cell::new(NonNull::new_unchecked(ptr));
921
922
        // The `allocated_bytes` of a new chunk counts the total size
923
        // of the chunks, not how much of the chunks are used.
924
430k
        let allocated_bytes = prev.as_ref().allocated_bytes + new_size_without_footer;
925
926
430k
        ptr::write(
927
430k
            footer_ptr,
928
430k
            ChunkFooter {
929
430k
                data,
930
430k
                layout,
931
430k
                prev: Cell::new(prev),
932
430k
                ptr,
933
430k
                allocated_bytes,
934
430k
            },
935
        );
936
937
430k
        Some(NonNull::new_unchecked(footer_ptr))
938
430k
    }
939
940
    /// Reset this bump allocator.
941
    ///
942
    /// Performs mass deallocation on everything allocated in this arena by
943
    /// resetting the pointer into the underlying chunk of memory to the start
944
    /// of the chunk. Does not run any `Drop` implementations on deallocated
945
    /// objects; see [the top-level documentation](struct.Bump.html) for details.
946
    ///
947
    /// If this arena has allocated multiple chunks to bump allocate into, then
948
    /// the excess chunks are returned to the global allocator.
949
    ///
950
    /// ## Example
951
    ///
952
    /// ```
953
    /// let mut bump = bumpalo::Bump::new();
954
    ///
955
    /// // Allocate a bunch of things.
956
    /// {
957
    ///     for i in 0..100 {
958
    ///         bump.alloc(i);
959
    ///     }
960
    /// }
961
    ///
962
    /// // Reset the arena.
963
    /// bump.reset();
964
    ///
965
    /// // Allocate some new things in the space previously occupied by the
966
    /// // original things.
967
    /// for j in 200..400 {
968
    ///     bump.alloc(j);
969
    /// }
970
    ///```
971
430k
    pub fn reset(&mut self) {
972
        // Takes `&mut self` so `self` must be unique and there can't be any
973
        // borrows active that would get invalidated by resetting.
974
        unsafe {
975
430k
            if self.current_chunk_footer.get().as_ref().is_empty() {
976
430k
                return;
977
0
            }
978
979
0
            let mut cur_chunk = self.current_chunk_footer.get();
980
981
            // Deallocate all chunks except the current one
982
0
            let prev_chunk = cur_chunk.as_ref().prev.replace(EMPTY_CHUNK.get());
983
0
            dealloc_chunk_list(prev_chunk);
984
985
            // Reset the bump finger to the end of the chunk.
986
0
            debug_assert!(
987
0
                is_pointer_aligned_to(cur_chunk.as_ptr(), MIN_ALIGN),
988
                "bump pointer {cur_chunk:#p} should be aligned to the minimum alignment of {MIN_ALIGN:#x}"
989
            );
990
0
            cur_chunk.as_ref().ptr.set(cur_chunk.cast());
991
992
            // Reset the allocated size of the chunk.
993
0
            cur_chunk.as_mut().allocated_bytes = cur_chunk.as_ref().layout.size() - FOOTER_SIZE;
994
995
0
            debug_assert!(
996
0
                self.current_chunk_footer
997
0
                    .get()
998
0
                    .as_ref()
999
0
                    .prev
1000
0
                    .get()
1001
0
                    .as_ref()
1002
0
                    .is_empty(),
1003
                "We should only have a single chunk"
1004
            );
1005
0
            debug_assert_eq!(
1006
0
                self.current_chunk_footer.get().as_ref().ptr.get(),
1007
0
                self.current_chunk_footer.get().cast(),
1008
                "Our chunk's bump finger should be reset to the start of its allocation"
1009
            );
1010
        }
1011
430k
    }
<bumpalo::Bump>::reset
Line
Count
Source
971
96.6k
    pub fn reset(&mut self) {
972
        // Takes `&mut self` so `self` must be unique and there can't be any
973
        // borrows active that would get invalidated by resetting.
974
        unsafe {
975
96.6k
            if self.current_chunk_footer.get().as_ref().is_empty() {
976
96.6k
                return;
977
0
            }
978
979
0
            let mut cur_chunk = self.current_chunk_footer.get();
980
981
            // Deallocate all chunks except the current one
982
0
            let prev_chunk = cur_chunk.as_ref().prev.replace(EMPTY_CHUNK.get());
983
0
            dealloc_chunk_list(prev_chunk);
984
985
            // Reset the bump finger to the end of the chunk.
986
0
            debug_assert!(
987
0
                is_pointer_aligned_to(cur_chunk.as_ptr(), MIN_ALIGN),
988
                "bump pointer {cur_chunk:#p} should be aligned to the minimum alignment of {MIN_ALIGN:#x}"
989
            );
990
0
            cur_chunk.as_ref().ptr.set(cur_chunk.cast());
991
992
            // Reset the allocated size of the chunk.
993
0
            cur_chunk.as_mut().allocated_bytes = cur_chunk.as_ref().layout.size() - FOOTER_SIZE;
994
995
0
            debug_assert!(
996
0
                self.current_chunk_footer
997
0
                    .get()
998
0
                    .as_ref()
999
0
                    .prev
1000
0
                    .get()
1001
0
                    .as_ref()
1002
0
                    .is_empty(),
1003
                "We should only have a single chunk"
1004
            );
1005
0
            debug_assert_eq!(
1006
0
                self.current_chunk_footer.get().as_ref().ptr.get(),
1007
0
                self.current_chunk_footer.get().cast(),
1008
                "Our chunk's bump finger should be reset to the start of its allocation"
1009
            );
1010
        }
1011
96.6k
    }
Unexecuted instantiation: <bumpalo::Bump<_>>::reset
<bumpalo::Bump>::reset
Line
Count
Source
971
333k
    pub fn reset(&mut self) {
972
        // Takes `&mut self` so `self` must be unique and there can't be any
973
        // borrows active that would get invalidated by resetting.
974
        unsafe {
975
333k
            if self.current_chunk_footer.get().as_ref().is_empty() {
976
333k
                return;
977
0
            }
978
979
0
            let mut cur_chunk = self.current_chunk_footer.get();
980
981
            // Deallocate all chunks except the current one
982
0
            let prev_chunk = cur_chunk.as_ref().prev.replace(EMPTY_CHUNK.get());
983
0
            dealloc_chunk_list(prev_chunk);
984
985
            // Reset the bump finger to the end of the chunk.
986
0
            debug_assert!(
987
0
                is_pointer_aligned_to(cur_chunk.as_ptr(), MIN_ALIGN),
988
                "bump pointer {cur_chunk:#p} should be aligned to the minimum alignment of {MIN_ALIGN:#x}"
989
            );
990
0
            cur_chunk.as_ref().ptr.set(cur_chunk.cast());
991
992
            // Reset the allocated size of the chunk.
993
0
            cur_chunk.as_mut().allocated_bytes = cur_chunk.as_ref().layout.size() - FOOTER_SIZE;
994
995
0
            debug_assert!(
996
0
                self.current_chunk_footer
997
0
                    .get()
998
0
                    .as_ref()
999
0
                    .prev
1000
0
                    .get()
1001
0
                    .as_ref()
1002
0
                    .is_empty(),
1003
                "We should only have a single chunk"
1004
            );
1005
0
            debug_assert_eq!(
1006
0
                self.current_chunk_footer.get().as_ref().ptr.get(),
1007
0
                self.current_chunk_footer.get().cast(),
1008
                "Our chunk's bump finger should be reset to the start of its allocation"
1009
            );
1010
        }
1011
333k
    }
1012
1013
    /// Allocate an object in this `Bump` and return an exclusive reference to
1014
    /// it.
1015
    ///
1016
    /// ## Panics
1017
    ///
1018
    /// Panics if reserving space for `T` fails.
1019
    ///
1020
    /// ## Example
1021
    ///
1022
    /// ```
1023
    /// let bump = bumpalo::Bump::new();
1024
    /// let x = bump.alloc("hello");
1025
    /// assert_eq!(*x, "hello");
1026
    /// ```
1027
    #[inline(always)]
1028
0
    pub fn alloc<T>(&self, val: T) -> &mut T {
1029
0
        self.alloc_with(|| val)
1030
0
    }
1031
1032
    /// Try to allocate an object in this `Bump` and return an exclusive
1033
    /// reference to it.
1034
    ///
1035
    /// ## Errors
1036
    ///
1037
    /// Errors if reserving space for `T` fails.
1038
    ///
1039
    /// ## Example
1040
    ///
1041
    /// ```
1042
    /// let bump = bumpalo::Bump::new();
1043
    /// let x = bump.try_alloc("hello");
1044
    /// assert_eq!(x, Ok(&mut "hello"));
1045
    /// ```
1046
    #[inline(always)]
1047
0
    pub fn try_alloc<T>(&self, val: T) -> Result<&mut T, AllocErr> {
1048
0
        self.try_alloc_with(|| val)
1049
0
    }
1050
1051
    /// Pre-allocate space for an object in this `Bump`, initializes it using
1052
    /// the closure, then returns an exclusive reference to it.
1053
    ///
1054
    /// See [The `_with` Method Suffix](#initializer-functions-the-_with-method-suffix) for a
1055
    /// discussion on the differences between the `_with` suffixed methods and
1056
    /// those methods without it, their performance characteristics, and when
1057
    /// you might or might not choose a `_with` suffixed method.
1058
    ///
1059
    /// ## Panics
1060
    ///
1061
    /// Panics if reserving space for `T` fails.
1062
    ///
1063
    /// ## Example
1064
    ///
1065
    /// ```
1066
    /// let bump = bumpalo::Bump::new();
1067
    /// let x = bump.alloc_with(|| "hello");
1068
    /// assert_eq!(*x, "hello");
1069
    /// ```
1070
    #[inline(always)]
1071
0
    pub fn alloc_with<F, T>(&self, f: F) -> &mut T
1072
0
    where
1073
0
        F: FnOnce() -> T,
1074
    {
1075
        #[inline(always)]
1076
0
        unsafe fn inner_writer<T, F>(ptr: *mut T, f: F)
1077
0
        where
1078
0
            F: FnOnce() -> T,
1079
        {
1080
            // This function is translated as:
1081
            // - allocate space for a T on the stack
1082
            // - call f() with the return value being put onto this stack space
1083
            // - memcpy from the stack to the heap
1084
            //
1085
            // Ideally we want LLVM to always realize that doing a stack
1086
            // allocation is unnecessary and optimize the code so it writes
1087
            // directly into the heap instead. It seems we get it to realize
1088
            // this most consistently if we put this critical line into it's
1089
            // own function instead of inlining it into the surrounding code.
1090
0
            ptr::write(ptr, f());
1091
0
        }
1092
1093
0
        let layout = Layout::new::<T>();
1094
1095
0
        unsafe {
1096
0
            let p = self.alloc_layout(layout);
1097
0
            let p = p.as_ptr() as *mut T;
1098
0
            inner_writer(p, f);
1099
0
            &mut *p
1100
0
        }
1101
0
    }
1102
1103
    /// Tries to pre-allocate space for an object in this `Bump`, initializes
1104
    /// it using the closure, then returns an exclusive reference to it.
1105
    ///
1106
    /// See [The `_with` Method Suffix](#initializer-functions-the-_with-method-suffix) for a
1107
    /// discussion on the differences between the `_with` suffixed methods and
1108
    /// those methods without it, their performance characteristics, and when
1109
    /// you might or might not choose a `_with` suffixed method.
1110
    ///
1111
    /// ## Errors
1112
    ///
1113
    /// Errors if reserving space for `T` fails.
1114
    ///
1115
    /// ## Example
1116
    ///
1117
    /// ```
1118
    /// let bump = bumpalo::Bump::new();
1119
    /// let x = bump.try_alloc_with(|| "hello");
1120
    /// assert_eq!(x, Ok(&mut "hello"));
1121
    /// ```
1122
    #[inline(always)]
1123
0
    pub fn try_alloc_with<F, T>(&self, f: F) -> Result<&mut T, AllocErr>
1124
0
    where
1125
0
        F: FnOnce() -> T,
1126
    {
1127
        #[inline(always)]
1128
0
        unsafe fn inner_writer<T, F>(ptr: *mut T, f: F)
1129
0
        where
1130
0
            F: FnOnce() -> T,
1131
        {
1132
            // This function is translated as:
1133
            // - allocate space for a T on the stack
1134
            // - call f() with the return value being put onto this stack space
1135
            // - memcpy from the stack to the heap
1136
            //
1137
            // Ideally we want LLVM to always realize that doing a stack
1138
            // allocation is unnecessary and optimize the code so it writes
1139
            // directly into the heap instead. It seems we get it to realize
1140
            // this most consistently if we put this critical line into it's
1141
            // own function instead of inlining it into the surrounding code.
1142
0
            ptr::write(ptr, f());
1143
0
        }
1144
1145
        //SAFETY: Self-contained:
1146
        // `p` is allocated for `T` and then a `T` is written.
1147
0
        let layout = Layout::new::<T>();
1148
0
        let p = self.try_alloc_layout(layout)?;
1149
0
        let p = p.as_ptr() as *mut T;
1150
1151
        unsafe {
1152
0
            inner_writer(p, f);
1153
0
            Ok(&mut *p)
1154
        }
1155
0
    }
1156
1157
    /// Pre-allocates space for a [`Result`] in this `Bump`, initializes it using
1158
    /// the closure, then returns an exclusive reference to its `T` if [`Ok`].
1159
    ///
1160
    /// Iff the allocation fails, the closure is not run.
1161
    ///
1162
    /// Iff [`Err`], an allocator rewind is *attempted* and the `E` instance is
1163
    /// moved out of the allocator to be consumed or dropped as normal.
1164
    ///
1165
    /// See [The `_with` Method Suffix](#initializer-functions-the-_with-method-suffix) for a
1166
    /// discussion on the differences between the `_with` suffixed methods and
1167
    /// those methods without it, their performance characteristics, and when
1168
    /// you might or might not choose a `_with` suffixed method.
1169
    ///
1170
    /// For caveats specific to fallible initialization, see
1171
    /// [The `_try_with` Method Suffix](#fallible-initialization-the-_try_with-method-suffix).
1172
    ///
1173
    /// [`Result`]: https://doc.rust-lang.org/std/result/enum.Result.html
1174
    /// [`Ok`]: https://doc.rust-lang.org/std/result/enum.Result.html#variant.Ok
1175
    /// [`Err`]: https://doc.rust-lang.org/std/result/enum.Result.html#variant.Err
1176
    ///
1177
    /// ## Errors
1178
    ///
1179
    /// Iff the allocation succeeds but `f` fails, that error is forwarded by value.
1180
    ///
1181
    /// ## Panics
1182
    ///
1183
    /// Panics if reserving space for `Result<T, E>` fails.
1184
    ///
1185
    /// ## Example
1186
    ///
1187
    /// ```
1188
    /// let bump = bumpalo::Bump::new();
1189
    /// let x = bump.alloc_try_with(|| Ok("hello"))?;
1190
    /// assert_eq!(*x, "hello");
1191
    /// # Result::<_, ()>::Ok(())
1192
    /// ```
1193
    #[inline(always)]
1194
0
    pub fn alloc_try_with<F, T, E>(&self, f: F) -> Result<&mut T, E>
1195
0
    where
1196
0
        F: FnOnce() -> Result<T, E>,
1197
    {
1198
0
        let rewind_footer = self.current_chunk_footer.get();
1199
0
        let rewind_ptr = unsafe { rewind_footer.as_ref() }.ptr.get();
1200
0
        let mut inner_result_ptr = NonNull::from(self.alloc_with(f));
1201
0
        match unsafe { inner_result_ptr.as_mut() } {
1202
0
            Ok(t) => Ok(unsafe {
1203
0
                //SAFETY:
1204
0
                // The `&mut Result<T, E>` returned by `alloc_with` may be
1205
0
                // lifetime-limited by `E`, but the derived `&mut T` still has
1206
0
                // the same validity as in `alloc_with` since the error variant
1207
0
                // is already ruled out here.
1208
0
1209
0
                // We could conditionally truncate the allocation here, but
1210
0
                // since it grows backwards, it seems unlikely that we'd get
1211
0
                // any more than the `Result`'s discriminant this way, if
1212
0
                // anything at all.
1213
0
                &mut *(t as *mut _)
1214
0
            }),
1215
0
            Err(e) => unsafe {
1216
                // If this result was the last allocation in this arena, we can
1217
                // reclaim its space. In fact, sometimes we can do even better
1218
                // than simply calling `dealloc` on the result pointer: we can
1219
                // reclaim any alignment padding we might have added (which
1220
                // `dealloc` cannot do) if we didn't allocate a new chunk for
1221
                // this result.
1222
0
                if self.is_last_allocation(inner_result_ptr.cast()) {
1223
0
                    let current_footer_p = self.current_chunk_footer.get();
1224
0
                    let current_ptr = &current_footer_p.as_ref().ptr;
1225
0
                    if current_footer_p == rewind_footer {
1226
0
                        // It's still the same chunk, so reset the bump pointer
1227
0
                        // to its original value upon entry to this method
1228
0
                        // (reclaiming any alignment padding we may have
1229
0
                        // added).
1230
0
                        current_ptr.set(rewind_ptr);
1231
0
                    } else {
1232
0
                        // We allocated a new chunk for this result.
1233
0
                        //
1234
0
                        // We know the result is the only allocation in this
1235
0
                        // chunk: Any additional allocations since the start of
1236
0
                        // this method could only have happened when running
1237
0
                        // the initializer function, which is called *after*
1238
0
                        // reserving space for this result. Therefore, since we
1239
0
                        // already determined via the check above that this
1240
0
                        // result was the last allocation, there must not have
1241
0
                        // been any other allocations, and this result is the
1242
0
                        // only allocation in this chunk.
1243
0
                        //
1244
0
                        // Because this is the only allocation in this chunk,
1245
0
                        // we can reset the chunk's bump finger to the start of
1246
0
                        // the chunk.
1247
0
                        current_ptr.set(current_footer_p.as_ref().data);
1248
0
                    }
1249
0
                }
1250
                //SAFETY:
1251
                // As we received `E` semantically by value from `f`, we can
1252
                // just copy that value here as long as we avoid a double-drop
1253
                // (which can't happen as any specific references to the `E`'s
1254
                // data in `self` are destroyed when this function returns).
1255
                //
1256
                // The order between this and the deallocation doesn't matter
1257
                // because `Self: !Sync`.
1258
0
                Err(ptr::read(e as *const _))
1259
            },
1260
        }
1261
0
    }
1262
1263
    /// Tries to pre-allocates space for a [`Result`] in this `Bump`,
1264
    /// initializes it using the closure, then returns an exclusive reference
1265
    /// to its `T` if all [`Ok`].
1266
    ///
1267
    /// Iff the allocation fails, the closure is not run.
1268
    ///
1269
    /// Iff the closure returns [`Err`], an allocator rewind is *attempted* and
1270
    /// the `E` instance is moved out of the allocator to be consumed or dropped
1271
    /// as normal.
1272
    ///
1273
    /// See [The `_with` Method Suffix](#initializer-functions-the-_with-method-suffix) for a
1274
    /// discussion on the differences between the `_with` suffixed methods and
1275
    /// those methods without it, their performance characteristics, and when
1276
    /// you might or might not choose a `_with` suffixed method.
1277
    ///
1278
    /// For caveats specific to fallible initialization, see
1279
    /// [The `_try_with` Method Suffix](#fallible-initialization-the-_try_with-method-suffix).
1280
    ///
1281
    /// [`Result`]: https://doc.rust-lang.org/std/result/enum.Result.html
1282
    /// [`Ok`]: https://doc.rust-lang.org/std/result/enum.Result.html#variant.Ok
1283
    /// [`Err`]: https://doc.rust-lang.org/std/result/enum.Result.html#variant.Err
1284
    ///
1285
    /// ## Errors
1286
    ///
1287
    /// Errors with the [`Alloc`](`AllocOrInitError::Alloc`) variant iff
1288
    /// reserving space for `Result<T, E>` fails.
1289
    ///
1290
    /// Iff the allocation succeeds but `f` fails, that error is forwarded by
1291
    /// value inside the [`Init`](`AllocOrInitError::Init`) variant.
1292
    ///
1293
    /// ## Example
1294
    ///
1295
    /// ```
1296
    /// let bump = bumpalo::Bump::new();
1297
    /// let x = bump.try_alloc_try_with(|| Ok("hello"))?;
1298
    /// assert_eq!(*x, "hello");
1299
    /// # Result::<_, bumpalo::AllocOrInitError<()>>::Ok(())
1300
    /// ```
1301
    #[inline(always)]
1302
0
    pub fn try_alloc_try_with<F, T, E>(&self, f: F) -> Result<&mut T, AllocOrInitError<E>>
1303
0
    where
1304
0
        F: FnOnce() -> Result<T, E>,
1305
    {
1306
0
        let rewind_footer = self.current_chunk_footer.get();
1307
0
        let rewind_ptr = unsafe { rewind_footer.as_ref() }.ptr.get();
1308
0
        let mut inner_result_ptr = NonNull::from(self.try_alloc_with(f)?);
1309
0
        match unsafe { inner_result_ptr.as_mut() } {
1310
0
            Ok(t) => Ok(unsafe {
1311
0
                //SAFETY:
1312
0
                // The `&mut Result<T, E>` returned by `alloc_with` may be
1313
0
                // lifetime-limited by `E`, but the derived `&mut T` still has
1314
0
                // the same validity as in `alloc_with` since the error variant
1315
0
                // is already ruled out here.
1316
0
1317
0
                // We could conditionally truncate the allocation here, but
1318
0
                // since it grows backwards, it seems unlikely that we'd get
1319
0
                // any more than the `Result`'s discriminant this way, if
1320
0
                // anything at all.
1321
0
                &mut *(t as *mut _)
1322
0
            }),
1323
0
            Err(e) => unsafe {
1324
                // If this result was the last allocation in this arena, we can
1325
                // reclaim its space. In fact, sometimes we can do even better
1326
                // than simply calling `dealloc` on the result pointer: we can
1327
                // reclaim any alignment padding we might have added (which
1328
                // `dealloc` cannot do) if we didn't allocate a new chunk for
1329
                // this result.
1330
0
                if self.is_last_allocation(inner_result_ptr.cast()) {
1331
0
                    let current_footer_p = self.current_chunk_footer.get();
1332
0
                    let current_ptr = &current_footer_p.as_ref().ptr;
1333
0
                    if current_footer_p == rewind_footer {
1334
0
                        // It's still the same chunk, so reset the bump pointer
1335
0
                        // to its original value upon entry to this method
1336
0
                        // (reclaiming any alignment padding we may have
1337
0
                        // added).
1338
0
                        current_ptr.set(rewind_ptr);
1339
0
                    } else {
1340
0
                        // We allocated a new chunk for this result.
1341
0
                        //
1342
0
                        // We know the result is the only allocation in this
1343
0
                        // chunk: Any additional allocations since the start of
1344
0
                        // this method could only have happened when running
1345
0
                        // the initializer function, which is called *after*
1346
0
                        // reserving space for this result. Therefore, since we
1347
0
                        // already determined via the check above that this
1348
0
                        // result was the last allocation, there must not have
1349
0
                        // been any other allocations, and this result is the
1350
0
                        // only allocation in this chunk.
1351
0
                        //
1352
0
                        // Because this is the only allocation in this chunk,
1353
0
                        // we can reset the chunk's bump finger to the start of
1354
0
                        // the chunk.
1355
0
                        current_ptr.set(current_footer_p.as_ref().data);
1356
0
                    }
1357
0
                }
1358
                //SAFETY:
1359
                // As we received `E` semantically by value from `f`, we can
1360
                // just copy that value here as long as we avoid a double-drop
1361
                // (which can't happen as any specific references to the `E`'s
1362
                // data in `self` are destroyed when this function returns).
1363
                //
1364
                // The order between this and the deallocation doesn't matter
1365
                // because `Self: !Sync`.
1366
0
                Err(AllocOrInitError::Init(ptr::read(e as *const _)))
1367
            },
1368
        }
1369
0
    }
1370
1371
    /// `Copy` a slice into this `Bump` and return an exclusive reference to
1372
    /// the copy.
1373
    ///
1374
    /// ## Panics
1375
    ///
1376
    /// Panics if reserving space for the slice fails.
1377
    ///
1378
    /// ## Example
1379
    ///
1380
    /// ```
1381
    /// let bump = bumpalo::Bump::new();
1382
    /// let x = bump.alloc_slice_copy(&[1, 2, 3]);
1383
    /// assert_eq!(x, &[1, 2, 3]);
1384
    /// ```
1385
    #[inline(always)]
1386
2.03M
    pub fn alloc_slice_copy<T>(&self, src: &[T]) -> &mut [T]
1387
2.03M
    where
1388
2.03M
        T: Copy,
1389
    {
1390
2.03M
        let layout = Layout::for_value(src);
1391
2.03M
        let dst = self.alloc_layout(layout).cast::<T>();
1392
1393
2.03M
        unsafe {
1394
2.03M
            ptr::copy_nonoverlapping(src.as_ptr(), dst.as_ptr(), src.len());
1395
2.03M
            slice::from_raw_parts_mut(dst.as_ptr(), src.len())
1396
2.03M
        }
1397
2.03M
    }
<bumpalo::Bump>::alloc_slice_copy::<cranelift_codegen::ir::entities::Value>
Line
Count
Source
1386
221k
    pub fn alloc_slice_copy<T>(&self, src: &[T]) -> &mut [T]
1387
221k
    where
1388
221k
        T: Copy,
1389
    {
1390
221k
        let layout = Layout::for_value(src);
1391
221k
        let dst = self.alloc_layout(layout).cast::<T>();
1392
1393
221k
        unsafe {
1394
221k
            ptr::copy_nonoverlapping(src.as_ptr(), dst.as_ptr(), src.len());
1395
221k
            slice::from_raw_parts_mut(dst.as_ptr(), src.len())
1396
221k
        }
1397
221k
    }
Unexecuted instantiation: <bumpalo::Bump>::alloc_slice_copy::<u8>
Unexecuted instantiation: <bumpalo::Bump<_>>::alloc_slice_copy::<_>
<bumpalo::Bump>::alloc_slice_copy::<cranelift_codegen::ir::entities::Value>
Line
Count
Source
1386
1.81M
    pub fn alloc_slice_copy<T>(&self, src: &[T]) -> &mut [T]
1387
1.81M
    where
1388
1.81M
        T: Copy,
1389
    {
1390
1.81M
        let layout = Layout::for_value(src);
1391
1.81M
        let dst = self.alloc_layout(layout).cast::<T>();
1392
1393
1.81M
        unsafe {
1394
1.81M
            ptr::copy_nonoverlapping(src.as_ptr(), dst.as_ptr(), src.len());
1395
1.81M
            slice::from_raw_parts_mut(dst.as_ptr(), src.len())
1396
1.81M
        }
1397
1.81M
    }
1398
1399
    /// Like `alloc_slice_copy`, but does not panic in case of allocation failure.
1400
    ///
1401
    /// ## Example
1402
    ///
1403
    /// ```
1404
    /// let bump = bumpalo::Bump::new();
1405
    /// let x = bump.try_alloc_slice_copy(&[1, 2, 3]);
1406
    /// assert_eq!(x, Ok(&mut[1, 2, 3] as &mut [_]));
1407
    ///
1408
    ///
1409
    /// let bump = bumpalo::Bump::new();
1410
    /// bump.set_allocation_limit(Some(4));
1411
    /// let x = bump.try_alloc_slice_copy(&[1, 2, 3, 4, 5, 6]);
1412
    /// assert_eq!(x, Err(bumpalo::AllocErr)); // too big
1413
    /// ```
1414
    #[inline(always)]
1415
0
    pub fn try_alloc_slice_copy<T>(&self, src: &[T]) -> Result<&mut [T], AllocErr>
1416
0
    where
1417
0
        T: Copy,
1418
    {
1419
0
        let layout = Layout::for_value(src);
1420
0
        let dst = self.try_alloc_layout(layout)?.cast::<T>();
1421
0
        let result = unsafe {
1422
0
            core::ptr::copy_nonoverlapping(src.as_ptr(), dst.as_ptr(), src.len());
1423
0
            slice::from_raw_parts_mut(dst.as_ptr(), src.len())
1424
        };
1425
0
        Ok(result)
1426
0
    }
1427
1428
    /// `Clone` a slice into this `Bump` and return an exclusive reference to
1429
    /// the clone. Prefer [`alloc_slice_copy`](#method.alloc_slice_copy) if `T` is `Copy`.
1430
    ///
1431
    /// ## Panics
1432
    ///
1433
    /// Panics if reserving space for the slice fails.
1434
    ///
1435
    /// ## Example
1436
    ///
1437
    /// ```
1438
    /// #[derive(Clone, Debug, Eq, PartialEq)]
1439
    /// struct Sheep {
1440
    ///     name: String,
1441
    /// }
1442
    ///
1443
    /// let originals = [
1444
    ///     Sheep { name: "Alice".into() },
1445
    ///     Sheep { name: "Bob".into() },
1446
    ///     Sheep { name: "Cathy".into() },
1447
    /// ];
1448
    ///
1449
    /// let bump = bumpalo::Bump::new();
1450
    /// let clones = bump.alloc_slice_clone(&originals);
1451
    /// assert_eq!(originals, clones);
1452
    /// ```
1453
    #[inline(always)]
1454
0
    pub fn alloc_slice_clone<T>(&self, src: &[T]) -> &mut [T]
1455
0
    where
1456
0
        T: Clone,
1457
    {
1458
0
        let layout = Layout::for_value(src);
1459
0
        let dst = self.alloc_layout(layout).cast::<T>();
1460
1461
        unsafe {
1462
0
            for (i, val) in src.iter().cloned().enumerate() {
1463
0
                ptr::write(dst.as_ptr().add(i), val);
1464
0
            }
1465
1466
0
            slice::from_raw_parts_mut(dst.as_ptr(), src.len())
1467
        }
1468
0
    }
1469
1470
    /// Like `alloc_slice_clone` but does not panic on failure.
1471
    #[inline(always)]
1472
0
    pub fn try_alloc_slice_clone<T>(&self, src: &[T]) -> Result<&mut [T], AllocErr>
1473
0
    where
1474
0
        T: Clone,
1475
    {
1476
0
        let layout = Layout::for_value(src);
1477
0
        let dst = self.try_alloc_layout(layout)?.cast::<T>();
1478
1479
        unsafe {
1480
0
            for (i, val) in src.iter().cloned().enumerate() {
1481
0
                ptr::write(dst.as_ptr().add(i), val);
1482
0
            }
1483
1484
0
            Ok(slice::from_raw_parts_mut(dst.as_ptr(), src.len()))
1485
        }
1486
0
    }
1487
1488
    /// `Copy` a string slice into this `Bump` and return an exclusive reference to it.
1489
    ///
1490
    /// ## Panics
1491
    ///
1492
    /// Panics if reserving space for the string fails.
1493
    ///
1494
    /// ## Example
1495
    ///
1496
    /// ```
1497
    /// let bump = bumpalo::Bump::new();
1498
    /// let hello = bump.alloc_str("hello world");
1499
    /// assert_eq!("hello world", hello);
1500
    /// ```
1501
    #[inline(always)]
1502
0
    pub fn alloc_str(&self, src: &str) -> &mut str {
1503
0
        let buffer = self.alloc_slice_copy(src.as_bytes());
1504
0
        unsafe {
1505
0
            // This is OK, because it already came in as str, so it is guaranteed to be utf8
1506
0
            str::from_utf8_unchecked_mut(buffer)
1507
0
        }
1508
0
    }
1509
1510
    /// Same as `alloc_str` but does not panic on failure.
1511
    ///
1512
    /// ## Example
1513
    ///
1514
    /// ```
1515
    /// let bump = bumpalo::Bump::new();
1516
    /// let hello = bump.try_alloc_str("hello world").unwrap();
1517
    /// assert_eq!("hello world", hello);
1518
    ///
1519
    ///
1520
    /// let bump = bumpalo::Bump::new();
1521
    /// bump.set_allocation_limit(Some(5));
1522
    /// let hello = bump.try_alloc_str("hello world");
1523
    /// assert_eq!(Err(bumpalo::AllocErr), hello);
1524
    /// ```
1525
    #[inline(always)]
1526
0
    pub fn try_alloc_str(&self, src: &str) -> Result<&mut str, AllocErr> {
1527
0
        let buffer = self.try_alloc_slice_copy(src.as_bytes())?;
1528
        unsafe {
1529
            // This is OK, because it already came in as str, so it is guaranteed to be utf8
1530
0
            Ok(str::from_utf8_unchecked_mut(buffer))
1531
        }
1532
0
    }
1533
1534
    /// Allocates a new slice of size `len` into this `Bump` and returns an
1535
    /// exclusive reference to the copy.
1536
    ///
1537
    /// The elements of the slice are initialized using the supplied closure.
1538
    /// The closure argument is the position in the slice.
1539
    ///
1540
    /// ## Panics
1541
    ///
1542
    /// Panics if reserving space for the slice fails.
1543
    ///
1544
    /// ## Example
1545
    ///
1546
    /// ```
1547
    /// let bump = bumpalo::Bump::new();
1548
    /// let x = bump.alloc_slice_fill_with(5, |i| 5 * (i + 1));
1549
    /// assert_eq!(x, &[5, 10, 15, 20, 25]);
1550
    /// ```
1551
    #[inline(always)]
1552
679k
    pub fn alloc_slice_fill_with<T, F>(&self, len: usize, mut f: F) -> &mut [T]
1553
679k
    where
1554
679k
        F: FnMut(usize) -> T,
1555
    {
1556
679k
        let layout = Layout::array::<T>(len).unwrap_or_else(|_| oom());
Unexecuted instantiation: <bumpalo::Bump>::alloc_slice_fill_with::<cranelift_codegen::ir::instructions::BlockArg, <bumpalo::Bump>::alloc_slice_fill_iter<cranelift_codegen::ir::instructions::BlockArg, core::iter::adapters::map::Map<core::iter::adapters::map::Map<core::slice::iter::Iter<cranelift_codegen::ir::entities::Value>, <cranelift_codegen::ir::instructions::BlockCall>::args::{closure#0}>, <cranelift_codegen::remove_constant_phis::OutEdge>::new::{closure#0}>>::{closure#0}>::{closure#0}
Unexecuted instantiation: <bumpalo::Bump<_>>::alloc_slice_fill_with::<_, _>::{closure#0}
Unexecuted instantiation: <bumpalo::Bump>::alloc_slice_fill_with::<cranelift_codegen::ir::instructions::BlockArg, <bumpalo::Bump>::alloc_slice_fill_iter<cranelift_codegen::ir::instructions::BlockArg, core::iter::adapters::map::Map<core::iter::adapters::map::Map<core::slice::iter::Iter<cranelift_codegen::ir::entities::Value>, <cranelift_codegen::ir::instructions::BlockCall>::args::{closure#0}>, <cranelift_codegen::remove_constant_phis::OutEdge>::new::{closure#0}>>::{closure#0}>::{closure#0}
1557
679k
        let dst = self.alloc_layout(layout).cast::<T>();
1558
1559
        unsafe {
1560
2.75M
            for i in 0..len {
1561
2.75M
                ptr::write(dst.as_ptr().add(i), f(i));
1562
2.75M
            }
1563
1564
679k
            let result = slice::from_raw_parts_mut(dst.as_ptr(), len);
1565
679k
            debug_assert_eq!(Layout::for_value(result), layout);
1566
679k
            result
1567
        }
1568
679k
    }
<bumpalo::Bump>::alloc_slice_fill_with::<cranelift_codegen::ir::instructions::BlockArg, <bumpalo::Bump>::alloc_slice_fill_iter<cranelift_codegen::ir::instructions::BlockArg, core::iter::adapters::map::Map<core::iter::adapters::map::Map<core::slice::iter::Iter<cranelift_codegen::ir::entities::Value>, <cranelift_codegen::ir::instructions::BlockCall>::args::{closure#0}>, <cranelift_codegen::remove_constant_phis::OutEdge>::new::{closure#0}>>::{closure#0}>
Line
Count
Source
1552
64.7k
    pub fn alloc_slice_fill_with<T, F>(&self, len: usize, mut f: F) -> &mut [T]
1553
64.7k
    where
1554
64.7k
        F: FnMut(usize) -> T,
1555
    {
1556
64.7k
        let layout = Layout::array::<T>(len).unwrap_or_else(|_| oom());
1557
64.7k
        let dst = self.alloc_layout(layout).cast::<T>();
1558
1559
        unsafe {
1560
201k
            for i in 0..len {
1561
201k
                ptr::write(dst.as_ptr().add(i), f(i));
1562
201k
            }
1563
1564
64.7k
            let result = slice::from_raw_parts_mut(dst.as_ptr(), len);
1565
64.7k
            debug_assert_eq!(Layout::for_value(result), layout);
1566
64.7k
            result
1567
        }
1568
64.7k
    }
Unexecuted instantiation: <bumpalo::Bump<_>>::alloc_slice_fill_with::<_, _>
<bumpalo::Bump>::alloc_slice_fill_with::<cranelift_codegen::ir::instructions::BlockArg, <bumpalo::Bump>::alloc_slice_fill_iter<cranelift_codegen::ir::instructions::BlockArg, core::iter::adapters::map::Map<core::iter::adapters::map::Map<core::slice::iter::Iter<cranelift_codegen::ir::entities::Value>, <cranelift_codegen::ir::instructions::BlockCall>::args::{closure#0}>, <cranelift_codegen::remove_constant_phis::OutEdge>::new::{closure#0}>>::{closure#0}>
Line
Count
Source
1552
614k
    pub fn alloc_slice_fill_with<T, F>(&self, len: usize, mut f: F) -> &mut [T]
1553
614k
    where
1554
614k
        F: FnMut(usize) -> T,
1555
    {
1556
614k
        let layout = Layout::array::<T>(len).unwrap_or_else(|_| oom());
1557
614k
        let dst = self.alloc_layout(layout).cast::<T>();
1558
1559
        unsafe {
1560
2.55M
            for i in 0..len {
1561
2.55M
                ptr::write(dst.as_ptr().add(i), f(i));
1562
2.55M
            }
1563
1564
614k
            let result = slice::from_raw_parts_mut(dst.as_ptr(), len);
1565
614k
            debug_assert_eq!(Layout::for_value(result), layout);
1566
614k
            result
1567
        }
1568
614k
    }
1569
1570
    /// Allocates a new slice of size `len` into this `Bump` and returns an
1571
    /// exclusive reference to the copy, failing if the closure return an Err.
1572
    ///
1573
    /// The elements of the slice are initialized using the supplied closure.
1574
    /// The closure argument is the position in the slice.
1575
    ///
1576
    /// ## Panics
1577
    ///
1578
    /// Panics if reserving space for the slice fails.
1579
    ///
1580
    /// ## Example
1581
    ///
1582
    /// ```
1583
    /// let bump = bumpalo::Bump::new();
1584
    /// let x: Result<&mut [usize], ()> = bump.alloc_slice_try_fill_with(5, |i| Ok(5 * i));
1585
    /// assert_eq!(x, Ok(bump.alloc_slice_copy(&[0, 5, 10, 15, 20])));
1586
    /// ```
1587
    ///
1588
    /// ```
1589
    /// let bump = bumpalo::Bump::new();
1590
    /// let x: Result<&mut [usize], ()> = bump.alloc_slice_try_fill_with(
1591
    ///    5,
1592
    ///    |n| if n == 2 { Err(()) } else { Ok(n) }
1593
    /// );
1594
    /// assert_eq!(x, Err(()));
1595
    /// ```
1596
    #[inline(always)]
1597
0
    pub fn alloc_slice_try_fill_with<T, F, E>(&self, len: usize, mut f: F) -> Result<&mut [T], E>
1598
0
    where
1599
0
        F: FnMut(usize) -> Result<T, E>,
1600
    {
1601
0
        let layout = Layout::array::<T>(len).unwrap_or_else(|_| oom());
1602
0
        let base_ptr = self.alloc_layout(layout);
1603
0
        let dst = base_ptr.cast::<T>();
1604
1605
        unsafe {
1606
0
            for i in 0..len {
1607
0
                match f(i) {
1608
0
                    Ok(el) => ptr::write(dst.as_ptr().add(i), el),
1609
0
                    Err(e) => {
1610
0
                        self.dealloc(base_ptr, layout);
1611
0
                        return Err(e);
1612
                    }
1613
                }
1614
            }
1615
1616
0
            let result = slice::from_raw_parts_mut(dst.as_ptr(), len);
1617
0
            debug_assert_eq!(Layout::for_value(result), layout);
1618
0
            Ok(result)
1619
        }
1620
0
    }
1621
1622
    /// Allocates a new slice of size `len` into this `Bump` and returns an
1623
    /// exclusive reference to the copy.
1624
    ///
1625
    /// The elements of the slice are initialized using the supplied closure.
1626
    /// The closure argument is the position in the slice.
1627
    ///
1628
    /// ## Example
1629
    ///
1630
    /// ```
1631
    /// let bump = bumpalo::Bump::new();
1632
    /// let x = bump.try_alloc_slice_fill_with(5, |i| 5 * (i + 1));
1633
    /// assert_eq!(x, Ok(&mut[5usize, 10, 15, 20, 25] as &mut [_]));
1634
    ///
1635
    ///
1636
    /// let bump = bumpalo::Bump::new();
1637
    /// bump.set_allocation_limit(Some(4));
1638
    /// let x = bump.try_alloc_slice_fill_with(10, |i| 5 * (i + 1));
1639
    /// assert_eq!(x, Err(bumpalo::AllocErr));
1640
    /// ```
1641
    #[inline(always)]
1642
0
    pub fn try_alloc_slice_fill_with<T, F>(
1643
0
        &self,
1644
0
        len: usize,
1645
0
        mut f: F,
1646
0
    ) -> Result<&mut [T], AllocErr>
1647
0
    where
1648
0
        F: FnMut(usize) -> T,
1649
    {
1650
0
        let layout = Layout::array::<T>(len).map_err(|_| AllocErr)?;
1651
0
        let dst = self.try_alloc_layout(layout)?.cast::<T>();
1652
1653
        unsafe {
1654
0
            for i in 0..len {
1655
0
                ptr::write(dst.as_ptr().add(i), f(i));
1656
0
            }
1657
1658
0
            let result = slice::from_raw_parts_mut(dst.as_ptr(), len);
1659
0
            debug_assert_eq!(Layout::for_value(result), layout);
1660
0
            Ok(result)
1661
        }
1662
0
    }
1663
1664
    /// Allocates a new slice of size `len` into this `Bump` and returns an
1665
    /// exclusive reference to the copy.
1666
    ///
1667
    /// All elements of the slice are initialized to `value`.
1668
    ///
1669
    /// ## Panics
1670
    ///
1671
    /// Panics if reserving space for the slice fails.
1672
    ///
1673
    /// ## Example
1674
    ///
1675
    /// ```
1676
    /// let bump = bumpalo::Bump::new();
1677
    /// let x = bump.alloc_slice_fill_copy(5, 42);
1678
    /// assert_eq!(x, &[42, 42, 42, 42, 42]);
1679
    /// ```
1680
    #[inline(always)]
1681
0
    pub fn alloc_slice_fill_copy<T: Copy>(&self, len: usize, value: T) -> &mut [T] {
1682
0
        self.alloc_slice_fill_with(len, |_| value)
1683
0
    }
1684
1685
    /// Same as `alloc_slice_fill_copy` but does not panic on failure.
1686
    #[inline(always)]
1687
0
    pub fn try_alloc_slice_fill_copy<T: Copy>(
1688
0
        &self,
1689
0
        len: usize,
1690
0
        value: T,
1691
0
    ) -> Result<&mut [T], AllocErr> {
1692
0
        self.try_alloc_slice_fill_with(len, |_| value)
1693
0
    }
1694
1695
    /// Allocates a new slice of size `len` slice into this `Bump` and return an
1696
    /// exclusive reference to the copy.
1697
    ///
1698
    /// All elements of the slice are initialized to `value.clone()`.
1699
    ///
1700
    /// ## Panics
1701
    ///
1702
    /// Panics if reserving space for the slice fails.
1703
    ///
1704
    /// ## Example
1705
    ///
1706
    /// ```
1707
    /// let bump = bumpalo::Bump::new();
1708
    /// let s: String = "Hello Bump!".to_string();
1709
    /// let x: &[String] = bump.alloc_slice_fill_clone(2, &s);
1710
    /// assert_eq!(x.len(), 2);
1711
    /// assert_eq!(&x[0], &s);
1712
    /// assert_eq!(&x[1], &s);
1713
    /// ```
1714
    #[inline(always)]
1715
0
    pub fn alloc_slice_fill_clone<T: Clone>(&self, len: usize, value: &T) -> &mut [T] {
1716
0
        self.alloc_slice_fill_with(len, |_| value.clone())
1717
0
    }
1718
1719
    /// Like `alloc_slice_fill_clone` but does not panic on failure.
1720
    #[inline(always)]
1721
0
    pub fn try_alloc_slice_fill_clone<T: Clone>(
1722
0
        &self,
1723
0
        len: usize,
1724
0
        value: &T,
1725
0
    ) -> Result<&mut [T], AllocErr> {
1726
0
        self.try_alloc_slice_fill_with(len, |_| value.clone())
1727
0
    }
1728
1729
    /// Allocates a new slice of size `len` slice into this `Bump` and return an
1730
    /// exclusive reference to the copy.
1731
    ///
1732
    /// The elements are initialized using the supplied iterator.
1733
    ///
1734
    /// ## Panics
1735
    ///
1736
    /// Panics if reserving space for the slice fails, or if the supplied
1737
    /// iterator returns fewer elements than it promised.
1738
    ///
1739
    /// ## Example
1740
    ///
1741
    /// ```
1742
    /// let bump = bumpalo::Bump::new();
1743
    /// let x: &[i32] = bump.alloc_slice_fill_iter([2, 3, 5].iter().cloned().map(|i| i * i));
1744
    /// assert_eq!(x, [4, 9, 25]);
1745
    /// ```
1746
    #[inline(always)]
1747
679k
    pub fn alloc_slice_fill_iter<T, I>(&self, iter: I) -> &mut [T]
1748
679k
    where
1749
679k
        I: IntoIterator<Item = T>,
1750
679k
        I::IntoIter: ExactSizeIterator,
1751
    {
1752
679k
        let mut iter = iter.into_iter();
1753
2.75M
        self.alloc_slice_fill_with(iter.len(), |_| {
1754
2.75M
            iter.next().expect("Iterator supplied too few elements")
1755
2.75M
        })
<bumpalo::Bump>::alloc_slice_fill_iter::<cranelift_codegen::ir::instructions::BlockArg, core::iter::adapters::map::Map<core::iter::adapters::map::Map<core::slice::iter::Iter<cranelift_codegen::ir::entities::Value>, <cranelift_codegen::ir::instructions::BlockCall>::args::{closure#0}>, <cranelift_codegen::remove_constant_phis::OutEdge>::new::{closure#0}>>::{closure#0}
Line
Count
Source
1753
201k
        self.alloc_slice_fill_with(iter.len(), |_| {
1754
201k
            iter.next().expect("Iterator supplied too few elements")
1755
201k
        })
Unexecuted instantiation: <bumpalo::Bump<_>>::alloc_slice_fill_iter::<_, _>::{closure#0}
<bumpalo::Bump>::alloc_slice_fill_iter::<cranelift_codegen::ir::instructions::BlockArg, core::iter::adapters::map::Map<core::iter::adapters::map::Map<core::slice::iter::Iter<cranelift_codegen::ir::entities::Value>, <cranelift_codegen::ir::instructions::BlockCall>::args::{closure#0}>, <cranelift_codegen::remove_constant_phis::OutEdge>::new::{closure#0}>>::{closure#0}
Line
Count
Source
1753
2.55M
        self.alloc_slice_fill_with(iter.len(), |_| {
1754
2.55M
            iter.next().expect("Iterator supplied too few elements")
1755
2.55M
        })
1756
679k
    }
<bumpalo::Bump>::alloc_slice_fill_iter::<cranelift_codegen::ir::instructions::BlockArg, core::iter::adapters::map::Map<core::iter::adapters::map::Map<core::slice::iter::Iter<cranelift_codegen::ir::entities::Value>, <cranelift_codegen::ir::instructions::BlockCall>::args::{closure#0}>, <cranelift_codegen::remove_constant_phis::OutEdge>::new::{closure#0}>>
Line
Count
Source
1747
64.7k
    pub fn alloc_slice_fill_iter<T, I>(&self, iter: I) -> &mut [T]
1748
64.7k
    where
1749
64.7k
        I: IntoIterator<Item = T>,
1750
64.7k
        I::IntoIter: ExactSizeIterator,
1751
    {
1752
64.7k
        let mut iter = iter.into_iter();
1753
64.7k
        self.alloc_slice_fill_with(iter.len(), |_| {
1754
            iter.next().expect("Iterator supplied too few elements")
1755
        })
1756
64.7k
    }
Unexecuted instantiation: <bumpalo::Bump<_>>::alloc_slice_fill_iter::<_, _>
<bumpalo::Bump>::alloc_slice_fill_iter::<cranelift_codegen::ir::instructions::BlockArg, core::iter::adapters::map::Map<core::iter::adapters::map::Map<core::slice::iter::Iter<cranelift_codegen::ir::entities::Value>, <cranelift_codegen::ir::instructions::BlockCall>::args::{closure#0}>, <cranelift_codegen::remove_constant_phis::OutEdge>::new::{closure#0}>>
Line
Count
Source
1747
614k
    pub fn alloc_slice_fill_iter<T, I>(&self, iter: I) -> &mut [T]
1748
614k
    where
1749
614k
        I: IntoIterator<Item = T>,
1750
614k
        I::IntoIter: ExactSizeIterator,
1751
    {
1752
614k
        let mut iter = iter.into_iter();
1753
614k
        self.alloc_slice_fill_with(iter.len(), |_| {
1754
            iter.next().expect("Iterator supplied too few elements")
1755
        })
1756
614k
    }
1757
1758
    /// Allocates a new slice of size `len` slice into this `Bump` and return an
1759
    /// exclusive reference to the copy, failing if the iterator returns an Err.
1760
    ///
1761
    /// The elements are initialized using the supplied iterator.
1762
    ///
1763
    /// ## Panics
1764
    ///
1765
    /// Panics if reserving space for the slice fails, or if the supplied
1766
    /// iterator returns fewer elements than it promised.
1767
    ///
1768
    /// ## Examples
1769
    ///
1770
    /// ```
1771
    /// let bump = bumpalo::Bump::new();
1772
    /// let x: Result<&mut [i32], ()> = bump.alloc_slice_try_fill_iter(
1773
    ///    [2, 3, 5].iter().cloned().map(|i| Ok(i * i))
1774
    /// );
1775
    /// assert_eq!(x, Ok(bump.alloc_slice_copy(&[4, 9, 25])));
1776
    /// ```
1777
    ///
1778
    /// ```
1779
    /// let bump = bumpalo::Bump::new();
1780
    /// let x: Result<&mut [i32], ()> = bump.alloc_slice_try_fill_iter(
1781
    ///    [Ok(2), Err(()), Ok(5)].iter().cloned()
1782
    /// );
1783
    /// assert_eq!(x, Err(()));
1784
    /// ```
1785
    #[inline(always)]
1786
0
    pub fn alloc_slice_try_fill_iter<T, I, E>(&self, iter: I) -> Result<&mut [T], E>
1787
0
    where
1788
0
        I: IntoIterator<Item = Result<T, E>>,
1789
0
        I::IntoIter: ExactSizeIterator,
1790
    {
1791
0
        let mut iter = iter.into_iter();
1792
0
        self.alloc_slice_try_fill_with(iter.len(), |_| {
1793
0
            iter.next().expect("Iterator supplied too few elements")
1794
0
        })
1795
0
    }
1796
1797
    /// Allocates a new slice of size `iter.len()` slice into this `Bump` and return an
1798
    /// exclusive reference to the copy. Does not panic on failure.
1799
    ///
1800
    /// The elements are initialized using the supplied iterator.
1801
    ///
1802
    /// ## Example
1803
    ///
1804
    /// ```
1805
    /// let bump = bumpalo::Bump::new();
1806
    /// let x: &[i32] = bump.try_alloc_slice_fill_iter([2, 3, 5]
1807
    ///     .iter().cloned().map(|i| i * i)).unwrap();
1808
    /// assert_eq!(x, [4, 9, 25]);
1809
    /// ```
1810
    #[inline(always)]
1811
0
    pub fn try_alloc_slice_fill_iter<T, I>(&self, iter: I) -> Result<&mut [T], AllocErr>
1812
0
    where
1813
0
        I: IntoIterator<Item = T>,
1814
0
        I::IntoIter: ExactSizeIterator,
1815
    {
1816
0
        let mut iter = iter.into_iter();
1817
0
        self.try_alloc_slice_fill_with(iter.len(), |_| {
1818
0
            iter.next().expect("Iterator supplied too few elements")
1819
0
        })
1820
0
    }
1821
1822
    /// Allocates a new slice of size `len` slice into this `Bump` and return an
1823
    /// exclusive reference to the copy.
1824
    ///
1825
    /// All elements of the slice are initialized to [`T::default()`].
1826
    ///
1827
    /// [`T::default()`]: https://doc.rust-lang.org/std/default/trait.Default.html#tymethod.default
1828
    ///
1829
    /// ## Panics
1830
    ///
1831
    /// Panics if reserving space for the slice fails.
1832
    ///
1833
    /// ## Example
1834
    ///
1835
    /// ```
1836
    /// let bump = bumpalo::Bump::new();
1837
    /// let x = bump.alloc_slice_fill_default::<u32>(5);
1838
    /// assert_eq!(x, &[0, 0, 0, 0, 0]);
1839
    /// ```
1840
    #[inline(always)]
1841
0
    pub fn alloc_slice_fill_default<T: Default>(&self, len: usize) -> &mut [T] {
1842
0
        self.alloc_slice_fill_with(len, |_| T::default())
1843
0
    }
1844
1845
    /// Like `alloc_slice_fill_default` but does not panic on failure.
1846
    #[inline(always)]
1847
0
    pub fn try_alloc_slice_fill_default<T: Default>(
1848
0
        &self,
1849
0
        len: usize,
1850
0
    ) -> Result<&mut [T], AllocErr> {
1851
0
        self.try_alloc_slice_fill_with(len, |_| T::default())
1852
0
    }
1853
1854
    /// Allocate space for an object with the given `Layout`.
1855
    ///
1856
    /// The returned pointer points at uninitialized memory, and should be
1857
    /// initialized with
1858
    /// [`std::ptr::write`](https://doc.rust-lang.org/std/ptr/fn.write.html).
1859
    ///
1860
    /// # Panics
1861
    ///
1862
    /// Panics if reserving space matching `layout` fails.
1863
    #[inline(always)]
1864
2.71M
    pub fn alloc_layout(&self, layout: Layout) -> NonNull<u8> {
1865
2.71M
        self.try_alloc_layout(layout).unwrap_or_else(|_| oom())
Unexecuted instantiation: <bumpalo::Bump>::alloc_layout::{closure#0}
Unexecuted instantiation: <bumpalo::Bump>::alloc_layout::{closure#0}
Unexecuted instantiation: <bumpalo::Bump<_>>::alloc_layout::{closure#0}
Unexecuted instantiation: <bumpalo::Bump>::alloc_layout::{closure#0}
1866
2.71M
    }
<bumpalo::Bump>::alloc_layout
Line
Count
Source
1864
286k
    pub fn alloc_layout(&self, layout: Layout) -> NonNull<u8> {
1865
286k
        self.try_alloc_layout(layout).unwrap_or_else(|_| oom())
1866
286k
    }
Unexecuted instantiation: <bumpalo::Bump>::alloc_layout
Unexecuted instantiation: <bumpalo::Bump<_>>::alloc_layout
<bumpalo::Bump>::alloc_layout
Line
Count
Source
1864
2.42M
    pub fn alloc_layout(&self, layout: Layout) -> NonNull<u8> {
1865
2.42M
        self.try_alloc_layout(layout).unwrap_or_else(|_| oom())
1866
2.42M
    }
1867
1868
    /// Attempts to allocate space for an object with the given `Layout` or else returns
1869
    /// an `Err`.
1870
    ///
1871
    /// The returned pointer points at uninitialized memory, and should be
1872
    /// initialized with
1873
    /// [`std::ptr::write`](https://doc.rust-lang.org/std/ptr/fn.write.html).
1874
    ///
1875
    /// # Errors
1876
    ///
1877
    /// Errors if reserving space matching `layout` fails.
1878
    #[inline(always)]
1879
41.0M
    pub fn try_alloc_layout(&self, layout: Layout) -> Result<NonNull<u8>, AllocErr> {
1880
41.0M
        if let Some(p) = self.try_alloc_layout_fast(layout) {
1881
40.0M
            Ok(p)
1882
        } else {
1883
1.04M
            self.alloc_layout_slow(layout).ok_or(AllocErr)
1884
        }
1885
41.0M
    }
<bumpalo::Bump>::try_alloc_layout
Line
Count
Source
1879
286k
    pub fn try_alloc_layout(&self, layout: Layout) -> Result<NonNull<u8>, AllocErr> {
1880
286k
        if let Some(p) = self.try_alloc_layout_fast(layout) {
1881
286k
            Ok(p)
1882
        } else {
1883
22
            self.alloc_layout_slow(layout).ok_or(AllocErr)
1884
        }
1885
286k
    }
<bumpalo::Bump>::try_alloc_layout
Line
Count
Source
1879
38.3M
    pub fn try_alloc_layout(&self, layout: Layout) -> Result<NonNull<u8>, AllocErr> {
1880
38.3M
        if let Some(p) = self.try_alloc_layout_fast(layout) {
1881
37.2M
            Ok(p)
1882
        } else {
1883
1.04M
            self.alloc_layout_slow(layout).ok_or(AllocErr)
1884
        }
1885
38.3M
    }
Unexecuted instantiation: <bumpalo::Bump>::try_alloc_layout
Unexecuted instantiation: <bumpalo::Bump<_>>::try_alloc_layout
<bumpalo::Bump>::try_alloc_layout
Line
Count
Source
1879
2.42M
    pub fn try_alloc_layout(&self, layout: Layout) -> Result<NonNull<u8>, AllocErr> {
1880
2.42M
        if let Some(p) = self.try_alloc_layout_fast(layout) {
1881
2.42M
            Ok(p)
1882
        } else {
1883
1.11k
            self.alloc_layout_slow(layout).ok_or(AllocErr)
1884
        }
1885
2.42M
    }
1886
1887
    #[inline(always)]
1888
42.2M
    fn try_alloc_layout_fast(&self, layout: Layout) -> Option<NonNull<u8>> {
1889
        // We don't need to check for ZSTs here since they will automatically
1890
        // be handled properly: the pointer will be bumped by zero bytes,
1891
        // modulo alignment. This keeps the fast path optimized for non-ZSTs,
1892
        // which are much more common.
1893
        unsafe {
1894
42.2M
            let footer_ptr = self.current_chunk_footer.get();
1895
42.2M
            let footer = footer_ptr.as_ref();
1896
1897
42.2M
            let ptr = footer.ptr.get().as_ptr();
1898
42.2M
            let start = footer.data.as_ptr();
1899
42.2M
            debug_assert!(
1900
0
                start <= ptr,
1901
                "start pointer {start:#p} should be less than or equal to bump pointer {ptr:#p}"
1902
            );
1903
42.2M
            debug_assert!(
1904
0
                ptr <= footer_ptr.cast::<u8>().as_ptr(),
1905
                "bump pointer {ptr:#p} should be less than or equal to footer pointer {footer_ptr:#p}"
1906
            );
1907
42.2M
            debug_assert!(
1908
0
                is_pointer_aligned_to(ptr, MIN_ALIGN),
1909
                "bump pointer {ptr:#p} should be aligned to the minimum alignment of {MIN_ALIGN:#x}"
1910
            );
1911
1912
            // This `match` should be boiled away by LLVM: `MIN_ALIGN` is a
1913
            // constant and the layout's alignment is also constant in practice
1914
            // after inlining.
1915
42.2M
            let aligned_ptr = match layout.align().cmp(&MIN_ALIGN) {
1916
                Ordering::Less => {
1917
                    // We need to round the size up to a multiple of `MIN_ALIGN`
1918
                    // to preserve the minimum alignment. This might overflow
1919
                    // since we cannot rely on `Layout`'s guarantees.
1920
0
                    let aligned_size = round_up_to(layout.size(), MIN_ALIGN)?;
1921
1922
0
                    let capacity = (ptr as usize) - (start as usize);
1923
0
                    if aligned_size > capacity {
1924
0
                        return None;
1925
0
                    }
1926
1927
0
                    ptr.wrapping_sub(aligned_size)
1928
                }
1929
                Ordering::Equal => {
1930
                    // `Layout` guarantees that rounding the size up to its
1931
                    // align cannot overflow (but does not guarantee that the
1932
                    // size is initially a multiple of the alignment, which is
1933
                    // why we need to do this rounding).
1934
0
                    let aligned_size = round_up_to_unchecked(layout.size(), layout.align());
1935
1936
0
                    let capacity = (ptr as usize) - (start as usize);
1937
0
                    if aligned_size > capacity {
1938
0
                        return None;
1939
0
                    }
1940
1941
0
                    ptr.wrapping_sub(aligned_size)
1942
                }
1943
                Ordering::Greater => {
1944
                    // `Layout` guarantees that rounding the size up to its
1945
                    // align cannot overflow (but does not guarantee that the
1946
                    // size is initially a multiple of the alignment, which is
1947
                    // why we need to do this rounding).
1948
42.2M
                    let aligned_size = round_up_to_unchecked(layout.size(), layout.align());
1949
1950
42.2M
                    let aligned_ptr = round_mut_ptr_down_to(ptr, layout.align());
1951
42.2M
                    let capacity = (aligned_ptr as usize).wrapping_sub(start as usize);
1952
42.2M
                    if aligned_ptr < start || aligned_size > capacity {
1953
1.04M
                        return None;
1954
41.1M
                    }
1955
1956
41.1M
                    aligned_ptr.wrapping_sub(aligned_size)
1957
                }
1958
            };
1959
1960
41.1M
            debug_assert!(
1961
0
                is_pointer_aligned_to(aligned_ptr, layout.align()),
1962
                "pointer {aligned_ptr:#p} should be aligned to layout alignment of {:#}",
1963
0
                layout.align()
1964
            );
1965
41.1M
            debug_assert!(
1966
0
                is_pointer_aligned_to(aligned_ptr, MIN_ALIGN),
1967
                "pointer {aligned_ptr:#p} should be aligned to minimum alignment of {:#}",
1968
                MIN_ALIGN
1969
            );
1970
41.1M
            debug_assert!(
1971
0
                start <= aligned_ptr && aligned_ptr <= ptr,
1972
                "pointer {aligned_ptr:#p} should be in range {start:#p}..{ptr:#p}"
1973
            );
1974
1975
41.1M
            debug_assert!(!aligned_ptr.is_null());
1976
41.1M
            let aligned_ptr = NonNull::new_unchecked(aligned_ptr);
1977
1978
41.1M
            footer.ptr.set(aligned_ptr);
1979
41.1M
            Some(aligned_ptr)
1980
        }
1981
42.2M
    }
<bumpalo::Bump>::try_alloc_layout_fast
Line
Count
Source
1888
286k
    fn try_alloc_layout_fast(&self, layout: Layout) -> Option<NonNull<u8>> {
1889
        // We don't need to check for ZSTs here since they will automatically
1890
        // be handled properly: the pointer will be bumped by zero bytes,
1891
        // modulo alignment. This keeps the fast path optimized for non-ZSTs,
1892
        // which are much more common.
1893
        unsafe {
1894
286k
            let footer_ptr = self.current_chunk_footer.get();
1895
286k
            let footer = footer_ptr.as_ref();
1896
1897
286k
            let ptr = footer.ptr.get().as_ptr();
1898
286k
            let start = footer.data.as_ptr();
1899
286k
            debug_assert!(
1900
0
                start <= ptr,
1901
                "start pointer {start:#p} should be less than or equal to bump pointer {ptr:#p}"
1902
            );
1903
286k
            debug_assert!(
1904
0
                ptr <= footer_ptr.cast::<u8>().as_ptr(),
1905
                "bump pointer {ptr:#p} should be less than or equal to footer pointer {footer_ptr:#p}"
1906
            );
1907
286k
            debug_assert!(
1908
0
                is_pointer_aligned_to(ptr, MIN_ALIGN),
1909
                "bump pointer {ptr:#p} should be aligned to the minimum alignment of {MIN_ALIGN:#x}"
1910
            );
1911
1912
            // This `match` should be boiled away by LLVM: `MIN_ALIGN` is a
1913
            // constant and the layout's alignment is also constant in practice
1914
            // after inlining.
1915
286k
            let aligned_ptr = match layout.align().cmp(&MIN_ALIGN) {
1916
                Ordering::Less => {
1917
                    // We need to round the size up to a multiple of `MIN_ALIGN`
1918
                    // to preserve the minimum alignment. This might overflow
1919
                    // since we cannot rely on `Layout`'s guarantees.
1920
0
                    let aligned_size = round_up_to(layout.size(), MIN_ALIGN)?;
1921
1922
0
                    let capacity = (ptr as usize) - (start as usize);
1923
0
                    if aligned_size > capacity {
1924
0
                        return None;
1925
0
                    }
1926
1927
0
                    ptr.wrapping_sub(aligned_size)
1928
                }
1929
                Ordering::Equal => {
1930
                    // `Layout` guarantees that rounding the size up to its
1931
                    // align cannot overflow (but does not guarantee that the
1932
                    // size is initially a multiple of the alignment, which is
1933
                    // why we need to do this rounding).
1934
0
                    let aligned_size = round_up_to_unchecked(layout.size(), layout.align());
1935
1936
0
                    let capacity = (ptr as usize) - (start as usize);
1937
0
                    if aligned_size > capacity {
1938
0
                        return None;
1939
0
                    }
1940
1941
0
                    ptr.wrapping_sub(aligned_size)
1942
                }
1943
                Ordering::Greater => {
1944
                    // `Layout` guarantees that rounding the size up to its
1945
                    // align cannot overflow (but does not guarantee that the
1946
                    // size is initially a multiple of the alignment, which is
1947
                    // why we need to do this rounding).
1948
286k
                    let aligned_size = round_up_to_unchecked(layout.size(), layout.align());
1949
1950
286k
                    let aligned_ptr = round_mut_ptr_down_to(ptr, layout.align());
1951
286k
                    let capacity = (aligned_ptr as usize).wrapping_sub(start as usize);
1952
286k
                    if aligned_ptr < start || aligned_size > capacity {
1953
22
                        return None;
1954
286k
                    }
1955
1956
286k
                    aligned_ptr.wrapping_sub(aligned_size)
1957
                }
1958
            };
1959
1960
286k
            debug_assert!(
1961
0
                is_pointer_aligned_to(aligned_ptr, layout.align()),
1962
                "pointer {aligned_ptr:#p} should be aligned to layout alignment of {:#}",
1963
0
                layout.align()
1964
            );
1965
286k
            debug_assert!(
1966
0
                is_pointer_aligned_to(aligned_ptr, MIN_ALIGN),
1967
                "pointer {aligned_ptr:#p} should be aligned to minimum alignment of {:#}",
1968
                MIN_ALIGN
1969
            );
1970
286k
            debug_assert!(
1971
0
                start <= aligned_ptr && aligned_ptr <= ptr,
1972
                "pointer {aligned_ptr:#p} should be in range {start:#p}..{ptr:#p}"
1973
            );
1974
1975
286k
            debug_assert!(!aligned_ptr.is_null());
1976
286k
            let aligned_ptr = NonNull::new_unchecked(aligned_ptr);
1977
1978
286k
            footer.ptr.set(aligned_ptr);
1979
286k
            Some(aligned_ptr)
1980
        }
1981
286k
    }
<bumpalo::Bump>::try_alloc_layout_fast
Line
Count
Source
1888
39.5M
    fn try_alloc_layout_fast(&self, layout: Layout) -> Option<NonNull<u8>> {
1889
        // We don't need to check for ZSTs here since they will automatically
1890
        // be handled properly: the pointer will be bumped by zero bytes,
1891
        // modulo alignment. This keeps the fast path optimized for non-ZSTs,
1892
        // which are much more common.
1893
        unsafe {
1894
39.5M
            let footer_ptr = self.current_chunk_footer.get();
1895
39.5M
            let footer = footer_ptr.as_ref();
1896
1897
39.5M
            let ptr = footer.ptr.get().as_ptr();
1898
39.5M
            let start = footer.data.as_ptr();
1899
39.5M
            debug_assert!(
1900
0
                start <= ptr,
1901
                "start pointer {start:#p} should be less than or equal to bump pointer {ptr:#p}"
1902
            );
1903
39.5M
            debug_assert!(
1904
0
                ptr <= footer_ptr.cast::<u8>().as_ptr(),
1905
                "bump pointer {ptr:#p} should be less than or equal to footer pointer {footer_ptr:#p}"
1906
            );
1907
39.5M
            debug_assert!(
1908
0
                is_pointer_aligned_to(ptr, MIN_ALIGN),
1909
                "bump pointer {ptr:#p} should be aligned to the minimum alignment of {MIN_ALIGN:#x}"
1910
            );
1911
1912
            // This `match` should be boiled away by LLVM: `MIN_ALIGN` is a
1913
            // constant and the layout's alignment is also constant in practice
1914
            // after inlining.
1915
39.5M
            let aligned_ptr = match layout.align().cmp(&MIN_ALIGN) {
1916
                Ordering::Less => {
1917
                    // We need to round the size up to a multiple of `MIN_ALIGN`
1918
                    // to preserve the minimum alignment. This might overflow
1919
                    // since we cannot rely on `Layout`'s guarantees.
1920
0
                    let aligned_size = round_up_to(layout.size(), MIN_ALIGN)?;
1921
1922
0
                    let capacity = (ptr as usize) - (start as usize);
1923
0
                    if aligned_size > capacity {
1924
0
                        return None;
1925
0
                    }
1926
1927
0
                    ptr.wrapping_sub(aligned_size)
1928
                }
1929
                Ordering::Equal => {
1930
                    // `Layout` guarantees that rounding the size up to its
1931
                    // align cannot overflow (but does not guarantee that the
1932
                    // size is initially a multiple of the alignment, which is
1933
                    // why we need to do this rounding).
1934
0
                    let aligned_size = round_up_to_unchecked(layout.size(), layout.align());
1935
1936
0
                    let capacity = (ptr as usize) - (start as usize);
1937
0
                    if aligned_size > capacity {
1938
0
                        return None;
1939
0
                    }
1940
1941
0
                    ptr.wrapping_sub(aligned_size)
1942
                }
1943
                Ordering::Greater => {
1944
                    // `Layout` guarantees that rounding the size up to its
1945
                    // align cannot overflow (but does not guarantee that the
1946
                    // size is initially a multiple of the alignment, which is
1947
                    // why we need to do this rounding).
1948
39.5M
                    let aligned_size = round_up_to_unchecked(layout.size(), layout.align());
1949
1950
39.5M
                    let aligned_ptr = round_mut_ptr_down_to(ptr, layout.align());
1951
39.5M
                    let capacity = (aligned_ptr as usize).wrapping_sub(start as usize);
1952
39.5M
                    if aligned_ptr < start || aligned_size > capacity {
1953
1.04M
                        return None;
1954
38.4M
                    }
1955
1956
38.4M
                    aligned_ptr.wrapping_sub(aligned_size)
1957
                }
1958
            };
1959
1960
38.4M
            debug_assert!(
1961
0
                is_pointer_aligned_to(aligned_ptr, layout.align()),
1962
                "pointer {aligned_ptr:#p} should be aligned to layout alignment of {:#}",
1963
0
                layout.align()
1964
            );
1965
38.4M
            debug_assert!(
1966
0
                is_pointer_aligned_to(aligned_ptr, MIN_ALIGN),
1967
                "pointer {aligned_ptr:#p} should be aligned to minimum alignment of {:#}",
1968
                MIN_ALIGN
1969
            );
1970
38.4M
            debug_assert!(
1971
0
                start <= aligned_ptr && aligned_ptr <= ptr,
1972
                "pointer {aligned_ptr:#p} should be in range {start:#p}..{ptr:#p}"
1973
            );
1974
1975
38.4M
            debug_assert!(!aligned_ptr.is_null());
1976
38.4M
            let aligned_ptr = NonNull::new_unchecked(aligned_ptr);
1977
1978
38.4M
            footer.ptr.set(aligned_ptr);
1979
38.4M
            Some(aligned_ptr)
1980
        }
1981
39.5M
    }
Unexecuted instantiation: <bumpalo::Bump>::try_alloc_layout_fast
Unexecuted instantiation: <bumpalo::Bump<_>>::try_alloc_layout_fast
<bumpalo::Bump>::try_alloc_layout_fast
Line
Count
Source
1888
2.42M
    fn try_alloc_layout_fast(&self, layout: Layout) -> Option<NonNull<u8>> {
1889
        // We don't need to check for ZSTs here since they will automatically
1890
        // be handled properly: the pointer will be bumped by zero bytes,
1891
        // modulo alignment. This keeps the fast path optimized for non-ZSTs,
1892
        // which are much more common.
1893
        unsafe {
1894
2.42M
            let footer_ptr = self.current_chunk_footer.get();
1895
2.42M
            let footer = footer_ptr.as_ref();
1896
1897
2.42M
            let ptr = footer.ptr.get().as_ptr();
1898
2.42M
            let start = footer.data.as_ptr();
1899
2.42M
            debug_assert!(
1900
0
                start <= ptr,
1901
                "start pointer {start:#p} should be less than or equal to bump pointer {ptr:#p}"
1902
            );
1903
2.42M
            debug_assert!(
1904
0
                ptr <= footer_ptr.cast::<u8>().as_ptr(),
1905
                "bump pointer {ptr:#p} should be less than or equal to footer pointer {footer_ptr:#p}"
1906
            );
1907
2.42M
            debug_assert!(
1908
0
                is_pointer_aligned_to(ptr, MIN_ALIGN),
1909
                "bump pointer {ptr:#p} should be aligned to the minimum alignment of {MIN_ALIGN:#x}"
1910
            );
1911
1912
            // This `match` should be boiled away by LLVM: `MIN_ALIGN` is a
1913
            // constant and the layout's alignment is also constant in practice
1914
            // after inlining.
1915
2.42M
            let aligned_ptr = match layout.align().cmp(&MIN_ALIGN) {
1916
                Ordering::Less => {
1917
                    // We need to round the size up to a multiple of `MIN_ALIGN`
1918
                    // to preserve the minimum alignment. This might overflow
1919
                    // since we cannot rely on `Layout`'s guarantees.
1920
0
                    let aligned_size = round_up_to(layout.size(), MIN_ALIGN)?;
1921
1922
0
                    let capacity = (ptr as usize) - (start as usize);
1923
0
                    if aligned_size > capacity {
1924
0
                        return None;
1925
0
                    }
1926
1927
0
                    ptr.wrapping_sub(aligned_size)
1928
                }
1929
                Ordering::Equal => {
1930
                    // `Layout` guarantees that rounding the size up to its
1931
                    // align cannot overflow (but does not guarantee that the
1932
                    // size is initially a multiple of the alignment, which is
1933
                    // why we need to do this rounding).
1934
0
                    let aligned_size = round_up_to_unchecked(layout.size(), layout.align());
1935
1936
0
                    let capacity = (ptr as usize) - (start as usize);
1937
0
                    if aligned_size > capacity {
1938
0
                        return None;
1939
0
                    }
1940
1941
0
                    ptr.wrapping_sub(aligned_size)
1942
                }
1943
                Ordering::Greater => {
1944
                    // `Layout` guarantees that rounding the size up to its
1945
                    // align cannot overflow (but does not guarantee that the
1946
                    // size is initially a multiple of the alignment, which is
1947
                    // why we need to do this rounding).
1948
2.42M
                    let aligned_size = round_up_to_unchecked(layout.size(), layout.align());
1949
1950
2.42M
                    let aligned_ptr = round_mut_ptr_down_to(ptr, layout.align());
1951
2.42M
                    let capacity = (aligned_ptr as usize).wrapping_sub(start as usize);
1952
2.42M
                    if aligned_ptr < start || aligned_size > capacity {
1953
1.11k
                        return None;
1954
2.42M
                    }
1955
1956
2.42M
                    aligned_ptr.wrapping_sub(aligned_size)
1957
                }
1958
            };
1959
1960
2.42M
            debug_assert!(
1961
0
                is_pointer_aligned_to(aligned_ptr, layout.align()),
1962
                "pointer {aligned_ptr:#p} should be aligned to layout alignment of {:#}",
1963
0
                layout.align()
1964
            );
1965
2.42M
            debug_assert!(
1966
0
                is_pointer_aligned_to(aligned_ptr, MIN_ALIGN),
1967
                "pointer {aligned_ptr:#p} should be aligned to minimum alignment of {:#}",
1968
                MIN_ALIGN
1969
            );
1970
2.42M
            debug_assert!(
1971
0
                start <= aligned_ptr && aligned_ptr <= ptr,
1972
                "pointer {aligned_ptr:#p} should be in range {start:#p}..{ptr:#p}"
1973
            );
1974
1975
2.42M
            debug_assert!(!aligned_ptr.is_null());
1976
2.42M
            let aligned_ptr = NonNull::new_unchecked(aligned_ptr);
1977
1978
2.42M
            footer.ptr.set(aligned_ptr);
1979
2.42M
            Some(aligned_ptr)
1980
        }
1981
2.42M
    }
1982
1983
    /// Gets the remaining capacity in the current chunk (in bytes).
1984
    ///
1985
    /// ## Example
1986
    ///
1987
    /// ```
1988
    /// use bumpalo::Bump;
1989
    ///
1990
    /// let bump = Bump::with_capacity(100);
1991
    ///
1992
    /// let capacity = bump.chunk_capacity();
1993
    /// assert!(capacity >= 100);
1994
    /// ```
1995
0
    pub fn chunk_capacity(&self) -> usize {
1996
0
        let current_footer = self.current_chunk_footer.get();
1997
0
        let current_footer = unsafe { current_footer.as_ref() };
1998
1999
0
        current_footer.ptr.get().as_ptr() as usize - current_footer.data.as_ptr() as usize
2000
0
    }
2001
2002
    /// Slow path allocation for when we need to allocate a new chunk from the
2003
    /// parent bump set because there isn't enough room in our current chunk.
2004
    #[inline(never)]
2005
    #[cold]
2006
1.04M
    fn alloc_layout_slow(&self, layout: Layout) -> Option<NonNull<u8>> {
2007
        unsafe {
2008
1.04M
            let allocation_limit_remaining = self.allocation_limit_remaining();
2009
2010
            // Get a new chunk from the global allocator.
2011
1.04M
            let current_footer = self.current_chunk_footer.get();
2012
1.04M
            let current_layout = current_footer.as_ref().layout;
2013
2014
            // By default, we want our new chunk to be about twice as big
2015
            // as the previous chunk. If the global allocator refuses it,
2016
            // we try to divide it by half until it works or the requested
2017
            // size is smaller than the default footer size.
2018
1.04M
            let min_new_chunk_size = layout.size().max(DEFAULT_CHUNK_SIZE_WITHOUT_FOOTER);
2019
1.04M
            let mut base_size = (current_layout.size() - FOOTER_SIZE)
2020
1.04M
                .checked_mul(2)?
2021
1.04M
                .max(min_new_chunk_size);
2022
1.04M
            let chunk_memory_details = iter::from_fn(|| {
2023
1.04M
                let bypass_min_chunk_size_for_small_limits = matches!(self.allocation_limit(), Some(limit) if layout.size() < limit
2024
0
                            && base_size >= layout.size()
2025
0
                            && limit < DEFAULT_CHUNK_SIZE_WITHOUT_FOOTER
2026
0
                            && self.allocated_bytes() == 0);
2027
2028
1.04M
                if base_size >= min_new_chunk_size || bypass_min_chunk_size_for_small_limits {
2029
1.04M
                    let size = base_size;
2030
1.04M
                    base_size /= 2;
2031
1.04M
                    Self::new_chunk_memory_details(Some(size), layout)
2032
                } else {
2033
0
                    None
2034
                }
2035
1.04M
            });
<bumpalo::Bump>::alloc_layout_slow::{closure#0}
Line
Count
Source
2022
1.04M
            let chunk_memory_details = iter::from_fn(|| {
2023
1.04M
                let bypass_min_chunk_size_for_small_limits = matches!(self.allocation_limit(), Some(limit) if layout.size() < limit
2024
0
                            && base_size >= layout.size()
2025
0
                            && limit < DEFAULT_CHUNK_SIZE_WITHOUT_FOOTER
2026
0
                            && self.allocated_bytes() == 0);
2027
2028
1.04M
                if base_size >= min_new_chunk_size || bypass_min_chunk_size_for_small_limits {
2029
1.04M
                    let size = base_size;
2030
1.04M
                    base_size /= 2;
2031
1.04M
                    Self::new_chunk_memory_details(Some(size), layout)
2032
                } else {
2033
0
                    None
2034
                }
2035
1.04M
            });
Unexecuted instantiation: <bumpalo::Bump>::alloc_layout_slow::{closure#0}
Unexecuted instantiation: <bumpalo::Bump<_>>::alloc_layout_slow::{closure#0}
2036
2037
1.04M
            let new_footer = chunk_memory_details
2038
1.04M
                .filter_map(|chunk_memory_details| {
2039
1.04M
                    if Self::chunk_fits_under_limit(
2040
1.04M
                        allocation_limit_remaining,
2041
1.04M
                        chunk_memory_details,
2042
                    ) {
2043
1.04M
                        Self::new_chunk(chunk_memory_details, layout, current_footer)
2044
                    } else {
2045
0
                        None
2046
                    }
2047
1.04M
                })
<bumpalo::Bump>::alloc_layout_slow::{closure#1}
Line
Count
Source
2038
1.04M
                .filter_map(|chunk_memory_details| {
2039
1.04M
                    if Self::chunk_fits_under_limit(
2040
1.04M
                        allocation_limit_remaining,
2041
1.04M
                        chunk_memory_details,
2042
                    ) {
2043
1.04M
                        Self::new_chunk(chunk_memory_details, layout, current_footer)
2044
                    } else {
2045
0
                        None
2046
                    }
2047
1.04M
                })
Unexecuted instantiation: <bumpalo::Bump>::alloc_layout_slow::{closure#1}
Unexecuted instantiation: <bumpalo::Bump<_>>::alloc_layout_slow::{closure#1}
2048
1.04M
                .next()?;
2049
2050
1.04M
            debug_assert_eq!(
2051
0
                new_footer.as_ref().data.as_ptr() as usize % layout.align(),
2052
                0
2053
            );
2054
2055
            // Set the new chunk as our new current chunk.
2056
1.04M
            self.current_chunk_footer.set(new_footer);
2057
2058
            // And then we can rely on `tray_alloc_layout_fast` to allocate
2059
            // space within this chunk.
2060
1.04M
            let ptr = self.try_alloc_layout_fast(layout);
2061
1.04M
            debug_assert!(ptr.is_some());
2062
1.04M
            ptr
2063
        }
2064
1.04M
    }
<bumpalo::Bump>::alloc_layout_slow
Line
Count
Source
2006
1.04M
    fn alloc_layout_slow(&self, layout: Layout) -> Option<NonNull<u8>> {
2007
        unsafe {
2008
1.04M
            let allocation_limit_remaining = self.allocation_limit_remaining();
2009
2010
            // Get a new chunk from the global allocator.
2011
1.04M
            let current_footer = self.current_chunk_footer.get();
2012
1.04M
            let current_layout = current_footer.as_ref().layout;
2013
2014
            // By default, we want our new chunk to be about twice as big
2015
            // as the previous chunk. If the global allocator refuses it,
2016
            // we try to divide it by half until it works or the requested
2017
            // size is smaller than the default footer size.
2018
1.04M
            let min_new_chunk_size = layout.size().max(DEFAULT_CHUNK_SIZE_WITHOUT_FOOTER);
2019
1.04M
            let mut base_size = (current_layout.size() - FOOTER_SIZE)
2020
1.04M
                .checked_mul(2)?
2021
1.04M
                .max(min_new_chunk_size);
2022
1.04M
            let chunk_memory_details = iter::from_fn(|| {
2023
                let bypass_min_chunk_size_for_small_limits = matches!(self.allocation_limit(), Some(limit) if layout.size() < limit
2024
                            && base_size >= layout.size()
2025
                            && limit < DEFAULT_CHUNK_SIZE_WITHOUT_FOOTER
2026
                            && self.allocated_bytes() == 0);
2027
2028
                if base_size >= min_new_chunk_size || bypass_min_chunk_size_for_small_limits {
2029
                    let size = base_size;
2030
                    base_size /= 2;
2031
                    Self::new_chunk_memory_details(Some(size), layout)
2032
                } else {
2033
                    None
2034
                }
2035
            });
2036
2037
1.04M
            let new_footer = chunk_memory_details
2038
1.04M
                .filter_map(|chunk_memory_details| {
2039
                    if Self::chunk_fits_under_limit(
2040
                        allocation_limit_remaining,
2041
                        chunk_memory_details,
2042
                    ) {
2043
                        Self::new_chunk(chunk_memory_details, layout, current_footer)
2044
                    } else {
2045
                        None
2046
                    }
2047
                })
2048
1.04M
                .next()?;
2049
2050
1.04M
            debug_assert_eq!(
2051
0
                new_footer.as_ref().data.as_ptr() as usize % layout.align(),
2052
                0
2053
            );
2054
2055
            // Set the new chunk as our new current chunk.
2056
1.04M
            self.current_chunk_footer.set(new_footer);
2057
2058
            // And then we can rely on `tray_alloc_layout_fast` to allocate
2059
            // space within this chunk.
2060
1.04M
            let ptr = self.try_alloc_layout_fast(layout);
2061
1.04M
            debug_assert!(ptr.is_some());
2062
1.04M
            ptr
2063
        }
2064
1.04M
    }
Unexecuted instantiation: <bumpalo::Bump>::alloc_layout_slow
Unexecuted instantiation: <bumpalo::Bump<_>>::alloc_layout_slow
2065
2066
    /// Returns an iterator over each chunk of allocated memory that
2067
    /// this arena has bump allocated into.
2068
    ///
2069
    /// The chunks are returned ordered by allocation time, with the most
2070
    /// recently allocated chunk being returned first, and the least recently
2071
    /// allocated chunk being returned last.
2072
    ///
2073
    /// The values inside each chunk are also ordered by allocation time, with
2074
    /// the most recent allocation being earlier in the slice, and the least
2075
    /// recent allocation being towards the end of the slice.
2076
    ///
2077
    /// ## Safety
2078
    ///
2079
    /// Because this method takes `&mut self`, we know that the bump arena
2080
    /// reference is unique and therefore there aren't any active references to
2081
    /// any of the objects we've allocated in it either. This potential aliasing
2082
    /// of exclusive references is one common footgun for unsafe code that we
2083
    /// don't need to worry about here.
2084
    ///
2085
    /// However, there could be regions of uninitialized memory used as padding
2086
    /// between allocations, which is why this iterator has items of type
2087
    /// `[MaybeUninit<u8>]`, instead of simply `[u8]`.
2088
    ///
2089
    /// The only way to guarantee that there is no padding between allocations
2090
    /// or within allocated objects is if all of these properties hold:
2091
    ///
2092
    /// 1. Every object allocated in this arena has the same alignment,
2093
    ///    and that alignment is at most 16.
2094
    /// 2. Every object's size is a multiple of its alignment.
2095
    /// 3. None of the objects allocated in this arena contain any internal
2096
    ///    padding.
2097
    ///
2098
    /// If you want to use this `iter_allocated_chunks` method, it is *your*
2099
    /// responsibility to ensure that these properties hold before calling
2100
    /// `MaybeUninit::assume_init` or otherwise reading the returned values.
2101
    ///
2102
    /// Finally, you must also ensure that any values allocated into the bump
2103
    /// arena have not had their `Drop` implementations called on them,
2104
    /// e.g. after dropping a [`bumpalo::boxed::Box<T>`][crate::boxed::Box].
2105
    ///
2106
    /// ## Example
2107
    ///
2108
    /// ```
2109
    /// let mut bump = bumpalo::Bump::new();
2110
    ///
2111
    /// // Allocate a bunch of `i32`s in this bump arena, potentially causing
2112
    /// // additional memory chunks to be reserved.
2113
    /// for i in 0..10000 {
2114
    ///     bump.alloc(i);
2115
    /// }
2116
    ///
2117
    /// // Iterate over each chunk we've bump allocated into. This is safe
2118
    /// // because we have only allocated `i32`s in this arena, which fulfills
2119
    /// // the above requirements.
2120
    /// for ch in bump.iter_allocated_chunks() {
2121
    ///     println!("Used a chunk that is {} bytes long", ch.len());
2122
    ///     println!("The first byte is {:?}", unsafe {
2123
    ///         ch[0].assume_init()
2124
    ///     });
2125
    /// }
2126
    ///
2127
    /// // Within a chunk, allocations are ordered from most recent to least
2128
    /// // recent. If we allocated 'a', then 'b', then 'c', when we iterate
2129
    /// // through the chunk's data, we get them in the order 'c', then 'b',
2130
    /// // then 'a'.
2131
    ///
2132
    /// bump.reset();
2133
    /// bump.alloc(b'a');
2134
    /// bump.alloc(b'b');
2135
    /// bump.alloc(b'c');
2136
    ///
2137
    /// assert_eq!(bump.iter_allocated_chunks().count(), 1);
2138
    /// let chunk = bump.iter_allocated_chunks().nth(0).unwrap();
2139
    /// assert_eq!(chunk.len(), 3);
2140
    ///
2141
    /// // Safe because we've only allocated `u8`s in this arena, which
2142
    /// // fulfills the above requirements.
2143
    /// unsafe {
2144
    ///     assert_eq!(chunk[0].assume_init(), b'c');
2145
    ///     assert_eq!(chunk[1].assume_init(), b'b');
2146
    ///     assert_eq!(chunk[2].assume_init(), b'a');
2147
    /// }
2148
    /// ```
2149
0
    pub fn iter_allocated_chunks(&mut self) -> ChunkIter<'_, MIN_ALIGN> {
2150
        // Safety: Ensured by mutable borrow of `self`.
2151
0
        let raw = unsafe { self.iter_allocated_chunks_raw() };
2152
0
        ChunkIter {
2153
0
            raw,
2154
0
            bump: PhantomData,
2155
0
        }
2156
0
    }
2157
2158
    /// Returns an iterator over raw pointers to chunks of allocated memory that
2159
    /// this arena has bump allocated into.
2160
    ///
2161
    /// This is an unsafe version of [`iter_allocated_chunks()`](Bump::iter_allocated_chunks),
2162
    /// with the caller responsible for safe usage of the returned pointers as
2163
    /// well as ensuring that the iterator is not invalidated by new
2164
    /// allocations.
2165
    ///
2166
    /// ## Safety
2167
    ///
2168
    /// Allocations from this arena must not be performed while the returned
2169
    /// iterator is alive. If reading the chunk data (or casting to a reference)
2170
    /// the caller must ensure that there exist no mutable references to
2171
    /// previously allocated data.
2172
    ///
2173
    /// In addition, all of the caveats when reading the chunk data from
2174
    /// [`iter_allocated_chunks()`](Bump::iter_allocated_chunks) still apply.
2175
0
    pub unsafe fn iter_allocated_chunks_raw(&self) -> ChunkRawIter<'_, MIN_ALIGN> {
2176
0
        ChunkRawIter {
2177
0
            footer: self.current_chunk_footer.get(),
2178
0
            bump: PhantomData,
2179
0
        }
2180
0
    }
2181
2182
    /// Calculates the number of bytes currently allocated across all chunks in
2183
    /// this bump arena.
2184
    ///
2185
    /// If you allocate types of different alignments or types with
2186
    /// larger-than-typical alignment in the same arena, some padding
2187
    /// bytes might get allocated in the bump arena. Note that those padding
2188
    /// bytes will add to this method's resulting sum, so you cannot rely
2189
    /// on it only counting the sum of the sizes of the things
2190
    /// you've allocated in the arena.
2191
    ///
2192
    /// The allocated bytes do not include the size of bumpalo's metadata,
2193
    /// so the amount of memory requested from the Rust allocator is higher
2194
    /// than the returned value.
2195
    ///
2196
    /// ## Example
2197
    ///
2198
    /// ```
2199
    /// let bump = bumpalo::Bump::new();
2200
    /// let _x = bump.alloc_slice_fill_default::<u32>(5);
2201
    /// let bytes = bump.allocated_bytes();
2202
    /// assert!(bytes >= core::mem::size_of::<u32>() * 5);
2203
    /// ```
2204
0
    pub fn allocated_bytes(&self) -> usize {
2205
0
        let footer = self.current_chunk_footer.get();
2206
2207
0
        unsafe { footer.as_ref().allocated_bytes }
2208
0
    }
Unexecuted instantiation: <bumpalo::Bump>::allocated_bytes
Unexecuted instantiation: <bumpalo::Bump>::allocated_bytes
Unexecuted instantiation: <bumpalo::Bump<_>>::allocated_bytes
2209
2210
    /// Calculates the number of bytes requested from the Rust allocator for this `Bump`.
2211
    ///
2212
    /// This number is equal to the [`allocated_bytes()`](Self::allocated_bytes) plus
2213
    /// the size of the bump metadata.
2214
0
    pub fn allocated_bytes_including_metadata(&self) -> usize {
2215
0
        let metadata_size =
2216
0
            unsafe { self.iter_allocated_chunks_raw().count() * mem::size_of::<ChunkFooter>() };
2217
0
        self.allocated_bytes() + metadata_size
2218
0
    }
2219
2220
    #[inline]
2221
40.2M
    unsafe fn is_last_allocation(&self, ptr: NonNull<u8>) -> bool {
2222
40.2M
        let footer = self.current_chunk_footer.get();
2223
40.2M
        let footer = footer.as_ref();
2224
40.2M
        footer.ptr.get() == ptr
2225
40.2M
    }
<bumpalo::Bump>::is_last_allocation
Line
Count
Source
2221
40.2M
    unsafe fn is_last_allocation(&self, ptr: NonNull<u8>) -> bool {
2222
40.2M
        let footer = self.current_chunk_footer.get();
2223
40.2M
        let footer = footer.as_ref();
2224
40.2M
        footer.ptr.get() == ptr
2225
40.2M
    }
Unexecuted instantiation: <bumpalo::Bump<_>>::is_last_allocation
2226
2227
    #[inline]
2228
36.5M
    unsafe fn dealloc(&self, ptr: NonNull<u8>, layout: Layout) {
2229
        // If the pointer is the last allocation we made, we can reuse the bytes,
2230
        // otherwise they are simply leaked -- at least until somebody calls reset().
2231
36.5M
        if self.is_last_allocation(ptr) {
2232
458k
            let ptr = self.current_chunk_footer.get().as_ref().ptr.get();
2233
458k
            let ptr = ptr.as_ptr().add(layout.size());
2234
2235
458k
            let ptr = round_mut_ptr_up_to_unchecked(ptr, MIN_ALIGN);
2236
458k
            debug_assert!(
2237
0
                is_pointer_aligned_to(ptr, MIN_ALIGN),
2238
                "bump pointer {ptr:#p} should be aligned to the minimum alignment of {MIN_ALIGN:#x}"
2239
            );
2240
458k
            let ptr = NonNull::new_unchecked(ptr);
2241
458k
            self.current_chunk_footer.get().as_ref().ptr.set(ptr);
2242
36.0M
        }
2243
36.5M
    }
<bumpalo::Bump>::dealloc
Line
Count
Source
2228
36.5M
    unsafe fn dealloc(&self, ptr: NonNull<u8>, layout: Layout) {
2229
        // If the pointer is the last allocation we made, we can reuse the bytes,
2230
        // otherwise they are simply leaked -- at least until somebody calls reset().
2231
36.5M
        if self.is_last_allocation(ptr) {
2232
458k
            let ptr = self.current_chunk_footer.get().as_ref().ptr.get();
2233
458k
            let ptr = ptr.as_ptr().add(layout.size());
2234
2235
458k
            let ptr = round_mut_ptr_up_to_unchecked(ptr, MIN_ALIGN);
2236
458k
            debug_assert!(
2237
0
                is_pointer_aligned_to(ptr, MIN_ALIGN),
2238
                "bump pointer {ptr:#p} should be aligned to the minimum alignment of {MIN_ALIGN:#x}"
2239
            );
2240
458k
            let ptr = NonNull::new_unchecked(ptr);
2241
458k
            self.current_chunk_footer.get().as_ref().ptr.set(ptr);
2242
36.0M
        }
2243
36.5M
    }
Unexecuted instantiation: <bumpalo::Bump<_>>::dealloc
2244
2245
    #[inline]
2246
1.80M
    unsafe fn shrink(
2247
1.80M
        &self,
2248
1.80M
        ptr: NonNull<u8>,
2249
1.80M
        old_layout: Layout,
2250
1.80M
        new_layout: Layout,
2251
1.80M
    ) -> Result<NonNull<u8>, AllocErr> {
2252
        // If the new layout demands greater alignment than the old layout has,
2253
        // then either
2254
        //
2255
        // 1. the pointer happens to satisfy the new layout's alignment, so we
2256
        //    got lucky and can return the pointer as-is, or
2257
        //
2258
        // 2. the pointer is not aligned to the new layout's demanded alignment,
2259
        //    and we are unlucky.
2260
        //
2261
        // In the case of (2), to successfully "shrink" the allocation, we have
2262
        // to allocate a whole new region for the new layout.
2263
1.80M
        if old_layout.align() < new_layout.align() {
2264
0
            return if is_pointer_aligned_to(ptr.as_ptr(), new_layout.align()) {
2265
0
                Ok(ptr)
2266
            } else {
2267
0
                let new_ptr = self.try_alloc_layout(new_layout)?;
2268
2269
                // We know that these regions are nonoverlapping because
2270
                // `new_ptr` is a fresh allocation.
2271
0
                ptr::copy_nonoverlapping(ptr.as_ptr(), new_ptr.as_ptr(), new_layout.size());
2272
2273
0
                Ok(new_ptr)
2274
            };
2275
1.80M
        }
2276
2277
1.80M
        debug_assert!(is_pointer_aligned_to(ptr.as_ptr(), new_layout.align()));
2278
2279
1.80M
        let old_size = old_layout.size();
2280
1.80M
        let new_size = new_layout.size();
2281
2282
        // This is how much space we would *actually* reclaim while satisfying
2283
        // the requested alignment.
2284
1.80M
        let delta = round_down_to(old_size - new_size, new_layout.align().max(MIN_ALIGN));
2285
2286
1.80M
        if self.is_last_allocation(ptr)
2287
                // Only reclaim the excess space (which requires a copy) if it
2288
                // is worth it: we are actually going to recover "enough" space
2289
                // and we can do a non-overlapping copy.
2290
                //
2291
                // We do `(old_size + 1) / 2` so division rounds up rather than
2292
                // down. Consider when:
2293
                //
2294
                //     old_size = 5
2295
                //     new_size = 3
2296
                //
2297
                // If we do not take care to round up, this will result in:
2298
                //
2299
                //     delta = 2
2300
                //     (old_size / 2) = (5 / 2) = 2
2301
                //
2302
                // And the the check will succeed even though we are have
2303
                // overlapping ranges:
2304
                //
2305
                //     |--------old-allocation-------|
2306
                //     |------from-------|
2307
                //                 |-------to--------|
2308
                //     +-----+-----+-----+-----+-----+
2309
                //     |  a  |  b  |  c  |  .  |  .  |
2310
                //     +-----+-----+-----+-----+-----+
2311
                //
2312
                // But we MUST NOT have overlapping ranges because we use
2313
                // `copy_nonoverlapping` below! Therefore, we round the division
2314
                // up to avoid this issue.
2315
0
                && delta >= (old_size + 1) / 2
2316
        {
2317
0
            let footer = self.current_chunk_footer.get();
2318
0
            let footer = footer.as_ref();
2319
2320
            // NB: new_ptr is aligned, because ptr *has to* be aligned, and we
2321
            // made sure delta is aligned.
2322
0
            let new_ptr = NonNull::new_unchecked(footer.ptr.get().as_ptr().add(delta));
2323
0
            debug_assert!(
2324
0
                is_pointer_aligned_to(new_ptr.as_ptr(), MIN_ALIGN),
2325
                "bump pointer {new_ptr:#p} should be aligned to the minimum alignment of {MIN_ALIGN:#x}"
2326
            );
2327
0
            footer.ptr.set(new_ptr);
2328
2329
            // NB: we know it is non-overlapping because of the size check
2330
            // in the `if` condition.
2331
0
            ptr::copy_nonoverlapping(ptr.as_ptr(), new_ptr.as_ptr(), new_size);
2332
2333
0
            return Ok(new_ptr);
2334
1.80M
        }
2335
2336
        // If this wasn't the last allocation, or shrinking wasn't worth it,
2337
        // simply return the old pointer as-is.
2338
1.80M
        Ok(ptr)
2339
1.80M
    }
<bumpalo::Bump>::shrink
Line
Count
Source
2246
1.80M
    unsafe fn shrink(
2247
1.80M
        &self,
2248
1.80M
        ptr: NonNull<u8>,
2249
1.80M
        old_layout: Layout,
2250
1.80M
        new_layout: Layout,
2251
1.80M
    ) -> Result<NonNull<u8>, AllocErr> {
2252
        // If the new layout demands greater alignment than the old layout has,
2253
        // then either
2254
        //
2255
        // 1. the pointer happens to satisfy the new layout's alignment, so we
2256
        //    got lucky and can return the pointer as-is, or
2257
        //
2258
        // 2. the pointer is not aligned to the new layout's demanded alignment,
2259
        //    and we are unlucky.
2260
        //
2261
        // In the case of (2), to successfully "shrink" the allocation, we have
2262
        // to allocate a whole new region for the new layout.
2263
1.80M
        if old_layout.align() < new_layout.align() {
2264
0
            return if is_pointer_aligned_to(ptr.as_ptr(), new_layout.align()) {
2265
0
                Ok(ptr)
2266
            } else {
2267
0
                let new_ptr = self.try_alloc_layout(new_layout)?;
2268
2269
                // We know that these regions are nonoverlapping because
2270
                // `new_ptr` is a fresh allocation.
2271
0
                ptr::copy_nonoverlapping(ptr.as_ptr(), new_ptr.as_ptr(), new_layout.size());
2272
2273
0
                Ok(new_ptr)
2274
            };
2275
1.80M
        }
2276
2277
1.80M
        debug_assert!(is_pointer_aligned_to(ptr.as_ptr(), new_layout.align()));
2278
2279
1.80M
        let old_size = old_layout.size();
2280
1.80M
        let new_size = new_layout.size();
2281
2282
        // This is how much space we would *actually* reclaim while satisfying
2283
        // the requested alignment.
2284
1.80M
        let delta = round_down_to(old_size - new_size, new_layout.align().max(MIN_ALIGN));
2285
2286
1.80M
        if self.is_last_allocation(ptr)
2287
                // Only reclaim the excess space (which requires a copy) if it
2288
                // is worth it: we are actually going to recover "enough" space
2289
                // and we can do a non-overlapping copy.
2290
                //
2291
                // We do `(old_size + 1) / 2` so division rounds up rather than
2292
                // down. Consider when:
2293
                //
2294
                //     old_size = 5
2295
                //     new_size = 3
2296
                //
2297
                // If we do not take care to round up, this will result in:
2298
                //
2299
                //     delta = 2
2300
                //     (old_size / 2) = (5 / 2) = 2
2301
                //
2302
                // And the the check will succeed even though we are have
2303
                // overlapping ranges:
2304
                //
2305
                //     |--------old-allocation-------|
2306
                //     |------from-------|
2307
                //                 |-------to--------|
2308
                //     +-----+-----+-----+-----+-----+
2309
                //     |  a  |  b  |  c  |  .  |  .  |
2310
                //     +-----+-----+-----+-----+-----+
2311
                //
2312
                // But we MUST NOT have overlapping ranges because we use
2313
                // `copy_nonoverlapping` below! Therefore, we round the division
2314
                // up to avoid this issue.
2315
0
                && delta >= (old_size + 1) / 2
2316
        {
2317
0
            let footer = self.current_chunk_footer.get();
2318
0
            let footer = footer.as_ref();
2319
2320
            // NB: new_ptr is aligned, because ptr *has to* be aligned, and we
2321
            // made sure delta is aligned.
2322
0
            let new_ptr = NonNull::new_unchecked(footer.ptr.get().as_ptr().add(delta));
2323
0
            debug_assert!(
2324
0
                is_pointer_aligned_to(new_ptr.as_ptr(), MIN_ALIGN),
2325
                "bump pointer {new_ptr:#p} should be aligned to the minimum alignment of {MIN_ALIGN:#x}"
2326
            );
2327
0
            footer.ptr.set(new_ptr);
2328
2329
            // NB: we know it is non-overlapping because of the size check
2330
            // in the `if` condition.
2331
0
            ptr::copy_nonoverlapping(ptr.as_ptr(), new_ptr.as_ptr(), new_size);
2332
2333
0
            return Ok(new_ptr);
2334
1.80M
        }
2335
2336
        // If this wasn't the last allocation, or shrinking wasn't worth it,
2337
        // simply return the old pointer as-is.
2338
1.80M
        Ok(ptr)
2339
1.80M
    }
Unexecuted instantiation: <bumpalo::Bump<_>>::shrink
2340
2341
    #[inline]
2342
1.92M
    unsafe fn grow(
2343
1.92M
        &self,
2344
1.92M
        ptr: NonNull<u8>,
2345
1.92M
        old_layout: Layout,
2346
1.92M
        new_layout: Layout,
2347
1.92M
    ) -> Result<NonNull<u8>, AllocErr> {
2348
1.92M
        let old_size = old_layout.size();
2349
2350
1.92M
        let new_size = new_layout.size();
2351
1.92M
        let new_size = round_up_to(new_size, MIN_ALIGN).ok_or(AllocErr)?;
2352
2353
1.92M
        let align_is_compatible = old_layout.align() >= new_layout.align();
2354
2355
1.92M
        if align_is_compatible && self.is_last_allocation(ptr) {
2356
            // Try to allocate the delta size within this same block so we can
2357
            // reuse the currently allocated space.
2358
138k
            let delta = new_size - old_size;
2359
132k
            if let Some(p) =
2360
138k
                self.try_alloc_layout_fast(layout_from_size_align(delta, old_layout.align())?)
2361
            {
2362
132k
                ptr::copy(ptr.as_ptr(), p.as_ptr(), old_size);
2363
132k
                return Ok(p);
2364
6.33k
            }
2365
1.78M
        }
2366
2367
        // Fallback: do a fresh allocation and copy the existing data into it.
2368
1.79M
        let new_ptr = self.try_alloc_layout(new_layout)?;
2369
1.79M
        ptr::copy_nonoverlapping(ptr.as_ptr(), new_ptr.as_ptr(), old_size);
2370
1.79M
        Ok(new_ptr)
2371
1.92M
    }
<bumpalo::Bump>::grow
Line
Count
Source
2342
1.92M
    unsafe fn grow(
2343
1.92M
        &self,
2344
1.92M
        ptr: NonNull<u8>,
2345
1.92M
        old_layout: Layout,
2346
1.92M
        new_layout: Layout,
2347
1.92M
    ) -> Result<NonNull<u8>, AllocErr> {
2348
1.92M
        let old_size = old_layout.size();
2349
2350
1.92M
        let new_size = new_layout.size();
2351
1.92M
        let new_size = round_up_to(new_size, MIN_ALIGN).ok_or(AllocErr)?;
2352
2353
1.92M
        let align_is_compatible = old_layout.align() >= new_layout.align();
2354
2355
1.92M
        if align_is_compatible && self.is_last_allocation(ptr) {
2356
            // Try to allocate the delta size within this same block so we can
2357
            // reuse the currently allocated space.
2358
138k
            let delta = new_size - old_size;
2359
132k
            if let Some(p) =
2360
138k
                self.try_alloc_layout_fast(layout_from_size_align(delta, old_layout.align())?)
2361
            {
2362
132k
                ptr::copy(ptr.as_ptr(), p.as_ptr(), old_size);
2363
132k
                return Ok(p);
2364
6.33k
            }
2365
1.78M
        }
2366
2367
        // Fallback: do a fresh allocation and copy the existing data into it.
2368
1.79M
        let new_ptr = self.try_alloc_layout(new_layout)?;
2369
1.79M
        ptr::copy_nonoverlapping(ptr.as_ptr(), new_ptr.as_ptr(), old_size);
2370
1.79M
        Ok(new_ptr)
2371
1.92M
    }
Unexecuted instantiation: <bumpalo::Bump<_>>::grow
2372
}
2373
2374
/// An iterator over each chunk of allocated memory that
2375
/// an arena has bump allocated into.
2376
///
2377
/// The chunks are returned ordered by allocation time, with the most recently
2378
/// allocated chunk being returned first.
2379
///
2380
/// The values inside each chunk are also ordered by allocation time, with the most
2381
/// recent allocation being earlier in the slice.
2382
///
2383
/// This struct is created by the [`iter_allocated_chunks`] method on
2384
/// [`Bump`]. See that function for a safety description regarding reading from the returned items.
2385
///
2386
/// [`Bump`]: struct.Bump.html
2387
/// [`iter_allocated_chunks`]: struct.Bump.html#method.iter_allocated_chunks
2388
#[derive(Debug)]
2389
pub struct ChunkIter<'a, const MIN_ALIGN: usize = 1> {
2390
    raw: ChunkRawIter<'a, MIN_ALIGN>,
2391
    bump: PhantomData<&'a mut Bump>,
2392
}
2393
2394
impl<'a, const MIN_ALIGN: usize> Iterator for ChunkIter<'a, MIN_ALIGN> {
2395
    type Item = &'a [mem::MaybeUninit<u8>];
2396
2397
0
    fn next(&mut self) -> Option<Self::Item> {
2398
        unsafe {
2399
0
            let (ptr, len) = self.raw.next()?;
2400
0
            let slice = slice::from_raw_parts(ptr as *const mem::MaybeUninit<u8>, len);
2401
0
            Some(slice)
2402
        }
2403
0
    }
2404
}
2405
2406
impl<'a, const MIN_ALIGN: usize> iter::FusedIterator for ChunkIter<'a, MIN_ALIGN> {}
2407
2408
/// An iterator over raw pointers to chunks of allocated memory that this
2409
/// arena has bump allocated into.
2410
///
2411
/// See [`ChunkIter`] for details regarding the returned chunks.
2412
///
2413
/// This struct is created by the [`iter_allocated_chunks_raw`] method on
2414
/// [`Bump`]. See that function for a safety description regarding reading from
2415
/// the returned items.
2416
///
2417
/// [`Bump`]: struct.Bump.html
2418
/// [`iter_allocated_chunks_raw`]: struct.Bump.html#method.iter_allocated_chunks_raw
2419
#[derive(Debug)]
2420
pub struct ChunkRawIter<'a, const MIN_ALIGN: usize = 1> {
2421
    footer: NonNull<ChunkFooter>,
2422
    bump: PhantomData<&'a Bump<MIN_ALIGN>>,
2423
}
2424
2425
impl<const MIN_ALIGN: usize> Iterator for ChunkRawIter<'_, MIN_ALIGN> {
2426
    type Item = (*mut u8, usize);
2427
0
    fn next(&mut self) -> Option<(*mut u8, usize)> {
2428
        unsafe {
2429
0
            let foot = self.footer.as_ref();
2430
0
            if foot.is_empty() {
2431
0
                return None;
2432
0
            }
2433
0
            let (ptr, len) = foot.as_raw_parts();
2434
0
            self.footer = foot.prev.get();
2435
0
            Some((ptr as *mut u8, len))
2436
        }
2437
0
    }
2438
}
2439
2440
impl<const MIN_ALIGN: usize> iter::FusedIterator for ChunkRawIter<'_, MIN_ALIGN> {}
2441
2442
#[inline(never)]
2443
#[cold]
2444
0
fn oom() -> ! {
2445
0
    panic!("out of memory")
2446
}
2447
2448
unsafe impl<'a, const MIN_ALIGN: usize> alloc::Alloc for &'a Bump<MIN_ALIGN> {
2449
    #[inline(always)]
2450
0
    unsafe fn alloc(&mut self, layout: Layout) -> Result<NonNull<u8>, AllocErr> {
2451
0
        self.try_alloc_layout(layout)
2452
0
    }
2453
2454
    #[inline]
2455
0
    unsafe fn dealloc(&mut self, ptr: NonNull<u8>, layout: Layout) {
2456
0
        Bump::<MIN_ALIGN>::dealloc(self, ptr, layout);
2457
0
    }
2458
2459
    #[inline]
2460
0
    unsafe fn realloc(
2461
0
        &mut self,
2462
0
        ptr: NonNull<u8>,
2463
0
        layout: Layout,
2464
0
        new_size: usize,
2465
0
    ) -> Result<NonNull<u8>, AllocErr> {
2466
0
        let old_size = layout.size();
2467
2468
0
        if old_size == 0 {
2469
0
            return self.try_alloc_layout(layout);
2470
0
        }
2471
2472
0
        let new_layout = layout_from_size_align(new_size, layout.align())?;
2473
0
        if new_size <= old_size {
2474
0
            Bump::shrink(self, ptr, layout, new_layout)
2475
        } else {
2476
0
            Bump::grow(self, ptr, layout, new_layout)
2477
        }
2478
0
    }
2479
}
2480
2481
#[cfg(any(feature = "allocator_api", feature = "allocator-api2"))]
2482
unsafe impl<'a, const MIN_ALIGN: usize> Allocator for &'a Bump<MIN_ALIGN> {
2483
    #[inline]
2484
36.5M
    fn allocate(&self, layout: Layout) -> Result<NonNull<[u8]>, AllocError> {
2485
36.5M
        self.try_alloc_layout(layout)
2486
36.5M
            .map(|p| unsafe {
2487
36.5M
                NonNull::new_unchecked(ptr::slice_from_raw_parts_mut(p.as_ptr(), layout.size()))
2488
36.5M
            })
<&bumpalo::Bump as allocator_api2::stable::alloc::Allocator>::allocate::{closure#0}
Line
Count
Source
2487
36.5M
                NonNull::new_unchecked(ptr::slice_from_raw_parts_mut(p.as_ptr(), layout.size()))
2488
36.5M
            })
Unexecuted instantiation: <&bumpalo::Bump<_> as allocator_api2::stable::alloc::Allocator>::allocate::{closure#0}
2489
36.5M
            .map_err(|_| AllocError)
2490
36.5M
    }
<&bumpalo::Bump as allocator_api2::stable::alloc::Allocator>::allocate
Line
Count
Source
2484
36.5M
    fn allocate(&self, layout: Layout) -> Result<NonNull<[u8]>, AllocError> {
2485
36.5M
        self.try_alloc_layout(layout)
2486
36.5M
            .map(|p| unsafe {
2487
                NonNull::new_unchecked(ptr::slice_from_raw_parts_mut(p.as_ptr(), layout.size()))
2488
            })
2489
36.5M
            .map_err(|_| AllocError)
2490
36.5M
    }
Unexecuted instantiation: <&bumpalo::Bump<_> as allocator_api2::stable::alloc::Allocator>::allocate
2491
2492
    #[inline]
2493
36.5M
    unsafe fn deallocate(&self, ptr: NonNull<u8>, layout: Layout) {
2494
36.5M
        Bump::<MIN_ALIGN>::dealloc(self, ptr, layout)
2495
36.5M
    }
<&bumpalo::Bump as allocator_api2::stable::alloc::Allocator>::deallocate
Line
Count
Source
2493
36.5M
    unsafe fn deallocate(&self, ptr: NonNull<u8>, layout: Layout) {
2494
36.5M
        Bump::<MIN_ALIGN>::dealloc(self, ptr, layout)
2495
36.5M
    }
Unexecuted instantiation: <&bumpalo::Bump<_> as allocator_api2::stable::alloc::Allocator>::deallocate
2496
2497
    #[inline]
2498
1.80M
    unsafe fn shrink(
2499
1.80M
        &self,
2500
1.80M
        ptr: NonNull<u8>,
2501
1.80M
        old_layout: Layout,
2502
1.80M
        new_layout: Layout,
2503
1.80M
    ) -> Result<NonNull<[u8]>, AllocError> {
2504
1.80M
        Bump::<MIN_ALIGN>::shrink(self, ptr, old_layout, new_layout)
2505
1.80M
            .map(|p| unsafe {
2506
1.80M
                NonNull::new_unchecked(ptr::slice_from_raw_parts_mut(p.as_ptr(), new_layout.size()))
2507
1.80M
            })
<&bumpalo::Bump as allocator_api2::stable::alloc::Allocator>::shrink::{closure#0}
Line
Count
Source
2506
1.80M
                NonNull::new_unchecked(ptr::slice_from_raw_parts_mut(p.as_ptr(), new_layout.size()))
2507
1.80M
            })
Unexecuted instantiation: <&bumpalo::Bump<_> as allocator_api2::stable::alloc::Allocator>::shrink::{closure#0}
2508
1.80M
            .map_err(|_| AllocError)
2509
1.80M
    }
<&bumpalo::Bump as allocator_api2::stable::alloc::Allocator>::shrink
Line
Count
Source
2498
1.80M
    unsafe fn shrink(
2499
1.80M
        &self,
2500
1.80M
        ptr: NonNull<u8>,
2501
1.80M
        old_layout: Layout,
2502
1.80M
        new_layout: Layout,
2503
1.80M
    ) -> Result<NonNull<[u8]>, AllocError> {
2504
1.80M
        Bump::<MIN_ALIGN>::shrink(self, ptr, old_layout, new_layout)
2505
1.80M
            .map(|p| unsafe {
2506
                NonNull::new_unchecked(ptr::slice_from_raw_parts_mut(p.as_ptr(), new_layout.size()))
2507
            })
2508
1.80M
            .map_err(|_| AllocError)
2509
1.80M
    }
Unexecuted instantiation: <&bumpalo::Bump<_> as allocator_api2::stable::alloc::Allocator>::shrink
2510
2511
    #[inline]
2512
1.92M
    unsafe fn grow(
2513
1.92M
        &self,
2514
1.92M
        ptr: NonNull<u8>,
2515
1.92M
        old_layout: Layout,
2516
1.92M
        new_layout: Layout,
2517
1.92M
    ) -> Result<NonNull<[u8]>, AllocError> {
2518
1.92M
        Bump::<MIN_ALIGN>::grow(self, ptr, old_layout, new_layout)
2519
1.92M
            .map(|p| unsafe {
2520
1.92M
                NonNull::new_unchecked(ptr::slice_from_raw_parts_mut(p.as_ptr(), new_layout.size()))
2521
1.92M
            })
<&bumpalo::Bump as allocator_api2::stable::alloc::Allocator>::grow::{closure#0}
Line
Count
Source
2520
1.92M
                NonNull::new_unchecked(ptr::slice_from_raw_parts_mut(p.as_ptr(), new_layout.size()))
2521
1.92M
            })
Unexecuted instantiation: <&bumpalo::Bump<_> as allocator_api2::stable::alloc::Allocator>::grow::{closure#0}
2522
1.92M
            .map_err(|_| AllocError)
2523
1.92M
    }
<&bumpalo::Bump as allocator_api2::stable::alloc::Allocator>::grow
Line
Count
Source
2512
1.92M
    unsafe fn grow(
2513
1.92M
        &self,
2514
1.92M
        ptr: NonNull<u8>,
2515
1.92M
        old_layout: Layout,
2516
1.92M
        new_layout: Layout,
2517
1.92M
    ) -> Result<NonNull<[u8]>, AllocError> {
2518
1.92M
        Bump::<MIN_ALIGN>::grow(self, ptr, old_layout, new_layout)
2519
1.92M
            .map(|p| unsafe {
2520
                NonNull::new_unchecked(ptr::slice_from_raw_parts_mut(p.as_ptr(), new_layout.size()))
2521
            })
2522
1.92M
            .map_err(|_| AllocError)
2523
1.92M
    }
Unexecuted instantiation: <&bumpalo::Bump<_> as allocator_api2::stable::alloc::Allocator>::grow
2524
2525
    #[inline]
2526
0
    unsafe fn grow_zeroed(
2527
0
        &self,
2528
0
        ptr: NonNull<u8>,
2529
0
        old_layout: Layout,
2530
0
        new_layout: Layout,
2531
0
    ) -> Result<NonNull<[u8]>, AllocError> {
2532
0
        let mut ptr = self.grow(ptr, old_layout, new_layout)?;
2533
0
        ptr.as_mut()[old_layout.size()..].fill(0);
2534
0
        Ok(ptr)
2535
0
    }
Unexecuted instantiation: <&bumpalo::Bump as allocator_api2::stable::alloc::Allocator>::grow_zeroed
Unexecuted instantiation: <&bumpalo::Bump<_> as allocator_api2::stable::alloc::Allocator>::grow_zeroed
2536
}
2537
2538
// NB: Only tests which require private types, fields, or methods should be in
2539
// here. Anything that can just be tested via public API surface should be in
2540
// `bumpalo/tests/all/*`.
2541
#[cfg(test)]
2542
mod tests {
2543
    use super::*;
2544
2545
    // Uses private type `ChunkFooter`.
2546
    #[test]
2547
    fn chunk_footer_is_five_words() {
2548
        assert_eq!(mem::size_of::<ChunkFooter>(), mem::size_of::<usize>() * 6);
2549
    }
2550
2551
    // Uses private `DEFAULT_CHUNK_SIZE_WITHOUT_FOOTER` and `FOOTER_SIZE`.
2552
    #[test]
2553
    fn allocated_bytes() {
2554
        let mut b = Bump::with_capacity(1);
2555
2556
        assert_eq!(b.allocated_bytes(), DEFAULT_CHUNK_SIZE_WITHOUT_FOOTER);
2557
        assert_eq!(
2558
            b.allocated_bytes_including_metadata(),
2559
            DEFAULT_CHUNK_SIZE_WITHOUT_FOOTER + FOOTER_SIZE
2560
        );
2561
2562
        b.reset();
2563
2564
        assert_eq!(b.allocated_bytes(), DEFAULT_CHUNK_SIZE_WITHOUT_FOOTER);
2565
        assert_eq!(
2566
            b.allocated_bytes_including_metadata(),
2567
            DEFAULT_CHUNK_SIZE_WITHOUT_FOOTER + FOOTER_SIZE
2568
        );
2569
    }
2570
2571
    // Uses private `alloc` module.
2572
    #[test]
2573
    fn test_realloc() {
2574
        use crate::alloc::Alloc;
2575
2576
        unsafe {
2577
            const CAPACITY: usize = DEFAULT_CHUNK_SIZE_WITHOUT_FOOTER;
2578
            let mut b = Bump::<1>::with_min_align_and_capacity(CAPACITY);
2579
2580
            // `realloc` doesn't shrink allocations that aren't "worth it".
2581
            let layout = Layout::from_size_align(100, 1).unwrap();
2582
            let p = b.alloc_layout(layout);
2583
            let q = (&b).realloc(p, layout, 51).unwrap();
2584
            assert_eq!(p, q);
2585
            b.reset();
2586
2587
            // `realloc` will shrink allocations that are "worth it".
2588
            let layout = Layout::from_size_align(100, 1).unwrap();
2589
            let p = b.alloc_layout(layout);
2590
            let q = (&b).realloc(p, layout, 50).unwrap();
2591
            assert!(p != q);
2592
            b.reset();
2593
2594
            // `realloc` will reuse the last allocation when growing.
2595
            let layout = Layout::from_size_align(10, 1).unwrap();
2596
            let p = b.alloc_layout(layout);
2597
            let q = (&b).realloc(p, layout, 11).unwrap();
2598
            assert_eq!(q.as_ptr() as usize, p.as_ptr() as usize - 1);
2599
            b.reset();
2600
2601
            // `realloc` will allocate a new chunk when growing the last
2602
            // allocation, if need be.
2603
            let layout = Layout::from_size_align(1, 1).unwrap();
2604
            let p = b.alloc_layout(layout);
2605
            let q = (&b).realloc(p, layout, CAPACITY + 1).unwrap();
2606
            assert_ne!(q.as_ptr() as usize, p.as_ptr() as usize - CAPACITY);
2607
            b.reset();
2608
2609
            // `realloc` will allocate and copy when reallocating anything that
2610
            // wasn't the last allocation.
2611
            let layout = Layout::from_size_align(1, 1).unwrap();
2612
            let p = b.alloc_layout(layout);
2613
            let _ = b.alloc_layout(layout);
2614
            let q = (&b).realloc(p, layout, 2).unwrap();
2615
            assert!(q.as_ptr() as usize != p.as_ptr() as usize - 1);
2616
            b.reset();
2617
        }
2618
    }
2619
2620
    // Uses our private `alloc` module.
2621
    #[test]
2622
    fn invalid_read() {
2623
        use alloc::Alloc;
2624
2625
        let mut b = &Bump::new();
2626
2627
        unsafe {
2628
            let l1 = Layout::from_size_align(12000, 4).unwrap();
2629
            let p1 = Alloc::alloc(&mut b, l1).unwrap();
2630
2631
            let l2 = Layout::from_size_align(1000, 4).unwrap();
2632
            Alloc::alloc(&mut b, l2).unwrap();
2633
2634
            let p1 = b.realloc(p1, l1, 24000).unwrap();
2635
            let l3 = Layout::from_size_align(24000, 4).unwrap();
2636
            b.realloc(p1, l3, 48000).unwrap();
2637
        }
2638
    }
2639
}