/rust/registry/src/index.crates.io-6f17d22bba15001f/itertools-0.10.3/src/grouping_map.rs
Line | Count | Source (jump to first uncovered line) |
1 | | #![cfg(feature = "use_std")] |
2 | | |
3 | | use crate::MinMaxResult; |
4 | | use std::collections::HashMap; |
5 | | use std::cmp::Ordering; |
6 | | use std::hash::Hash; |
7 | | use std::iter::Iterator; |
8 | | use std::ops::{Add, Mul}; |
9 | | |
10 | | /// A wrapper to allow for an easy [`into_grouping_map_by`](crate::Itertools::into_grouping_map_by) |
11 | 0 | #[derive(Clone, Debug)] |
12 | | pub struct MapForGrouping<I, F>(I, F); |
13 | | |
14 | | impl<I, F> MapForGrouping<I, F> { |
15 | 0 | pub(crate) fn new(iter: I, key_mapper: F) -> Self { |
16 | 0 | Self(iter, key_mapper) |
17 | 0 | } |
18 | | } |
19 | | |
20 | | impl<K, V, I, F> Iterator for MapForGrouping<I, F> |
21 | | where I: Iterator<Item = V>, |
22 | | K: Hash + Eq, |
23 | | F: FnMut(&V) -> K, |
24 | | { |
25 | | type Item = (K, V); |
26 | 0 | fn next(&mut self) -> Option<Self::Item> { |
27 | 0 | self.0.next().map(|val| ((self.1)(&val), val)) |
28 | 0 | } |
29 | | } |
30 | | |
31 | | /// Creates a new `GroupingMap` from `iter` |
32 | 0 | pub fn new<I, K, V>(iter: I) -> GroupingMap<I> |
33 | 0 | where I: Iterator<Item = (K, V)>, |
34 | 0 | K: Hash + Eq, |
35 | 0 | { |
36 | 0 | GroupingMap { iter } |
37 | 0 | } |
38 | | |
39 | | /// `GroupingMapBy` is an intermediate struct for efficient group-and-fold operations. |
40 | | /// |
41 | | /// See [`GroupingMap`] for more informations. |
42 | | #[must_use = "GroupingMapBy is lazy and do nothing unless consumed"] |
43 | | pub type GroupingMapBy<I, F> = GroupingMap<MapForGrouping<I, F>>; |
44 | | |
45 | | /// `GroupingMap` is an intermediate struct for efficient group-and-fold operations. |
46 | | /// It groups elements by their key and at the same time fold each group |
47 | | /// using some aggregating operation. |
48 | | /// |
49 | | /// No method on this struct performs temporary allocations. |
50 | 0 | #[derive(Clone, Debug)] |
51 | | #[must_use = "GroupingMap is lazy and do nothing unless consumed"] |
52 | | pub struct GroupingMap<I> { |
53 | | iter: I, |
54 | | } |
55 | | |
56 | | impl<I, K, V> GroupingMap<I> |
57 | | where I: Iterator<Item = (K, V)>, |
58 | | K: Hash + Eq, |
59 | | { |
60 | | /// This is the generic way to perform any operation on a `GroupingMap`. |
61 | | /// It's suggested to use this method only to implement custom operations |
62 | | /// when the already provided ones are not enough. |
63 | | /// |
64 | | /// Groups elements from the `GroupingMap` source by key and applies `operation` to the elements |
65 | | /// of each group sequentially, passing the previously accumulated value, a reference to the key |
66 | | /// and the current element as arguments, and stores the results in an `HashMap`. |
67 | | /// |
68 | | /// The `operation` function is invoked on each element with the following parameters: |
69 | | /// - the current value of the accumulator of the group if there is currently one; |
70 | | /// - a reference to the key of the group this element belongs to; |
71 | | /// - the element from the source being aggregated; |
72 | | /// |
73 | | /// If `operation` returns `Some(element)` then the accumulator is updated with `element`, |
74 | | /// otherwise the previous accumulation is discarded. |
75 | | /// |
76 | | /// Return a `HashMap` associating the key of each group with the result of aggregation of |
77 | | /// that group's elements. If the aggregation of the last element of a group discards the |
78 | | /// accumulator then there won't be an entry associated to that group's key. |
79 | | /// |
80 | | /// ``` |
81 | | /// use itertools::Itertools; |
82 | | /// |
83 | | /// let data = vec![2, 8, 5, 7, 9, 0, 4, 10]; |
84 | | /// let lookup = data.into_iter() |
85 | | /// .into_grouping_map_by(|&n| n % 4) |
86 | | /// .aggregate(|acc, _key, val| { |
87 | | /// if val == 0 || val == 10 { |
88 | | /// None |
89 | | /// } else { |
90 | | /// Some(acc.unwrap_or(0) + val) |
91 | | /// } |
92 | | /// }); |
93 | | /// |
94 | | /// assert_eq!(lookup[&0], 4); // 0 resets the accumulator so only 4 is summed |
95 | | /// assert_eq!(lookup[&1], 5 + 9); |
96 | | /// assert_eq!(lookup.get(&2), None); // 10 resets the accumulator and nothing is summed afterward |
97 | | /// assert_eq!(lookup[&3], 7); |
98 | | /// assert_eq!(lookup.len(), 3); // The final keys are only 0, 1 and 2 |
99 | | /// ``` |
100 | 0 | pub fn aggregate<FO, R>(self, mut operation: FO) -> HashMap<K, R> |
101 | 0 | where FO: FnMut(Option<R>, &K, V) -> Option<R>, |
102 | 0 | { |
103 | 0 | let mut destination_map = HashMap::new(); |
104 | 0 |
|
105 | 0 | self.iter.for_each(|(key, val)| { |
106 | 0 | let acc = destination_map.remove(&key); |
107 | 0 | if let Some(op_res) = operation(acc, &key, val) { |
108 | 0 | destination_map.insert(key, op_res); |
109 | 0 | } |
110 | 0 | }); |
111 | 0 |
|
112 | 0 | destination_map |
113 | 0 | } |
114 | | |
115 | | /// Groups elements from the `GroupingMap` source by key and applies `operation` to the elements |
116 | | /// of each group sequentially, passing the previously accumulated value, a reference to the key |
117 | | /// and the current element as arguments, and stores the results in a new map. |
118 | | /// |
119 | | /// `init` is the value from which will be cloned the initial value of each accumulator. |
120 | | /// |
121 | | /// `operation` is a function that is invoked on each element with the following parameters: |
122 | | /// - the current value of the accumulator of the group; |
123 | | /// - a reference to the key of the group this element belongs to; |
124 | | /// - the element from the source being accumulated. |
125 | | /// |
126 | | /// Return a `HashMap` associating the key of each group with the result of folding that group's elements. |
127 | | /// |
128 | | /// ``` |
129 | | /// use itertools::Itertools; |
130 | | /// |
131 | | /// let lookup = (1..=7) |
132 | | /// .into_grouping_map_by(|&n| n % 3) |
133 | | /// .fold(0, |acc, _key, val| acc + val); |
134 | | /// |
135 | | /// assert_eq!(lookup[&0], 3 + 6); |
136 | | /// assert_eq!(lookup[&1], 1 + 4 + 7); |
137 | | /// assert_eq!(lookup[&2], 2 + 5); |
138 | | /// assert_eq!(lookup.len(), 3); |
139 | | /// ``` |
140 | 0 | pub fn fold<FO, R>(self, init: R, mut operation: FO) -> HashMap<K, R> |
141 | 0 | where R: Clone, |
142 | 0 | FO: FnMut(R, &K, V) -> R, |
143 | 0 | { |
144 | 0 | self.aggregate(|acc, key, val| { |
145 | 0 | let acc = acc.unwrap_or_else(|| init.clone()); |
146 | 0 | Some(operation(acc, key, val)) |
147 | 0 | }) |
148 | 0 | } |
149 | | |
150 | | /// Groups elements from the `GroupingMap` source by key and applies `operation` to the elements |
151 | | /// of each group sequentially, passing the previously accumulated value, a reference to the key |
152 | | /// and the current element as arguments, and stores the results in a new map. |
153 | | /// |
154 | | /// This is similar to [`fold`] but the initial value of the accumulator is the first element of the group. |
155 | | /// |
156 | | /// `operation` is a function that is invoked on each element with the following parameters: |
157 | | /// - the current value of the accumulator of the group; |
158 | | /// - a reference to the key of the group this element belongs to; |
159 | | /// - the element from the source being accumulated. |
160 | | /// |
161 | | /// Return a `HashMap` associating the key of each group with the result of folding that group's elements. |
162 | | /// |
163 | | /// [`fold`]: GroupingMap::fold |
164 | | /// |
165 | | /// ``` |
166 | | /// use itertools::Itertools; |
167 | | /// |
168 | | /// let lookup = (1..=7) |
169 | | /// .into_grouping_map_by(|&n| n % 3) |
170 | | /// .fold_first(|acc, _key, val| acc + val); |
171 | | /// |
172 | | /// assert_eq!(lookup[&0], 3 + 6); |
173 | | /// assert_eq!(lookup[&1], 1 + 4 + 7); |
174 | | /// assert_eq!(lookup[&2], 2 + 5); |
175 | | /// assert_eq!(lookup.len(), 3); |
176 | | /// ``` |
177 | 0 | pub fn fold_first<FO>(self, mut operation: FO) -> HashMap<K, V> |
178 | 0 | where FO: FnMut(V, &K, V) -> V, |
179 | 0 | { |
180 | 0 | self.aggregate(|acc, key, val| { |
181 | 0 | Some(match acc { |
182 | 0 | Some(acc) => operation(acc, key, val), |
183 | 0 | None => val, |
184 | | }) |
185 | 0 | }) |
186 | 0 | } |
187 | | |
188 | | /// Groups elements from the `GroupingMap` source by key and collects the elements of each group in |
189 | | /// an instance of `C`. The iteration order is preserved when inserting elements. |
190 | | /// |
191 | | /// Return a `HashMap` associating the key of each group with the collection containing that group's elements. |
192 | | /// |
193 | | /// ``` |
194 | | /// use itertools::Itertools; |
195 | | /// use std::collections::HashSet; |
196 | | /// |
197 | | /// let lookup = vec![0, 1, 2, 3, 4, 5, 6, 2, 3, 6].into_iter() |
198 | | /// .into_grouping_map_by(|&n| n % 3) |
199 | | /// .collect::<HashSet<_>>(); |
200 | | /// |
201 | | /// assert_eq!(lookup[&0], vec![0, 3, 6].into_iter().collect::<HashSet<_>>()); |
202 | | /// assert_eq!(lookup[&1], vec![1, 4].into_iter().collect::<HashSet<_>>()); |
203 | | /// assert_eq!(lookup[&2], vec![2, 5].into_iter().collect::<HashSet<_>>()); |
204 | | /// assert_eq!(lookup.len(), 3); |
205 | | /// ``` |
206 | 0 | pub fn collect<C>(self) -> HashMap<K, C> |
207 | 0 | where C: Default + Extend<V>, |
208 | 0 | { |
209 | 0 | let mut destination_map = HashMap::new(); |
210 | 0 |
|
211 | 0 | self.iter.for_each(|(key, val)| { |
212 | 0 | destination_map.entry(key).or_insert_with(C::default).extend(Some(val)); |
213 | 0 | }); |
214 | 0 |
|
215 | 0 | destination_map |
216 | 0 | } |
217 | | |
218 | | /// Groups elements from the `GroupingMap` source by key and finds the maximum of each group. |
219 | | /// |
220 | | /// If several elements are equally maximum, the last element is picked. |
221 | | /// |
222 | | /// Returns a `HashMap` associating the key of each group with the maximum of that group's elements. |
223 | | /// |
224 | | /// ``` |
225 | | /// use itertools::Itertools; |
226 | | /// |
227 | | /// let lookup = vec![1, 3, 4, 5, 7, 8, 9, 12].into_iter() |
228 | | /// .into_grouping_map_by(|&n| n % 3) |
229 | | /// .max(); |
230 | | /// |
231 | | /// assert_eq!(lookup[&0], 12); |
232 | | /// assert_eq!(lookup[&1], 7); |
233 | | /// assert_eq!(lookup[&2], 8); |
234 | | /// assert_eq!(lookup.len(), 3); |
235 | | /// ``` |
236 | 0 | pub fn max(self) -> HashMap<K, V> |
237 | 0 | where V: Ord, |
238 | 0 | { |
239 | 0 | self.max_by(|_, v1, v2| V::cmp(v1, v2)) |
240 | 0 | } |
241 | | |
242 | | /// Groups elements from the `GroupingMap` source by key and finds the maximum of each group |
243 | | /// with respect to the specified comparison function. |
244 | | /// |
245 | | /// If several elements are equally maximum, the last element is picked. |
246 | | /// |
247 | | /// Returns a `HashMap` associating the key of each group with the maximum of that group's elements. |
248 | | /// |
249 | | /// ``` |
250 | | /// use itertools::Itertools; |
251 | | /// |
252 | | /// let lookup = vec![1, 3, 4, 5, 7, 8, 9, 12].into_iter() |
253 | | /// .into_grouping_map_by(|&n| n % 3) |
254 | | /// .max_by(|_key, x, y| y.cmp(x)); |
255 | | /// |
256 | | /// assert_eq!(lookup[&0], 3); |
257 | | /// assert_eq!(lookup[&1], 1); |
258 | | /// assert_eq!(lookup[&2], 5); |
259 | | /// assert_eq!(lookup.len(), 3); |
260 | | /// ``` |
261 | 0 | pub fn max_by<F>(self, mut compare: F) -> HashMap<K, V> |
262 | 0 | where F: FnMut(&K, &V, &V) -> Ordering, |
263 | 0 | { |
264 | 0 | self.fold_first(|acc, key, val| match compare(key, &acc, &val) { |
265 | 0 | Ordering::Less | Ordering::Equal => val, |
266 | 0 | Ordering::Greater => acc |
267 | 0 | }) |
268 | 0 | } |
269 | | |
270 | | /// Groups elements from the `GroupingMap` source by key and finds the element of each group |
271 | | /// that gives the maximum from the specified function. |
272 | | /// |
273 | | /// If several elements are equally maximum, the last element is picked. |
274 | | /// |
275 | | /// Returns a `HashMap` associating the key of each group with the maximum of that group's elements. |
276 | | /// |
277 | | /// ``` |
278 | | /// use itertools::Itertools; |
279 | | /// |
280 | | /// let lookup = vec![1, 3, 4, 5, 7, 8, 9, 12].into_iter() |
281 | | /// .into_grouping_map_by(|&n| n % 3) |
282 | | /// .max_by_key(|_key, &val| val % 4); |
283 | | /// |
284 | | /// assert_eq!(lookup[&0], 3); |
285 | | /// assert_eq!(lookup[&1], 7); |
286 | | /// assert_eq!(lookup[&2], 5); |
287 | | /// assert_eq!(lookup.len(), 3); |
288 | | /// ``` |
289 | 0 | pub fn max_by_key<F, CK>(self, mut f: F) -> HashMap<K, V> |
290 | 0 | where F: FnMut(&K, &V) -> CK, |
291 | 0 | CK: Ord, |
292 | 0 | { |
293 | 0 | self.max_by(|key, v1, v2| f(key, &v1).cmp(&f(key, &v2))) |
294 | 0 | } |
295 | | |
296 | | /// Groups elements from the `GroupingMap` source by key and finds the minimum of each group. |
297 | | /// |
298 | | /// If several elements are equally minimum, the first element is picked. |
299 | | /// |
300 | | /// Returns a `HashMap` associating the key of each group with the minimum of that group's elements. |
301 | | /// |
302 | | /// ``` |
303 | | /// use itertools::Itertools; |
304 | | /// |
305 | | /// let lookup = vec![1, 3, 4, 5, 7, 8, 9, 12].into_iter() |
306 | | /// .into_grouping_map_by(|&n| n % 3) |
307 | | /// .min(); |
308 | | /// |
309 | | /// assert_eq!(lookup[&0], 3); |
310 | | /// assert_eq!(lookup[&1], 1); |
311 | | /// assert_eq!(lookup[&2], 5); |
312 | | /// assert_eq!(lookup.len(), 3); |
313 | | /// ``` |
314 | 0 | pub fn min(self) -> HashMap<K, V> |
315 | 0 | where V: Ord, |
316 | 0 | { |
317 | 0 | self.min_by(|_, v1, v2| V::cmp(v1, v2)) |
318 | 0 | } |
319 | | |
320 | | /// Groups elements from the `GroupingMap` source by key and finds the minimum of each group |
321 | | /// with respect to the specified comparison function. |
322 | | /// |
323 | | /// If several elements are equally minimum, the first element is picked. |
324 | | /// |
325 | | /// Returns a `HashMap` associating the key of each group with the minimum of that group's elements. |
326 | | /// |
327 | | /// ``` |
328 | | /// use itertools::Itertools; |
329 | | /// |
330 | | /// let lookup = vec![1, 3, 4, 5, 7, 8, 9, 12].into_iter() |
331 | | /// .into_grouping_map_by(|&n| n % 3) |
332 | | /// .min_by(|_key, x, y| y.cmp(x)); |
333 | | /// |
334 | | /// assert_eq!(lookup[&0], 12); |
335 | | /// assert_eq!(lookup[&1], 7); |
336 | | /// assert_eq!(lookup[&2], 8); |
337 | | /// assert_eq!(lookup.len(), 3); |
338 | | /// ``` |
339 | 0 | pub fn min_by<F>(self, mut compare: F) -> HashMap<K, V> |
340 | 0 | where F: FnMut(&K, &V, &V) -> Ordering, |
341 | 0 | { |
342 | 0 | self.fold_first(|acc, key, val| match compare(key, &acc, &val) { |
343 | 0 | Ordering::Less | Ordering::Equal => acc, |
344 | 0 | Ordering::Greater => val |
345 | 0 | }) |
346 | 0 | } |
347 | | |
348 | | /// Groups elements from the `GroupingMap` source by key and finds the element of each group |
349 | | /// that gives the minimum from the specified function. |
350 | | /// |
351 | | /// If several elements are equally minimum, the first element is picked. |
352 | | /// |
353 | | /// Returns a `HashMap` associating the key of each group with the minimum of that group's elements. |
354 | | /// |
355 | | /// ``` |
356 | | /// use itertools::Itertools; |
357 | | /// |
358 | | /// let lookup = vec![1, 3, 4, 5, 7, 8, 9, 12].into_iter() |
359 | | /// .into_grouping_map_by(|&n| n % 3) |
360 | | /// .min_by_key(|_key, &val| val % 4); |
361 | | /// |
362 | | /// assert_eq!(lookup[&0], 12); |
363 | | /// assert_eq!(lookup[&1], 4); |
364 | | /// assert_eq!(lookup[&2], 8); |
365 | | /// assert_eq!(lookup.len(), 3); |
366 | | /// ``` |
367 | 0 | pub fn min_by_key<F, CK>(self, mut f: F) -> HashMap<K, V> |
368 | 0 | where F: FnMut(&K, &V) -> CK, |
369 | 0 | CK: Ord, |
370 | 0 | { |
371 | 0 | self.min_by(|key, v1, v2| f(key, &v1).cmp(&f(key, &v2))) |
372 | 0 | } |
373 | | |
374 | | /// Groups elements from the `GroupingMap` source by key and find the maximum and minimum of |
375 | | /// each group. |
376 | | /// |
377 | | /// If several elements are equally maximum, the last element is picked. |
378 | | /// If several elements are equally minimum, the first element is picked. |
379 | | /// |
380 | | /// See [.minmax()](crate::Itertools::minmax) for the non-grouping version. |
381 | | /// |
382 | | /// Differences from the non grouping version: |
383 | | /// - It never produces a `MinMaxResult::NoElements` |
384 | | /// - It doesn't have any speedup |
385 | | /// |
386 | | /// Returns a `HashMap` associating the key of each group with the minimum and maximum of that group's elements. |
387 | | /// |
388 | | /// ``` |
389 | | /// use itertools::Itertools; |
390 | | /// use itertools::MinMaxResult::{OneElement, MinMax}; |
391 | | /// |
392 | | /// let lookup = vec![1, 3, 4, 5, 7, 9, 12].into_iter() |
393 | | /// .into_grouping_map_by(|&n| n % 3) |
394 | | /// .minmax(); |
395 | | /// |
396 | | /// assert_eq!(lookup[&0], MinMax(3, 12)); |
397 | | /// assert_eq!(lookup[&1], MinMax(1, 7)); |
398 | | /// assert_eq!(lookup[&2], OneElement(5)); |
399 | | /// assert_eq!(lookup.len(), 3); |
400 | | /// ``` |
401 | 0 | pub fn minmax(self) -> HashMap<K, MinMaxResult<V>> |
402 | 0 | where V: Ord, |
403 | 0 | { |
404 | 0 | self.minmax_by(|_, v1, v2| V::cmp(v1, v2)) |
405 | 0 | } |
406 | | |
407 | | /// Groups elements from the `GroupingMap` source by key and find the maximum and minimum of |
408 | | /// each group with respect to the specified comparison function. |
409 | | /// |
410 | | /// If several elements are equally maximum, the last element is picked. |
411 | | /// If several elements are equally minimum, the first element is picked. |
412 | | /// |
413 | | /// It has the same differences from the non-grouping version as `minmax`. |
414 | | /// |
415 | | /// Returns a `HashMap` associating the key of each group with the minimum and maximum of that group's elements. |
416 | | /// |
417 | | /// ``` |
418 | | /// use itertools::Itertools; |
419 | | /// use itertools::MinMaxResult::{OneElement, MinMax}; |
420 | | /// |
421 | | /// let lookup = vec![1, 3, 4, 5, 7, 9, 12].into_iter() |
422 | | /// .into_grouping_map_by(|&n| n % 3) |
423 | | /// .minmax_by(|_key, x, y| y.cmp(x)); |
424 | | /// |
425 | | /// assert_eq!(lookup[&0], MinMax(12, 3)); |
426 | | /// assert_eq!(lookup[&1], MinMax(7, 1)); |
427 | | /// assert_eq!(lookup[&2], OneElement(5)); |
428 | | /// assert_eq!(lookup.len(), 3); |
429 | | /// ``` |
430 | 0 | pub fn minmax_by<F>(self, mut compare: F) -> HashMap<K, MinMaxResult<V>> |
431 | 0 | where F: FnMut(&K, &V, &V) -> Ordering, |
432 | 0 | { |
433 | 0 | self.aggregate(|acc, key, val| { |
434 | 0 | Some(match acc { |
435 | 0 | Some(MinMaxResult::OneElement(e)) => { |
436 | 0 | if compare(key, &val, &e) == Ordering::Less { |
437 | 0 | MinMaxResult::MinMax(val, e) |
438 | | } else { |
439 | 0 | MinMaxResult::MinMax(e, val) |
440 | | } |
441 | | } |
442 | 0 | Some(MinMaxResult::MinMax(min, max)) => { |
443 | 0 | if compare(key, &val, &min) == Ordering::Less { |
444 | 0 | MinMaxResult::MinMax(val, max) |
445 | 0 | } else if compare(key, &val, &max) != Ordering::Less { |
446 | 0 | MinMaxResult::MinMax(min, val) |
447 | | } else { |
448 | 0 | MinMaxResult::MinMax(min, max) |
449 | | } |
450 | | } |
451 | 0 | None => MinMaxResult::OneElement(val), |
452 | 0 | Some(MinMaxResult::NoElements) => unreachable!(), |
453 | | }) |
454 | 0 | }) |
455 | 0 | } |
456 | | |
457 | | /// Groups elements from the `GroupingMap` source by key and find the elements of each group |
458 | | /// that gives the minimum and maximum from the specified function. |
459 | | /// |
460 | | /// If several elements are equally maximum, the last element is picked. |
461 | | /// If several elements are equally minimum, the first element is picked. |
462 | | /// |
463 | | /// It has the same differences from the non-grouping version as `minmax`. |
464 | | /// |
465 | | /// Returns a `HashMap` associating the key of each group with the minimum and maximum of that group's elements. |
466 | | /// |
467 | | /// ``` |
468 | | /// use itertools::Itertools; |
469 | | /// use itertools::MinMaxResult::{OneElement, MinMax}; |
470 | | /// |
471 | | /// let lookup = vec![1, 3, 4, 5, 7, 9, 12].into_iter() |
472 | | /// .into_grouping_map_by(|&n| n % 3) |
473 | | /// .minmax_by_key(|_key, &val| val % 4); |
474 | | /// |
475 | | /// assert_eq!(lookup[&0], MinMax(12, 3)); |
476 | | /// assert_eq!(lookup[&1], MinMax(4, 7)); |
477 | | /// assert_eq!(lookup[&2], OneElement(5)); |
478 | | /// assert_eq!(lookup.len(), 3); |
479 | | /// ``` |
480 | 0 | pub fn minmax_by_key<F, CK>(self, mut f: F) -> HashMap<K, MinMaxResult<V>> |
481 | 0 | where F: FnMut(&K, &V) -> CK, |
482 | 0 | CK: Ord, |
483 | 0 | { |
484 | 0 | self.minmax_by(|key, v1, v2| f(key, &v1).cmp(&f(key, &v2))) |
485 | 0 | } |
486 | | |
487 | | /// Groups elements from the `GroupingMap` source by key and sums them. |
488 | | /// |
489 | | /// This is just a shorthand for `self.fold_first(|acc, _, val| acc + val)`. |
490 | | /// It is more limited than `Iterator::sum` since it doesn't use the `Sum` trait. |
491 | | /// |
492 | | /// Returns a `HashMap` associating the key of each group with the sum of that group's elements. |
493 | | /// |
494 | | /// ``` |
495 | | /// use itertools::Itertools; |
496 | | /// |
497 | | /// let lookup = vec![1, 3, 4, 5, 7, 8, 9, 12].into_iter() |
498 | | /// .into_grouping_map_by(|&n| n % 3) |
499 | | /// .sum(); |
500 | | /// |
501 | | /// assert_eq!(lookup[&0], 3 + 9 + 12); |
502 | | /// assert_eq!(lookup[&1], 1 + 4 + 7); |
503 | | /// assert_eq!(lookup[&2], 5 + 8); |
504 | | /// assert_eq!(lookup.len(), 3); |
505 | | /// ``` |
506 | 0 | pub fn sum(self) -> HashMap<K, V> |
507 | 0 | where V: Add<V, Output = V> |
508 | 0 | { |
509 | 0 | self.fold_first(|acc, _, val| acc + val) |
510 | 0 | } |
511 | | |
512 | | /// Groups elements from the `GroupingMap` source by key and multiply them. |
513 | | /// |
514 | | /// This is just a shorthand for `self.fold_first(|acc, _, val| acc * val)`. |
515 | | /// It is more limited than `Iterator::product` since it doesn't use the `Product` trait. |
516 | | /// |
517 | | /// Returns a `HashMap` associating the key of each group with the product of that group's elements. |
518 | | /// |
519 | | /// ``` |
520 | | /// use itertools::Itertools; |
521 | | /// |
522 | | /// let lookup = vec![1, 3, 4, 5, 7, 8, 9, 12].into_iter() |
523 | | /// .into_grouping_map_by(|&n| n % 3) |
524 | | /// .product(); |
525 | | /// |
526 | | /// assert_eq!(lookup[&0], 3 * 9 * 12); |
527 | | /// assert_eq!(lookup[&1], 1 * 4 * 7); |
528 | | /// assert_eq!(lookup[&2], 5 * 8); |
529 | | /// assert_eq!(lookup.len(), 3); |
530 | | /// ``` |
531 | 0 | pub fn product(self) -> HashMap<K, V> |
532 | 0 | where V: Mul<V, Output = V>, |
533 | 0 | { |
534 | 0 | self.fold_first(|acc, _, val| acc * val) |
535 | 0 | } |
536 | | } |