Coverage Report

Created: 2023-04-25 07:07

/rust/registry/src/index.crates.io-6f17d22bba15001f/serde-1.0.160/src/de/mod.rs
Line
Count
Source (jump to first uncovered line)
1
//! Generic data structure deserialization framework.
2
//!
3
//! The two most important traits in this module are [`Deserialize`] and
4
//! [`Deserializer`].
5
//!
6
//!  - **A type that implements `Deserialize` is a data structure** that can be
7
//!    deserialized from any data format supported by Serde, and conversely
8
//!  - **A type that implements `Deserializer` is a data format** that can
9
//!    deserialize any data structure supported by Serde.
10
//!
11
//! # The Deserialize trait
12
//!
13
//! Serde provides [`Deserialize`] implementations for many Rust primitive and
14
//! standard library types. The complete list is below. All of these can be
15
//! deserialized using Serde out of the box.
16
//!
17
//! Additionally, Serde provides a procedural macro called [`serde_derive`] to
18
//! automatically generate [`Deserialize`] implementations for structs and enums
19
//! in your program. See the [derive section of the manual] for how to use this.
20
//!
21
//! In rare cases it may be necessary to implement [`Deserialize`] manually for
22
//! some type in your program. See the [Implementing `Deserialize`] section of
23
//! the manual for more about this.
24
//!
25
//! Third-party crates may provide [`Deserialize`] implementations for types
26
//! that they expose. For example the [`linked-hash-map`] crate provides a
27
//! [`LinkedHashMap<K, V>`] type that is deserializable by Serde because the
28
//! crate provides an implementation of [`Deserialize`] for it.
29
//!
30
//! # The Deserializer trait
31
//!
32
//! [`Deserializer`] implementations are provided by third-party crates, for
33
//! example [`serde_json`], [`serde_yaml`] and [`postcard`].
34
//!
35
//! A partial list of well-maintained formats is given on the [Serde
36
//! website][data formats].
37
//!
38
//! # Implementations of Deserialize provided by Serde
39
//!
40
//! This is a slightly different set of types than what is supported for
41
//! serialization. Some types can be serialized by Serde but not deserialized.
42
//! One example is `OsStr`.
43
//!
44
//!  - **Primitive types**:
45
//!    - bool
46
//!    - i8, i16, i32, i64, i128, isize
47
//!    - u8, u16, u32, u64, u128, usize
48
//!    - f32, f64
49
//!    - char
50
//!  - **Compound types**:
51
//!    - \[T; 0\] through \[T; 32\]
52
//!    - tuples up to size 16
53
//!  - **Common standard library types**:
54
//!    - String
55
//!    - Option\<T\>
56
//!    - Result\<T, E\>
57
//!    - PhantomData\<T\>
58
//!  - **Wrapper types**:
59
//!    - Box\<T\>
60
//!    - Box\<\[T\]\>
61
//!    - Box\<str\>
62
//!    - Cow\<'a, T\>
63
//!    - Cell\<T\>
64
//!    - RefCell\<T\>
65
//!    - Mutex\<T\>
66
//!    - RwLock\<T\>
67
//!    - Rc\<T\>&emsp;*(if* features = ["rc"] *is enabled)*
68
//!    - Arc\<T\>&emsp;*(if* features = ["rc"] *is enabled)*
69
//!  - **Collection types**:
70
//!    - BTreeMap\<K, V\>
71
//!    - BTreeSet\<T\>
72
//!    - BinaryHeap\<T\>
73
//!    - HashMap\<K, V, H\>
74
//!    - HashSet\<T, H\>
75
//!    - LinkedList\<T\>
76
//!    - VecDeque\<T\>
77
//!    - Vec\<T\>
78
//!  - **Zero-copy types**:
79
//!    - &str
80
//!    - &\[u8\]
81
//!  - **FFI types**:
82
//!    - CString
83
//!    - Box\<CStr\>
84
//!    - OsString
85
//!  - **Miscellaneous standard library types**:
86
//!    - Duration
87
//!    - SystemTime
88
//!    - Path
89
//!    - PathBuf
90
//!    - Range\<T\>
91
//!    - RangeInclusive\<T\>
92
//!    - Bound\<T\>
93
//!    - num::NonZero*
94
//!    - `!` *(unstable)*
95
//!  - **Net types**:
96
//!    - IpAddr
97
//!    - Ipv4Addr
98
//!    - Ipv6Addr
99
//!    - SocketAddr
100
//!    - SocketAddrV4
101
//!    - SocketAddrV6
102
//!
103
//! [Implementing `Deserialize`]: https://serde.rs/impl-deserialize.html
104
//! [`Deserialize`]: ../trait.Deserialize.html
105
//! [`Deserializer`]: ../trait.Deserializer.html
106
//! [`LinkedHashMap<K, V>`]: https://docs.rs/linked-hash-map/*/linked_hash_map/struct.LinkedHashMap.html
107
//! [`postcard`]: https://github.com/jamesmunns/postcard
108
//! [`linked-hash-map`]: https://crates.io/crates/linked-hash-map
109
//! [`serde_derive`]: https://crates.io/crates/serde_derive
110
//! [`serde_json`]: https://github.com/serde-rs/json
111
//! [`serde_yaml`]: https://github.com/dtolnay/serde-yaml
112
//! [derive section of the manual]: https://serde.rs/derive.html
113
//! [data formats]: https://serde.rs/#data-formats
114
115
use lib::*;
116
117
////////////////////////////////////////////////////////////////////////////////
118
119
pub mod value;
120
121
#[cfg(not(no_integer128))]
122
mod format;
123
mod ignored_any;
124
mod impls;
125
mod utf8;
126
127
pub use self::ignored_any::IgnoredAny;
128
129
#[cfg(feature = "std")]
130
#[doc(no_inline)]
131
pub use std::error::Error as StdError;
132
#[cfg(not(feature = "std"))]
133
#[doc(no_inline)]
134
pub use std_error::Error as StdError;
135
136
////////////////////////////////////////////////////////////////////////////////
137
138
macro_rules! declare_error_trait {
139
    (Error: Sized $(+ $($supertrait:ident)::+)*) => {
140
        /// The `Error` trait allows `Deserialize` implementations to create descriptive
141
        /// error messages belonging to the `Deserializer` against which they are
142
        /// currently running.
143
        ///
144
        /// Every `Deserializer` declares an `Error` type that encompasses both
145
        /// general-purpose deserialization errors as well as errors specific to the
146
        /// particular deserialization format. For example the `Error` type of
147
        /// `serde_json` can represent errors like an invalid JSON escape sequence or an
148
        /// unterminated string literal, in addition to the error cases that are part of
149
        /// this trait.
150
        ///
151
        /// Most deserializers should only need to provide the `Error::custom` method
152
        /// and inherit the default behavior for the other methods.
153
        ///
154
        /// # Example implementation
155
        ///
156
        /// The [example data format] presented on the website shows an error
157
        /// type appropriate for a basic JSON data format.
158
        ///
159
        /// [example data format]: https://serde.rs/data-format.html
160
        pub trait Error: Sized $(+ $($supertrait)::+)* {
161
            /// Raised when there is general error when deserializing a type.
162
            ///
163
            /// The message should not be capitalized and should not end with a period.
164
            ///
165
            /// ```edition2018
166
            /// # use std::str::FromStr;
167
            /// #
168
            /// # struct IpAddr;
169
            /// #
170
            /// # impl FromStr for IpAddr {
171
            /// #     type Err = String;
172
            /// #
173
            /// #     fn from_str(_: &str) -> Result<Self, String> {
174
            /// #         unimplemented!()
175
            /// #     }
176
            /// # }
177
            /// #
178
            /// use serde::de::{self, Deserialize, Deserializer};
179
            ///
180
            /// impl<'de> Deserialize<'de> for IpAddr {
181
            ///     fn deserialize<D>(deserializer: D) -> Result<Self, D::Error>
182
            ///     where
183
            ///         D: Deserializer<'de>,
184
            ///     {
185
            ///         let s = String::deserialize(deserializer)?;
186
            ///         s.parse().map_err(de::Error::custom)
187
            ///     }
188
            /// }
189
            /// ```
190
            fn custom<T>(msg: T) -> Self
191
            where
192
                T: Display;
193
194
            /// Raised when a `Deserialize` receives a type different from what it was
195
            /// expecting.
196
            ///
197
            /// The `unexp` argument provides information about what type was received.
198
            /// This is the type that was present in the input file or other source data
199
            /// of the Deserializer.
200
            ///
201
            /// The `exp` argument provides information about what type was being
202
            /// expected. This is the type that is written in the program.
203
            ///
204
            /// For example if we try to deserialize a String out of a JSON file
205
            /// containing an integer, the unexpected type is the integer and the
206
            /// expected type is the string.
207
            #[cold]
208
0
            fn invalid_type(unexp: Unexpected, exp: &Expected) -> Self {
209
0
                Error::custom(format_args!("invalid type: {}, expected {}", unexp, exp))
210
0
            }
211
212
            /// Raised when a `Deserialize` receives a value of the right type but that
213
            /// is wrong for some other reason.
214
            ///
215
            /// The `unexp` argument provides information about what value was received.
216
            /// This is the value that was present in the input file or other source
217
            /// data of the Deserializer.
218
            ///
219
            /// The `exp` argument provides information about what value was being
220
            /// expected. This is the type that is written in the program.
221
            ///
222
            /// For example if we try to deserialize a String out of some binary data
223
            /// that is not valid UTF-8, the unexpected value is the bytes and the
224
            /// expected value is a string.
225
            #[cold]
226
0
            fn invalid_value(unexp: Unexpected, exp: &Expected) -> Self {
227
0
                Error::custom(format_args!("invalid value: {}, expected {}", unexp, exp))
228
0
            }
229
230
            /// Raised when deserializing a sequence or map and the input data contains
231
            /// too many or too few elements.
232
            ///
233
            /// The `len` argument is the number of elements encountered. The sequence
234
            /// or map may have expected more arguments or fewer arguments.
235
            ///
236
            /// The `exp` argument provides information about what data was being
237
            /// expected. For example `exp` might say that a tuple of size 6 was
238
            /// expected.
239
            #[cold]
240
0
            fn invalid_length(len: usize, exp: &Expected) -> Self {
241
0
                Error::custom(format_args!("invalid length {}, expected {}", len, exp))
242
0
            }
243
244
            /// Raised when a `Deserialize` enum type received a variant with an
245
            /// unrecognized name.
246
            #[cold]
247
0
            fn unknown_variant(variant: &str, expected: &'static [&'static str]) -> Self {
248
0
                if expected.is_empty() {
249
0
                    Error::custom(format_args!(
250
0
                        "unknown variant `{}`, there are no variants",
251
0
                        variant
252
0
                    ))
253
                } else {
254
0
                    Error::custom(format_args!(
255
0
                        "unknown variant `{}`, expected {}",
256
0
                        variant,
257
0
                        OneOf { names: expected }
258
0
                    ))
259
                }
260
0
            }
261
262
            /// Raised when a `Deserialize` struct type received a field with an
263
            /// unrecognized name.
264
            #[cold]
265
0
            fn unknown_field(field: &str, expected: &'static [&'static str]) -> Self {
266
0
                if expected.is_empty() {
267
0
                    Error::custom(format_args!(
268
0
                        "unknown field `{}`, there are no fields",
269
0
                        field
270
0
                    ))
271
                } else {
272
0
                    Error::custom(format_args!(
273
0
                        "unknown field `{}`, expected {}",
274
0
                        field,
275
0
                        OneOf { names: expected }
276
0
                    ))
277
                }
278
0
            }
279
280
            /// Raised when a `Deserialize` struct type expected to receive a required
281
            /// field with a particular name but that field was not present in the
282
            /// input.
283
            #[cold]
284
0
            fn missing_field(field: &'static str) -> Self {
285
0
                Error::custom(format_args!("missing field `{}`", field))
286
0
            }
287
288
            /// Raised when a `Deserialize` struct type received more than one of the
289
            /// same field.
290
            #[cold]
291
0
            fn duplicate_field(field: &'static str) -> Self {
292
0
                Error::custom(format_args!("duplicate field `{}`", field))
293
0
            }
294
        }
295
    }
296
}
297
298
#[cfg(feature = "std")]
299
declare_error_trait!(Error: Sized + StdError);
300
301
#[cfg(not(feature = "std"))]
302
declare_error_trait!(Error: Sized + Debug + Display);
303
304
/// `Unexpected` represents an unexpected invocation of any one of the `Visitor`
305
/// trait methods.
306
///
307
/// This is used as an argument to the `invalid_type`, `invalid_value`, and
308
/// `invalid_length` methods of the `Error` trait to build error messages.
309
///
310
/// ```edition2018
311
/// # use std::fmt;
312
/// #
313
/// # use serde::de::{self, Unexpected, Visitor};
314
/// #
315
/// # struct Example;
316
/// #
317
/// # impl<'de> Visitor<'de> for Example {
318
/// #     type Value = ();
319
/// #
320
/// #     fn expecting(&self, formatter: &mut fmt::Formatter) -> fmt::Result {
321
/// #         write!(formatter, "definitely not a boolean")
322
/// #     }
323
/// #
324
/// fn visit_bool<E>(self, v: bool) -> Result<Self::Value, E>
325
/// where
326
///     E: de::Error,
327
/// {
328
///     Err(de::Error::invalid_type(Unexpected::Bool(v), &self))
329
/// }
330
/// # }
331
/// ```
332
0
#[derive(Copy, Clone, PartialEq, Debug)]
333
pub enum Unexpected<'a> {
334
    /// The input contained a boolean value that was not expected.
335
    Bool(bool),
336
337
    /// The input contained an unsigned integer `u8`, `u16`, `u32` or `u64` that
338
    /// was not expected.
339
    Unsigned(u64),
340
341
    /// The input contained a signed integer `i8`, `i16`, `i32` or `i64` that
342
    /// was not expected.
343
    Signed(i64),
344
345
    /// The input contained a floating point `f32` or `f64` that was not
346
    /// expected.
347
    Float(f64),
348
349
    /// The input contained a `char` that was not expected.
350
    Char(char),
351
352
    /// The input contained a `&str` or `String` that was not expected.
353
    Str(&'a str),
354
355
    /// The input contained a `&[u8]` or `Vec<u8>` that was not expected.
356
    Bytes(&'a [u8]),
357
358
    /// The input contained a unit `()` that was not expected.
359
    Unit,
360
361
    /// The input contained an `Option<T>` that was not expected.
362
    Option,
363
364
    /// The input contained a newtype struct that was not expected.
365
    NewtypeStruct,
366
367
    /// The input contained a sequence that was not expected.
368
    Seq,
369
370
    /// The input contained a map that was not expected.
371
    Map,
372
373
    /// The input contained an enum that was not expected.
374
    Enum,
375
376
    /// The input contained a unit variant that was not expected.
377
    UnitVariant,
378
379
    /// The input contained a newtype variant that was not expected.
380
    NewtypeVariant,
381
382
    /// The input contained a tuple variant that was not expected.
383
    TupleVariant,
384
385
    /// The input contained a struct variant that was not expected.
386
    StructVariant,
387
388
    /// A message stating what uncategorized thing the input contained that was
389
    /// not expected.
390
    ///
391
    /// The message should be a noun or noun phrase, not capitalized and without
392
    /// a period. An example message is "unoriginal superhero".
393
    Other(&'a str),
394
}
395
396
impl<'a> fmt::Display for Unexpected<'a> {
397
    fn fmt(&self, formatter: &mut fmt::Formatter) -> fmt::Result {
398
        use self::Unexpected::*;
399
        match *self {
400
            Bool(b) => write!(formatter, "boolean `{}`", b),
401
            Unsigned(i) => write!(formatter, "integer `{}`", i),
402
            Signed(i) => write!(formatter, "integer `{}`", i),
403
            Float(f) => write!(formatter, "floating point `{}`", f),
404
            Char(c) => write!(formatter, "character `{}`", c),
405
            Str(s) => write!(formatter, "string {:?}", s),
406
            Bytes(_) => write!(formatter, "byte array"),
407
            Unit => write!(formatter, "unit value"),
408
            Option => write!(formatter, "Option value"),
409
            NewtypeStruct => write!(formatter, "newtype struct"),
410
            Seq => write!(formatter, "sequence"),
411
            Map => write!(formatter, "map"),
412
            Enum => write!(formatter, "enum"),
413
            UnitVariant => write!(formatter, "unit variant"),
414
            NewtypeVariant => write!(formatter, "newtype variant"),
415
            TupleVariant => write!(formatter, "tuple variant"),
416
            StructVariant => write!(formatter, "struct variant"),
417
            Other(other) => formatter.write_str(other),
418
        }
419
    }
420
}
421
422
/// `Expected` represents an explanation of what data a `Visitor` was expecting
423
/// to receive.
424
///
425
/// This is used as an argument to the `invalid_type`, `invalid_value`, and
426
/// `invalid_length` methods of the `Error` trait to build error messages. The
427
/// message should be a noun or noun phrase that completes the sentence "This
428
/// Visitor expects to receive ...", for example the message could be "an
429
/// integer between 0 and 64". The message should not be capitalized and should
430
/// not end with a period.
431
///
432
/// Within the context of a `Visitor` implementation, the `Visitor` itself
433
/// (`&self`) is an implementation of this trait.
434
///
435
/// ```edition2018
436
/// # use std::fmt;
437
/// #
438
/// # use serde::de::{self, Unexpected, Visitor};
439
/// #
440
/// # struct Example;
441
/// #
442
/// # impl<'de> Visitor<'de> for Example {
443
/// #     type Value = ();
444
/// #
445
/// #     fn expecting(&self, formatter: &mut fmt::Formatter) -> fmt::Result {
446
/// #         write!(formatter, "definitely not a boolean")
447
/// #     }
448
/// #
449
/// fn visit_bool<E>(self, v: bool) -> Result<Self::Value, E>
450
/// where
451
///     E: de::Error,
452
/// {
453
///     Err(de::Error::invalid_type(Unexpected::Bool(v), &self))
454
/// }
455
/// # }
456
/// ```
457
///
458
/// Outside of a `Visitor`, `&"..."` can be used.
459
///
460
/// ```edition2018
461
/// # use serde::de::{self, Unexpected};
462
/// #
463
/// # fn example<E>() -> Result<(), E>
464
/// # where
465
/// #     E: de::Error,
466
/// # {
467
/// #     let v = true;
468
/// return Err(de::Error::invalid_type(Unexpected::Bool(v), &"a negative integer"));
469
/// # }
470
/// ```
471
pub trait Expected {
472
    /// Format an explanation of what data was being expected. Same signature as
473
    /// the `Display` and `Debug` traits.
474
    fn fmt(&self, formatter: &mut fmt::Formatter) -> fmt::Result;
475
}
476
477
impl<'de, T> Expected for T
478
where
479
    T: Visitor<'de>,
480
{
481
0
    fn fmt(&self, formatter: &mut fmt::Formatter) -> fmt::Result {
482
0
        self.expecting(formatter)
483
0
    }
484
}
485
486
impl<'a> Expected for &'a str {
487
    fn fmt(&self, formatter: &mut fmt::Formatter) -> fmt::Result {
488
        formatter.write_str(self)
489
    }
490
}
491
492
impl<'a> Display for Expected + 'a {
493
    fn fmt(&self, formatter: &mut fmt::Formatter) -> fmt::Result {
494
        Expected::fmt(self, formatter)
495
    }
496
}
497
498
////////////////////////////////////////////////////////////////////////////////
499
500
/// A **data structure** that can be deserialized from any data format supported
501
/// by Serde.
502
///
503
/// Serde provides `Deserialize` implementations for many Rust primitive and
504
/// standard library types. The complete list is [here][crate::de]. All of these
505
/// can be deserialized using Serde out of the box.
506
///
507
/// Additionally, Serde provides a procedural macro called `serde_derive` to
508
/// automatically generate `Deserialize` implementations for structs and enums
509
/// in your program. See the [derive section of the manual][derive] for how to
510
/// use this.
511
///
512
/// In rare cases it may be necessary to implement `Deserialize` manually for
513
/// some type in your program. See the [Implementing
514
/// `Deserialize`][impl-deserialize] section of the manual for more about this.
515
///
516
/// Third-party crates may provide `Deserialize` implementations for types that
517
/// they expose. For example the `linked-hash-map` crate provides a
518
/// `LinkedHashMap<K, V>` type that is deserializable by Serde because the crate
519
/// provides an implementation of `Deserialize` for it.
520
///
521
/// [derive]: https://serde.rs/derive.html
522
/// [impl-deserialize]: https://serde.rs/impl-deserialize.html
523
///
524
/// # Lifetime
525
///
526
/// The `'de` lifetime of this trait is the lifetime of data that may be
527
/// borrowed by `Self` when deserialized. See the page [Understanding
528
/// deserializer lifetimes] for a more detailed explanation of these lifetimes.
529
///
530
/// [Understanding deserializer lifetimes]: https://serde.rs/lifetimes.html
531
pub trait Deserialize<'de>: Sized {
532
    /// Deserialize this value from the given Serde deserializer.
533
    ///
534
    /// See the [Implementing `Deserialize`][impl-deserialize] section of the
535
    /// manual for more information about how to implement this method.
536
    ///
537
    /// [impl-deserialize]: https://serde.rs/impl-deserialize.html
538
    fn deserialize<D>(deserializer: D) -> Result<Self, D::Error>
539
    where
540
        D: Deserializer<'de>;
541
542
    /// Deserializes a value into `self` from the given Deserializer.
543
    ///
544
    /// The purpose of this method is to allow the deserializer to reuse
545
    /// resources and avoid copies. As such, if this method returns an error,
546
    /// `self` will be in an indeterminate state where some parts of the struct
547
    /// have been overwritten. Although whatever state that is will be
548
    /// memory-safe.
549
    ///
550
    /// This is generally useful when repeatedly deserializing values that
551
    /// are processed one at a time, where the value of `self` doesn't matter
552
    /// when the next deserialization occurs.
553
    ///
554
    /// If you manually implement this, your recursive deserializations should
555
    /// use `deserialize_in_place`.
556
    ///
557
    /// This method is stable and an official public API, but hidden from the
558
    /// documentation because it is almost never what newbies are looking for.
559
    /// Showing it in rustdoc would cause it to be featured more prominently
560
    /// than it deserves.
561
    #[doc(hidden)]
562
0
    fn deserialize_in_place<D>(deserializer: D, place: &mut Self) -> Result<(), D::Error>
563
0
    where
564
0
        D: Deserializer<'de>,
565
0
    {
566
        // Default implementation just delegates to `deserialize` impl.
567
0
        *place = try!(Deserialize::deserialize(deserializer));
568
0
        Ok(())
569
0
    }
570
}
571
572
/// A data structure that can be deserialized without borrowing any data from
573
/// the deserializer.
574
///
575
/// This is primarily useful for trait bounds on functions. For example a
576
/// `from_str` function may be able to deserialize a data structure that borrows
577
/// from the input string, but a `from_reader` function may only deserialize
578
/// owned data.
579
///
580
/// ```edition2018
581
/// # use serde::de::{Deserialize, DeserializeOwned};
582
/// # use std::io::{Read, Result};
583
/// #
584
/// # trait Ignore {
585
/// fn from_str<'a, T>(s: &'a str) -> Result<T>
586
/// where
587
///     T: Deserialize<'a>;
588
///
589
/// fn from_reader<R, T>(rdr: R) -> Result<T>
590
/// where
591
///     R: Read,
592
///     T: DeserializeOwned;
593
/// # }
594
/// ```
595
///
596
/// # Lifetime
597
///
598
/// The relationship between `Deserialize` and `DeserializeOwned` in trait
599
/// bounds is explained in more detail on the page [Understanding deserializer
600
/// lifetimes].
601
///
602
/// [Understanding deserializer lifetimes]: https://serde.rs/lifetimes.html
603
pub trait DeserializeOwned: for<'de> Deserialize<'de> {}
604
impl<T> DeserializeOwned for T where T: for<'de> Deserialize<'de> {}
605
606
/// `DeserializeSeed` is the stateful form of the `Deserialize` trait. If you
607
/// ever find yourself looking for a way to pass data into a `Deserialize` impl,
608
/// this trait is the way to do it.
609
///
610
/// As one example of stateful deserialization consider deserializing a JSON
611
/// array into an existing buffer. Using the `Deserialize` trait we could
612
/// deserialize a JSON array into a `Vec<T>` but it would be a freshly allocated
613
/// `Vec<T>`; there is no way for `Deserialize` to reuse a previously allocated
614
/// buffer. Using `DeserializeSeed` instead makes this possible as in the
615
/// example code below.
616
///
617
/// The canonical API for stateless deserialization looks like this:
618
///
619
/// ```edition2018
620
/// # use serde::Deserialize;
621
/// #
622
/// # enum Error {}
623
/// #
624
/// fn func<'de, T: Deserialize<'de>>() -> Result<T, Error>
625
/// # {
626
/// #     unimplemented!()
627
/// # }
628
/// ```
629
///
630
/// Adjusting an API like this to support stateful deserialization is a matter
631
/// of accepting a seed as input:
632
///
633
/// ```edition2018
634
/// # use serde::de::DeserializeSeed;
635
/// #
636
/// # enum Error {}
637
/// #
638
/// fn func_seed<'de, T: DeserializeSeed<'de>>(seed: T) -> Result<T::Value, Error>
639
/// # {
640
/// #     let _ = seed;
641
/// #     unimplemented!()
642
/// # }
643
/// ```
644
///
645
/// In practice the majority of deserialization is stateless. An API expecting a
646
/// seed can be appeased by passing `std::marker::PhantomData` as a seed in the
647
/// case of stateless deserialization.
648
///
649
/// # Lifetime
650
///
651
/// The `'de` lifetime of this trait is the lifetime of data that may be
652
/// borrowed by `Self::Value` when deserialized. See the page [Understanding
653
/// deserializer lifetimes] for a more detailed explanation of these lifetimes.
654
///
655
/// [Understanding deserializer lifetimes]: https://serde.rs/lifetimes.html
656
///
657
/// # Example
658
///
659
/// Suppose we have JSON that looks like `[[1, 2], [3, 4, 5], [6]]` and we need
660
/// to deserialize it into a flat representation like `vec![1, 2, 3, 4, 5, 6]`.
661
/// Allocating a brand new `Vec<T>` for each subarray would be slow. Instead we
662
/// would like to allocate a single `Vec<T>` and then deserialize each subarray
663
/// into it. This requires stateful deserialization using the `DeserializeSeed`
664
/// trait.
665
///
666
/// ```edition2018
667
/// use std::fmt;
668
/// use std::marker::PhantomData;
669
///
670
/// use serde::de::{Deserialize, DeserializeSeed, Deserializer, SeqAccess, Visitor};
671
///
672
/// // A DeserializeSeed implementation that uses stateful deserialization to
673
/// // append array elements onto the end of an existing vector. The preexisting
674
/// // state ("seed") in this case is the Vec<T>. The `deserialize` method of
675
/// // `ExtendVec` will be traversing the inner arrays of the JSON input and
676
/// // appending each integer into the existing Vec.
677
/// struct ExtendVec<'a, T: 'a>(&'a mut Vec<T>);
678
///
679
/// impl<'de, 'a, T> DeserializeSeed<'de> for ExtendVec<'a, T>
680
/// where
681
///     T: Deserialize<'de>,
682
/// {
683
///     // The return type of the `deserialize` method. This implementation
684
///     // appends onto an existing vector but does not create any new data
685
///     // structure, so the return type is ().
686
///     type Value = ();
687
///
688
///     fn deserialize<D>(self, deserializer: D) -> Result<Self::Value, D::Error>
689
///     where
690
///         D: Deserializer<'de>,
691
///     {
692
///         // Visitor implementation that will walk an inner array of the JSON
693
///         // input.
694
///         struct ExtendVecVisitor<'a, T: 'a>(&'a mut Vec<T>);
695
///
696
///         impl<'de, 'a, T> Visitor<'de> for ExtendVecVisitor<'a, T>
697
///         where
698
///             T: Deserialize<'de>,
699
///         {
700
///             type Value = ();
701
///
702
///             fn expecting(&self, formatter: &mut fmt::Formatter) -> fmt::Result {
703
///                 write!(formatter, "an array of integers")
704
///             }
705
///
706
///             fn visit_seq<A>(self, mut seq: A) -> Result<(), A::Error>
707
///             where
708
///                 A: SeqAccess<'de>,
709
///             {
710
///                 // Decrease the number of reallocations if there are many elements
711
///                 if let Some(size_hint) = seq.size_hint() {
712
///                    self.0.reserve(size_hint);
713
///                 }
714
///
715
///                 // Visit each element in the inner array and push it onto
716
///                 // the existing vector.
717
///                 while let Some(elem) = seq.next_element()? {
718
///                     self.0.push(elem);
719
///                 }
720
///                 Ok(())
721
///             }
722
///         }
723
///
724
///         deserializer.deserialize_seq(ExtendVecVisitor(self.0))
725
///     }
726
/// }
727
///
728
/// // Visitor implementation that will walk the outer array of the JSON input.
729
/// struct FlattenedVecVisitor<T>(PhantomData<T>);
730
///
731
/// impl<'de, T> Visitor<'de> for FlattenedVecVisitor<T>
732
/// where
733
///     T: Deserialize<'de>,
734
/// {
735
///     // This Visitor constructs a single Vec<T> to hold the flattened
736
///     // contents of the inner arrays.
737
///     type Value = Vec<T>;
738
///
739
///     fn expecting(&self, formatter: &mut fmt::Formatter) -> fmt::Result {
740
///         write!(formatter, "an array of arrays")
741
///     }
742
///
743
///     fn visit_seq<A>(self, mut seq: A) -> Result<Vec<T>, A::Error>
744
///     where
745
///         A: SeqAccess<'de>,
746
///     {
747
///         // Create a single Vec to hold the flattened contents.
748
///         let mut vec = Vec::new();
749
///
750
///         // Each iteration through this loop is one inner array.
751
///         while let Some(()) = seq.next_element_seed(ExtendVec(&mut vec))? {
752
///             // Nothing to do; inner array has been appended into `vec`.
753
///         }
754
///
755
///         // Return the finished vec.
756
///         Ok(vec)
757
///     }
758
/// }
759
///
760
/// # fn example<'de, D>(deserializer: D) -> Result<(), D::Error>
761
/// # where
762
/// #     D: Deserializer<'de>,
763
/// # {
764
/// let visitor = FlattenedVecVisitor(PhantomData);
765
/// let flattened: Vec<u64> = deserializer.deserialize_seq(visitor)?;
766
/// #     Ok(())
767
/// # }
768
/// ```
769
pub trait DeserializeSeed<'de>: Sized {
770
    /// The type produced by using this seed.
771
    type Value;
772
773
    /// Equivalent to the more common `Deserialize::deserialize` method, except
774
    /// with some initial piece of data (the seed) passed in.
775
    fn deserialize<D>(self, deserializer: D) -> Result<Self::Value, D::Error>
776
    where
777
        D: Deserializer<'de>;
778
}
779
780
impl<'de, T> DeserializeSeed<'de> for PhantomData<T>
781
where
782
    T: Deserialize<'de>,
783
{
784
    type Value = T;
785
786
    #[inline]
787
0
    fn deserialize<D>(self, deserializer: D) -> Result<T, D::Error>
788
0
    where
789
0
        D: Deserializer<'de>,
790
0
    {
791
0
        T::deserialize(deserializer)
792
0
    }
793
}
794
795
////////////////////////////////////////////////////////////////////////////////
796
797
/// A **data format** that can deserialize any data structure supported by
798
/// Serde.
799
///
800
/// The role of this trait is to define the deserialization half of the [Serde
801
/// data model], which is a way to categorize every Rust data type into one of
802
/// 29 possible types. Each method of the `Deserializer` trait corresponds to one
803
/// of the types of the data model.
804
///
805
/// Implementations of `Deserialize` map themselves into this data model by
806
/// passing to the `Deserializer` a `Visitor` implementation that can receive
807
/// these various types.
808
///
809
/// The types that make up the Serde data model are:
810
///
811
///  - **14 primitive types**
812
///    - bool
813
///    - i8, i16, i32, i64, i128
814
///    - u8, u16, u32, u64, u128
815
///    - f32, f64
816
///    - char
817
///  - **string**
818
///    - UTF-8 bytes with a length and no null terminator.
819
///    - When serializing, all strings are handled equally. When deserializing,
820
///      there are three flavors of strings: transient, owned, and borrowed.
821
///  - **byte array** - \[u8\]
822
///    - Similar to strings, during deserialization byte arrays can be
823
///      transient, owned, or borrowed.
824
///  - **option**
825
///    - Either none or some value.
826
///  - **unit**
827
///    - The type of `()` in Rust. It represents an anonymous value containing
828
///      no data.
829
///  - **unit_struct**
830
///    - For example `struct Unit` or `PhantomData<T>`. It represents a named
831
///      value containing no data.
832
///  - **unit_variant**
833
///    - For example the `E::A` and `E::B` in `enum E { A, B }`.
834
///  - **newtype_struct**
835
///    - For example `struct Millimeters(u8)`.
836
///  - **newtype_variant**
837
///    - For example the `E::N` in `enum E { N(u8) }`.
838
///  - **seq**
839
///    - A variably sized heterogeneous sequence of values, for example `Vec<T>`
840
///      or `HashSet<T>`. When serializing, the length may or may not be known
841
///      before iterating through all the data. When deserializing, the length
842
///      is determined by looking at the serialized data.
843
///  - **tuple**
844
///    - A statically sized heterogeneous sequence of values for which the
845
///      length will be known at deserialization time without looking at the
846
///      serialized data, for example `(u8,)` or `(String, u64, Vec<T>)` or
847
///      `[u64; 10]`.
848
///  - **tuple_struct**
849
///    - A named tuple, for example `struct Rgb(u8, u8, u8)`.
850
///  - **tuple_variant**
851
///    - For example the `E::T` in `enum E { T(u8, u8) }`.
852
///  - **map**
853
///    - A heterogeneous key-value pairing, for example `BTreeMap<K, V>`.
854
///  - **struct**
855
///    - A heterogeneous key-value pairing in which the keys are strings and
856
///      will be known at deserialization time without looking at the serialized
857
///      data, for example `struct S { r: u8, g: u8, b: u8 }`.
858
///  - **struct_variant**
859
///    - For example the `E::S` in `enum E { S { r: u8, g: u8, b: u8 } }`.
860
///
861
/// The `Deserializer` trait supports two entry point styles which enables
862
/// different kinds of deserialization.
863
///
864
/// 1. The `deserialize_any` method. Self-describing data formats like JSON are
865
///    able to look at the serialized data and tell what it represents. For
866
///    example the JSON deserializer may see an opening curly brace (`{`) and
867
///    know that it is seeing a map. If the data format supports
868
///    `Deserializer::deserialize_any`, it will drive the Visitor using whatever
869
///    type it sees in the input. JSON uses this approach when deserializing
870
///    `serde_json::Value` which is an enum that can represent any JSON
871
///    document. Without knowing what is in a JSON document, we can deserialize
872
///    it to `serde_json::Value` by going through
873
///    `Deserializer::deserialize_any`.
874
///
875
/// 2. The various `deserialize_*` methods. Non-self-describing formats like
876
///    Postcard need to be told what is in the input in order to deserialize it.
877
///    The `deserialize_*` methods are hints to the deserializer for how to
878
///    interpret the next piece of input. Non-self-describing formats are not
879
///    able to deserialize something like `serde_json::Value` which relies on
880
///    `Deserializer::deserialize_any`.
881
///
882
/// When implementing `Deserialize`, you should avoid relying on
883
/// `Deserializer::deserialize_any` unless you need to be told by the
884
/// Deserializer what type is in the input. Know that relying on
885
/// `Deserializer::deserialize_any` means your data type will be able to
886
/// deserialize from self-describing formats only, ruling out Postcard and many
887
/// others.
888
///
889
/// [Serde data model]: https://serde.rs/data-model.html
890
///
891
/// # Lifetime
892
///
893
/// The `'de` lifetime of this trait is the lifetime of data that may be
894
/// borrowed from the input when deserializing. See the page [Understanding
895
/// deserializer lifetimes] for a more detailed explanation of these lifetimes.
896
///
897
/// [Understanding deserializer lifetimes]: https://serde.rs/lifetimes.html
898
///
899
/// # Example implementation
900
///
901
/// The [example data format] presented on the website contains example code for
902
/// a basic JSON `Deserializer`.
903
///
904
/// [example data format]: https://serde.rs/data-format.html
905
pub trait Deserializer<'de>: Sized {
906
    /// The error type that can be returned if some error occurs during
907
    /// deserialization.
908
    type Error: Error;
909
910
    /// Require the `Deserializer` to figure out how to drive the visitor based
911
    /// on what data type is in the input.
912
    ///
913
    /// When implementing `Deserialize`, you should avoid relying on
914
    /// `Deserializer::deserialize_any` unless you need to be told by the
915
    /// Deserializer what type is in the input. Know that relying on
916
    /// `Deserializer::deserialize_any` means your data type will be able to
917
    /// deserialize from self-describing formats only, ruling out Postcard and
918
    /// many others.
919
    fn deserialize_any<V>(self, visitor: V) -> Result<V::Value, Self::Error>
920
    where
921
        V: Visitor<'de>;
922
923
    /// Hint that the `Deserialize` type is expecting a `bool` value.
924
    fn deserialize_bool<V>(self, visitor: V) -> Result<V::Value, Self::Error>
925
    where
926
        V: Visitor<'de>;
927
928
    /// Hint that the `Deserialize` type is expecting an `i8` value.
929
    fn deserialize_i8<V>(self, visitor: V) -> Result<V::Value, Self::Error>
930
    where
931
        V: Visitor<'de>;
932
933
    /// Hint that the `Deserialize` type is expecting an `i16` value.
934
    fn deserialize_i16<V>(self, visitor: V) -> Result<V::Value, Self::Error>
935
    where
936
        V: Visitor<'de>;
937
938
    /// Hint that the `Deserialize` type is expecting an `i32` value.
939
    fn deserialize_i32<V>(self, visitor: V) -> Result<V::Value, Self::Error>
940
    where
941
        V: Visitor<'de>;
942
943
    /// Hint that the `Deserialize` type is expecting an `i64` value.
944
    fn deserialize_i64<V>(self, visitor: V) -> Result<V::Value, Self::Error>
945
    where
946
        V: Visitor<'de>;
947
948
    serde_if_integer128! {
949
        /// Hint that the `Deserialize` type is expecting an `i128` value.
950
        ///
951
        /// This method is available only on Rust compiler versions >=1.26. The
952
        /// default behavior unconditionally returns an error.
953
0
        fn deserialize_i128<V>(self, visitor: V) -> Result<V::Value, Self::Error>
954
0
        where
955
0
            V: Visitor<'de>
956
0
        {
957
0
            let _ = visitor;
958
0
            Err(Error::custom("i128 is not supported"))
959
0
        }
960
    }
961
962
    /// Hint that the `Deserialize` type is expecting a `u8` value.
963
    fn deserialize_u8<V>(self, visitor: V) -> Result<V::Value, Self::Error>
964
    where
965
        V: Visitor<'de>;
966
967
    /// Hint that the `Deserialize` type is expecting a `u16` value.
968
    fn deserialize_u16<V>(self, visitor: V) -> Result<V::Value, Self::Error>
969
    where
970
        V: Visitor<'de>;
971
972
    /// Hint that the `Deserialize` type is expecting a `u32` value.
973
    fn deserialize_u32<V>(self, visitor: V) -> Result<V::Value, Self::Error>
974
    where
975
        V: Visitor<'de>;
976
977
    /// Hint that the `Deserialize` type is expecting a `u64` value.
978
    fn deserialize_u64<V>(self, visitor: V) -> Result<V::Value, Self::Error>
979
    where
980
        V: Visitor<'de>;
981
982
    serde_if_integer128! {
983
        /// Hint that the `Deserialize` type is expecting an `u128` value.
984
        ///
985
        /// This method is available only on Rust compiler versions >=1.26. The
986
        /// default behavior unconditionally returns an error.
987
0
        fn deserialize_u128<V>(self, visitor: V) -> Result<V::Value, Self::Error>
988
0
        where
989
0
            V: Visitor<'de>
990
0
        {
991
0
            let _ = visitor;
992
0
            Err(Error::custom("u128 is not supported"))
993
0
        }
994
    }
995
996
    /// Hint that the `Deserialize` type is expecting a `f32` value.
997
    fn deserialize_f32<V>(self, visitor: V) -> Result<V::Value, Self::Error>
998
    where
999
        V: Visitor<'de>;
1000
1001
    /// Hint that the `Deserialize` type is expecting a `f64` value.
1002
    fn deserialize_f64<V>(self, visitor: V) -> Result<V::Value, Self::Error>
1003
    where
1004
        V: Visitor<'de>;
1005
1006
    /// Hint that the `Deserialize` type is expecting a `char` value.
1007
    fn deserialize_char<V>(self, visitor: V) -> Result<V::Value, Self::Error>
1008
    where
1009
        V: Visitor<'de>;
1010
1011
    /// Hint that the `Deserialize` type is expecting a string value and does
1012
    /// not benefit from taking ownership of buffered data owned by the
1013
    /// `Deserializer`.
1014
    ///
1015
    /// If the `Visitor` would benefit from taking ownership of `String` data,
1016
    /// indicate this to the `Deserializer` by using `deserialize_string`
1017
    /// instead.
1018
    fn deserialize_str<V>(self, visitor: V) -> Result<V::Value, Self::Error>
1019
    where
1020
        V: Visitor<'de>;
1021
1022
    /// Hint that the `Deserialize` type is expecting a string value and would
1023
    /// benefit from taking ownership of buffered data owned by the
1024
    /// `Deserializer`.
1025
    ///
1026
    /// If the `Visitor` would not benefit from taking ownership of `String`
1027
    /// data, indicate that to the `Deserializer` by using `deserialize_str`
1028
    /// instead.
1029
    fn deserialize_string<V>(self, visitor: V) -> Result<V::Value, Self::Error>
1030
    where
1031
        V: Visitor<'de>;
1032
1033
    /// Hint that the `Deserialize` type is expecting a byte array and does not
1034
    /// benefit from taking ownership of buffered data owned by the
1035
    /// `Deserializer`.
1036
    ///
1037
    /// If the `Visitor` would benefit from taking ownership of `Vec<u8>` data,
1038
    /// indicate this to the `Deserializer` by using `deserialize_byte_buf`
1039
    /// instead.
1040
    fn deserialize_bytes<V>(self, visitor: V) -> Result<V::Value, Self::Error>
1041
    where
1042
        V: Visitor<'de>;
1043
1044
    /// Hint that the `Deserialize` type is expecting a byte array and would
1045
    /// benefit from taking ownership of buffered data owned by the
1046
    /// `Deserializer`.
1047
    ///
1048
    /// If the `Visitor` would not benefit from taking ownership of `Vec<u8>`
1049
    /// data, indicate that to the `Deserializer` by using `deserialize_bytes`
1050
    /// instead.
1051
    fn deserialize_byte_buf<V>(self, visitor: V) -> Result<V::Value, Self::Error>
1052
    where
1053
        V: Visitor<'de>;
1054
1055
    /// Hint that the `Deserialize` type is expecting an optional value.
1056
    ///
1057
    /// This allows deserializers that encode an optional value as a nullable
1058
    /// value to convert the null value into `None` and a regular value into
1059
    /// `Some(value)`.
1060
    fn deserialize_option<V>(self, visitor: V) -> Result<V::Value, Self::Error>
1061
    where
1062
        V: Visitor<'de>;
1063
1064
    /// Hint that the `Deserialize` type is expecting a unit value.
1065
    fn deserialize_unit<V>(self, visitor: V) -> Result<V::Value, Self::Error>
1066
    where
1067
        V: Visitor<'de>;
1068
1069
    /// Hint that the `Deserialize` type is expecting a unit struct with a
1070
    /// particular name.
1071
    fn deserialize_unit_struct<V>(
1072
        self,
1073
        name: &'static str,
1074
        visitor: V,
1075
    ) -> Result<V::Value, Self::Error>
1076
    where
1077
        V: Visitor<'de>;
1078
1079
    /// Hint that the `Deserialize` type is expecting a newtype struct with a
1080
    /// particular name.
1081
    fn deserialize_newtype_struct<V>(
1082
        self,
1083
        name: &'static str,
1084
        visitor: V,
1085
    ) -> Result<V::Value, Self::Error>
1086
    where
1087
        V: Visitor<'de>;
1088
1089
    /// Hint that the `Deserialize` type is expecting a sequence of values.
1090
    fn deserialize_seq<V>(self, visitor: V) -> Result<V::Value, Self::Error>
1091
    where
1092
        V: Visitor<'de>;
1093
1094
    /// Hint that the `Deserialize` type is expecting a sequence of values and
1095
    /// knows how many values there are without looking at the serialized data.
1096
    fn deserialize_tuple<V>(self, len: usize, visitor: V) -> Result<V::Value, Self::Error>
1097
    where
1098
        V: Visitor<'de>;
1099
1100
    /// Hint that the `Deserialize` type is expecting a tuple struct with a
1101
    /// particular name and number of fields.
1102
    fn deserialize_tuple_struct<V>(
1103
        self,
1104
        name: &'static str,
1105
        len: usize,
1106
        visitor: V,
1107
    ) -> Result<V::Value, Self::Error>
1108
    where
1109
        V: Visitor<'de>;
1110
1111
    /// Hint that the `Deserialize` type is expecting a map of key-value pairs.
1112
    fn deserialize_map<V>(self, visitor: V) -> Result<V::Value, Self::Error>
1113
    where
1114
        V: Visitor<'de>;
1115
1116
    /// Hint that the `Deserialize` type is expecting a struct with a particular
1117
    /// name and fields.
1118
    fn deserialize_struct<V>(
1119
        self,
1120
        name: &'static str,
1121
        fields: &'static [&'static str],
1122
        visitor: V,
1123
    ) -> Result<V::Value, Self::Error>
1124
    where
1125
        V: Visitor<'de>;
1126
1127
    /// Hint that the `Deserialize` type is expecting an enum value with a
1128
    /// particular name and possible variants.
1129
    fn deserialize_enum<V>(
1130
        self,
1131
        name: &'static str,
1132
        variants: &'static [&'static str],
1133
        visitor: V,
1134
    ) -> Result<V::Value, Self::Error>
1135
    where
1136
        V: Visitor<'de>;
1137
1138
    /// Hint that the `Deserialize` type is expecting the name of a struct
1139
    /// field or the discriminant of an enum variant.
1140
    fn deserialize_identifier<V>(self, visitor: V) -> Result<V::Value, Self::Error>
1141
    where
1142
        V: Visitor<'de>;
1143
1144
    /// Hint that the `Deserialize` type needs to deserialize a value whose type
1145
    /// doesn't matter because it is ignored.
1146
    ///
1147
    /// Deserializers for non-self-describing formats may not support this mode.
1148
    fn deserialize_ignored_any<V>(self, visitor: V) -> Result<V::Value, Self::Error>
1149
    where
1150
        V: Visitor<'de>;
1151
1152
    /// Determine whether `Deserialize` implementations should expect to
1153
    /// deserialize their human-readable form.
1154
    ///
1155
    /// Some types have a human-readable form that may be somewhat expensive to
1156
    /// construct, as well as a binary form that is compact and efficient.
1157
    /// Generally text-based formats like JSON and YAML will prefer to use the
1158
    /// human-readable one and binary formats like Postcard will prefer the
1159
    /// compact one.
1160
    ///
1161
    /// ```edition2018
1162
    /// # use std::ops::Add;
1163
    /// # use std::str::FromStr;
1164
    /// #
1165
    /// # struct Timestamp;
1166
    /// #
1167
    /// # impl Timestamp {
1168
    /// #     const EPOCH: Timestamp = Timestamp;
1169
    /// # }
1170
    /// #
1171
    /// # impl FromStr for Timestamp {
1172
    /// #     type Err = String;
1173
    /// #     fn from_str(_: &str) -> Result<Self, Self::Err> {
1174
    /// #         unimplemented!()
1175
    /// #     }
1176
    /// # }
1177
    /// #
1178
    /// # struct Duration;
1179
    /// #
1180
    /// # impl Duration {
1181
    /// #     fn seconds(_: u64) -> Self { unimplemented!() }
1182
    /// # }
1183
    /// #
1184
    /// # impl Add<Duration> for Timestamp {
1185
    /// #     type Output = Timestamp;
1186
    /// #     fn add(self, _: Duration) -> Self::Output {
1187
    /// #         unimplemented!()
1188
    /// #     }
1189
    /// # }
1190
    /// #
1191
    /// use serde::de::{self, Deserialize, Deserializer};
1192
    ///
1193
    /// impl<'de> Deserialize<'de> for Timestamp {
1194
    ///     fn deserialize<D>(deserializer: D) -> Result<Self, D::Error>
1195
    ///     where
1196
    ///         D: Deserializer<'de>,
1197
    ///     {
1198
    ///         if deserializer.is_human_readable() {
1199
    ///             // Deserialize from a human-readable string like "2015-05-15T17:01:00Z".
1200
    ///             let s = String::deserialize(deserializer)?;
1201
    ///             Timestamp::from_str(&s).map_err(de::Error::custom)
1202
    ///         } else {
1203
    ///             // Deserialize from a compact binary representation, seconds since
1204
    ///             // the Unix epoch.
1205
    ///             let n = u64::deserialize(deserializer)?;
1206
    ///             Ok(Timestamp::EPOCH + Duration::seconds(n))
1207
    ///         }
1208
    ///     }
1209
    /// }
1210
    /// ```
1211
    ///
1212
    /// The default implementation of this method returns `true`. Data formats
1213
    /// may override this to `false` to request a compact form for types that
1214
    /// support one. Note that modifying this method to change a format from
1215
    /// human-readable to compact or vice versa should be regarded as a breaking
1216
    /// change, as a value serialized in human-readable mode is not required to
1217
    /// deserialize from the same data in compact mode.
1218
    #[inline]
1219
0
    fn is_human_readable(&self) -> bool {
1220
0
        true
1221
0
    }
1222
1223
    // Not public API.
1224
    #[cfg(all(not(no_serde_derive), any(feature = "std", feature = "alloc")))]
1225
    #[doc(hidden)]
1226
0
    fn __deserialize_content<V>(
1227
0
        self,
1228
0
        _: ::actually_private::T,
1229
0
        visitor: V,
1230
0
    ) -> Result<::private::de::Content<'de>, Self::Error>
1231
0
    where
1232
0
        V: Visitor<'de, Value = ::private::de::Content<'de>>,
1233
0
    {
1234
0
        self.deserialize_any(visitor)
1235
0
    }
1236
}
1237
1238
////////////////////////////////////////////////////////////////////////////////
1239
1240
/// This trait represents a visitor that walks through a deserializer.
1241
///
1242
/// # Lifetime
1243
///
1244
/// The `'de` lifetime of this trait is the requirement for lifetime of data
1245
/// that may be borrowed by `Self::Value`. See the page [Understanding
1246
/// deserializer lifetimes] for a more detailed explanation of these lifetimes.
1247
///
1248
/// [Understanding deserializer lifetimes]: https://serde.rs/lifetimes.html
1249
///
1250
/// # Example
1251
///
1252
/// ```edition2018
1253
/// # use std::fmt;
1254
/// #
1255
/// # use serde::de::{self, Unexpected, Visitor};
1256
/// #
1257
/// /// A visitor that deserializes a long string - a string containing at least
1258
/// /// some minimum number of bytes.
1259
/// struct LongString {
1260
///     min: usize,
1261
/// }
1262
///
1263
/// impl<'de> Visitor<'de> for LongString {
1264
///     type Value = String;
1265
///
1266
///     fn expecting(&self, formatter: &mut fmt::Formatter) -> fmt::Result {
1267
///         write!(formatter, "a string containing at least {} bytes", self.min)
1268
///     }
1269
///
1270
///     fn visit_str<E>(self, s: &str) -> Result<Self::Value, E>
1271
///     where
1272
///         E: de::Error,
1273
///     {
1274
///         if s.len() >= self.min {
1275
///             Ok(s.to_owned())
1276
///         } else {
1277
///             Err(de::Error::invalid_value(Unexpected::Str(s), &self))
1278
///         }
1279
///     }
1280
/// }
1281
/// ```
1282
pub trait Visitor<'de>: Sized {
1283
    /// The value produced by this visitor.
1284
    type Value;
1285
1286
    /// Format a message stating what data this Visitor expects to receive.
1287
    ///
1288
    /// This is used in error messages. The message should complete the sentence
1289
    /// "This Visitor expects to receive ...", for example the message could be
1290
    /// "an integer between 0 and 64". The message should not be capitalized and
1291
    /// should not end with a period.
1292
    ///
1293
    /// ```edition2018
1294
    /// # use std::fmt;
1295
    /// #
1296
    /// # struct S {
1297
    /// #     max: usize,
1298
    /// # }
1299
    /// #
1300
    /// # impl<'de> serde::de::Visitor<'de> for S {
1301
    /// #     type Value = ();
1302
    /// #
1303
    /// fn expecting(&self, formatter: &mut fmt::Formatter) -> fmt::Result {
1304
    ///     write!(formatter, "an integer between 0 and {}", self.max)
1305
    /// }
1306
    /// # }
1307
    /// ```
1308
    fn expecting(&self, formatter: &mut fmt::Formatter) -> fmt::Result;
1309
1310
    /// The input contains a boolean.
1311
    ///
1312
    /// The default implementation fails with a type error.
1313
0
    fn visit_bool<E>(self, v: bool) -> Result<Self::Value, E>
1314
0
    where
1315
0
        E: Error,
1316
0
    {
1317
0
        Err(Error::invalid_type(Unexpected::Bool(v), &self))
1318
0
    }
1319
1320
    /// The input contains an `i8`.
1321
    ///
1322
    /// The default implementation forwards to [`visit_i64`].
1323
    ///
1324
    /// [`visit_i64`]: #method.visit_i64
1325
0
    fn visit_i8<E>(self, v: i8) -> Result<Self::Value, E>
1326
0
    where
1327
0
        E: Error,
1328
0
    {
1329
0
        self.visit_i64(v as i64)
1330
0
    }
1331
1332
    /// The input contains an `i16`.
1333
    ///
1334
    /// The default implementation forwards to [`visit_i64`].
1335
    ///
1336
    /// [`visit_i64`]: #method.visit_i64
1337
0
    fn visit_i16<E>(self, v: i16) -> Result<Self::Value, E>
1338
0
    where
1339
0
        E: Error,
1340
0
    {
1341
0
        self.visit_i64(v as i64)
1342
0
    }
1343
1344
    /// The input contains an `i32`.
1345
    ///
1346
    /// The default implementation forwards to [`visit_i64`].
1347
    ///
1348
    /// [`visit_i64`]: #method.visit_i64
1349
0
    fn visit_i32<E>(self, v: i32) -> Result<Self::Value, E>
1350
0
    where
1351
0
        E: Error,
1352
0
    {
1353
0
        self.visit_i64(v as i64)
1354
0
    }
1355
1356
    /// The input contains an `i64`.
1357
    ///
1358
    /// The default implementation fails with a type error.
1359
0
    fn visit_i64<E>(self, v: i64) -> Result<Self::Value, E>
1360
0
    where
1361
0
        E: Error,
1362
0
    {
1363
0
        Err(Error::invalid_type(Unexpected::Signed(v), &self))
1364
0
    }
1365
1366
    serde_if_integer128! {
1367
        /// The input contains a `i128`.
1368
        ///
1369
        /// This method is available only on Rust compiler versions >=1.26. The
1370
        /// default implementation fails with a type error.
1371
0
        fn visit_i128<E>(self, v: i128) -> Result<Self::Value, E>
1372
0
        where
1373
0
            E: Error,
1374
0
        {
1375
0
            let mut buf = [0u8; 58];
1376
0
            let mut writer = format::Buf::new(&mut buf);
1377
0
            fmt::Write::write_fmt(&mut writer, format_args!("integer `{}` as i128", v)).unwrap();
1378
0
            Err(Error::invalid_type(Unexpected::Other(writer.as_str()), &self))
1379
0
        }
1380
    }
1381
1382
    /// The input contains a `u8`.
1383
    ///
1384
    /// The default implementation forwards to [`visit_u64`].
1385
    ///
1386
    /// [`visit_u64`]: #method.visit_u64
1387
0
    fn visit_u8<E>(self, v: u8) -> Result<Self::Value, E>
1388
0
    where
1389
0
        E: Error,
1390
0
    {
1391
0
        self.visit_u64(v as u64)
1392
0
    }
1393
1394
    /// The input contains a `u16`.
1395
    ///
1396
    /// The default implementation forwards to [`visit_u64`].
1397
    ///
1398
    /// [`visit_u64`]: #method.visit_u64
1399
0
    fn visit_u16<E>(self, v: u16) -> Result<Self::Value, E>
1400
0
    where
1401
0
        E: Error,
1402
0
    {
1403
0
        self.visit_u64(v as u64)
1404
0
    }
1405
1406
    /// The input contains a `u32`.
1407
    ///
1408
    /// The default implementation forwards to [`visit_u64`].
1409
    ///
1410
    /// [`visit_u64`]: #method.visit_u64
1411
0
    fn visit_u32<E>(self, v: u32) -> Result<Self::Value, E>
1412
0
    where
1413
0
        E: Error,
1414
0
    {
1415
0
        self.visit_u64(v as u64)
1416
0
    }
1417
1418
    /// The input contains a `u64`.
1419
    ///
1420
    /// The default implementation fails with a type error.
1421
0
    fn visit_u64<E>(self, v: u64) -> Result<Self::Value, E>
1422
0
    where
1423
0
        E: Error,
1424
0
    {
1425
0
        Err(Error::invalid_type(Unexpected::Unsigned(v), &self))
1426
0
    }
1427
1428
    serde_if_integer128! {
1429
        /// The input contains a `u128`.
1430
        ///
1431
        /// This method is available only on Rust compiler versions >=1.26. The
1432
        /// default implementation fails with a type error.
1433
0
        fn visit_u128<E>(self, v: u128) -> Result<Self::Value, E>
1434
0
        where
1435
0
            E: Error,
1436
0
        {
1437
0
            let mut buf = [0u8; 57];
1438
0
            let mut writer = format::Buf::new(&mut buf);
1439
0
            fmt::Write::write_fmt(&mut writer, format_args!("integer `{}` as u128", v)).unwrap();
1440
0
            Err(Error::invalid_type(Unexpected::Other(writer.as_str()), &self))
1441
0
        }
1442
    }
1443
1444
    /// The input contains an `f32`.
1445
    ///
1446
    /// The default implementation forwards to [`visit_f64`].
1447
    ///
1448
    /// [`visit_f64`]: #method.visit_f64
1449
0
    fn visit_f32<E>(self, v: f32) -> Result<Self::Value, E>
1450
0
    where
1451
0
        E: Error,
1452
0
    {
1453
0
        self.visit_f64(v as f64)
1454
0
    }
1455
1456
    /// The input contains an `f64`.
1457
    ///
1458
    /// The default implementation fails with a type error.
1459
0
    fn visit_f64<E>(self, v: f64) -> Result<Self::Value, E>
1460
0
    where
1461
0
        E: Error,
1462
0
    {
1463
0
        Err(Error::invalid_type(Unexpected::Float(v), &self))
1464
0
    }
1465
1466
    /// The input contains a `char`.
1467
    ///
1468
    /// The default implementation forwards to [`visit_str`] as a one-character
1469
    /// string.
1470
    ///
1471
    /// [`visit_str`]: #method.visit_str
1472
    #[inline]
1473
0
    fn visit_char<E>(self, v: char) -> Result<Self::Value, E>
1474
0
    where
1475
0
        E: Error,
1476
0
    {
1477
0
        self.visit_str(utf8::encode(v).as_str())
1478
0
    }
1479
1480
    /// The input contains a string. The lifetime of the string is ephemeral and
1481
    /// it may be destroyed after this method returns.
1482
    ///
1483
    /// This method allows the `Deserializer` to avoid a copy by retaining
1484
    /// ownership of any buffered data. `Deserialize` implementations that do
1485
    /// not benefit from taking ownership of `String` data should indicate that
1486
    /// to the deserializer by using `Deserializer::deserialize_str` rather than
1487
    /// `Deserializer::deserialize_string`.
1488
    ///
1489
    /// It is never correct to implement `visit_string` without implementing
1490
    /// `visit_str`. Implement neither, both, or just `visit_str`.
1491
0
    fn visit_str<E>(self, v: &str) -> Result<Self::Value, E>
1492
0
    where
1493
0
        E: Error,
1494
0
    {
1495
0
        Err(Error::invalid_type(Unexpected::Str(v), &self))
1496
0
    }
1497
1498
    /// The input contains a string that lives at least as long as the
1499
    /// `Deserializer`.
1500
    ///
1501
    /// This enables zero-copy deserialization of strings in some formats. For
1502
    /// example JSON input containing the JSON string `"borrowed"` can be
1503
    /// deserialized with zero copying into a `&'a str` as long as the input
1504
    /// data outlives `'a`.
1505
    ///
1506
    /// The default implementation forwards to `visit_str`.
1507
    #[inline]
1508
0
    fn visit_borrowed_str<E>(self, v: &'de str) -> Result<Self::Value, E>
1509
0
    where
1510
0
        E: Error,
1511
0
    {
1512
0
        self.visit_str(v)
1513
0
    }
1514
1515
    /// The input contains a string and ownership of the string is being given
1516
    /// to the `Visitor`.
1517
    ///
1518
    /// This method allows the `Visitor` to avoid a copy by taking ownership of
1519
    /// a string created by the `Deserializer`. `Deserialize` implementations
1520
    /// that benefit from taking ownership of `String` data should indicate that
1521
    /// to the deserializer by using `Deserializer::deserialize_string` rather
1522
    /// than `Deserializer::deserialize_str`, although not every deserializer
1523
    /// will honor such a request.
1524
    ///
1525
    /// It is never correct to implement `visit_string` without implementing
1526
    /// `visit_str`. Implement neither, both, or just `visit_str`.
1527
    ///
1528
    /// The default implementation forwards to `visit_str` and then drops the
1529
    /// `String`.
1530
    #[inline]
1531
    #[cfg(any(feature = "std", feature = "alloc"))]
1532
0
    fn visit_string<E>(self, v: String) -> Result<Self::Value, E>
1533
0
    where
1534
0
        E: Error,
1535
0
    {
1536
0
        self.visit_str(&v)
1537
0
    }
1538
1539
    /// The input contains a byte array. The lifetime of the byte array is
1540
    /// ephemeral and it may be destroyed after this method returns.
1541
    ///
1542
    /// This method allows the `Deserializer` to avoid a copy by retaining
1543
    /// ownership of any buffered data. `Deserialize` implementations that do
1544
    /// not benefit from taking ownership of `Vec<u8>` data should indicate that
1545
    /// to the deserializer by using `Deserializer::deserialize_bytes` rather
1546
    /// than `Deserializer::deserialize_byte_buf`.
1547
    ///
1548
    /// It is never correct to implement `visit_byte_buf` without implementing
1549
    /// `visit_bytes`. Implement neither, both, or just `visit_bytes`.
1550
0
    fn visit_bytes<E>(self, v: &[u8]) -> Result<Self::Value, E>
1551
0
    where
1552
0
        E: Error,
1553
0
    {
1554
0
        let _ = v;
1555
0
        Err(Error::invalid_type(Unexpected::Bytes(v), &self))
1556
0
    }
1557
1558
    /// The input contains a byte array that lives at least as long as the
1559
    /// `Deserializer`.
1560
    ///
1561
    /// This enables zero-copy deserialization of bytes in some formats. For
1562
    /// example Postcard data containing bytes can be deserialized with zero
1563
    /// copying into a `&'a [u8]` as long as the input data outlives `'a`.
1564
    ///
1565
    /// The default implementation forwards to `visit_bytes`.
1566
    #[inline]
1567
0
    fn visit_borrowed_bytes<E>(self, v: &'de [u8]) -> Result<Self::Value, E>
1568
0
    where
1569
0
        E: Error,
1570
0
    {
1571
0
        self.visit_bytes(v)
1572
0
    }
1573
1574
    /// The input contains a byte array and ownership of the byte array is being
1575
    /// given to the `Visitor`.
1576
    ///
1577
    /// This method allows the `Visitor` to avoid a copy by taking ownership of
1578
    /// a byte buffer created by the `Deserializer`. `Deserialize`
1579
    /// implementations that benefit from taking ownership of `Vec<u8>` data
1580
    /// should indicate that to the deserializer by using
1581
    /// `Deserializer::deserialize_byte_buf` rather than
1582
    /// `Deserializer::deserialize_bytes`, although not every deserializer will
1583
    /// honor such a request.
1584
    ///
1585
    /// It is never correct to implement `visit_byte_buf` without implementing
1586
    /// `visit_bytes`. Implement neither, both, or just `visit_bytes`.
1587
    ///
1588
    /// The default implementation forwards to `visit_bytes` and then drops the
1589
    /// `Vec<u8>`.
1590
    #[cfg(any(feature = "std", feature = "alloc"))]
1591
0
    fn visit_byte_buf<E>(self, v: Vec<u8>) -> Result<Self::Value, E>
1592
0
    where
1593
0
        E: Error,
1594
0
    {
1595
0
        self.visit_bytes(&v)
1596
0
    }
1597
1598
    /// The input contains an optional that is absent.
1599
    ///
1600
    /// The default implementation fails with a type error.
1601
0
    fn visit_none<E>(self) -> Result<Self::Value, E>
1602
0
    where
1603
0
        E: Error,
1604
0
    {
1605
0
        Err(Error::invalid_type(Unexpected::Option, &self))
1606
0
    }
1607
1608
    /// The input contains an optional that is present.
1609
    ///
1610
    /// The default implementation fails with a type error.
1611
0
    fn visit_some<D>(self, deserializer: D) -> Result<Self::Value, D::Error>
1612
0
    where
1613
0
        D: Deserializer<'de>,
1614
0
    {
1615
0
        let _ = deserializer;
1616
0
        Err(Error::invalid_type(Unexpected::Option, &self))
1617
0
    }
1618
1619
    /// The input contains a unit `()`.
1620
    ///
1621
    /// The default implementation fails with a type error.
1622
0
    fn visit_unit<E>(self) -> Result<Self::Value, E>
1623
0
    where
1624
0
        E: Error,
1625
0
    {
1626
0
        Err(Error::invalid_type(Unexpected::Unit, &self))
1627
0
    }
1628
1629
    /// The input contains a newtype struct.
1630
    ///
1631
    /// The content of the newtype struct may be read from the given
1632
    /// `Deserializer`.
1633
    ///
1634
    /// The default implementation fails with a type error.
1635
0
    fn visit_newtype_struct<D>(self, deserializer: D) -> Result<Self::Value, D::Error>
1636
0
    where
1637
0
        D: Deserializer<'de>,
1638
0
    {
1639
0
        let _ = deserializer;
1640
0
        Err(Error::invalid_type(Unexpected::NewtypeStruct, &self))
1641
0
    }
1642
1643
    /// The input contains a sequence of elements.
1644
    ///
1645
    /// The default implementation fails with a type error.
1646
0
    fn visit_seq<A>(self, seq: A) -> Result<Self::Value, A::Error>
1647
0
    where
1648
0
        A: SeqAccess<'de>,
1649
0
    {
1650
0
        let _ = seq;
1651
0
        Err(Error::invalid_type(Unexpected::Seq, &self))
1652
0
    }
1653
1654
    /// The input contains a key-value map.
1655
    ///
1656
    /// The default implementation fails with a type error.
1657
0
    fn visit_map<A>(self, map: A) -> Result<Self::Value, A::Error>
1658
0
    where
1659
0
        A: MapAccess<'de>,
1660
0
    {
1661
0
        let _ = map;
1662
0
        Err(Error::invalid_type(Unexpected::Map, &self))
1663
0
    }
1664
1665
    /// The input contains an enum.
1666
    ///
1667
    /// The default implementation fails with a type error.
1668
0
    fn visit_enum<A>(self, data: A) -> Result<Self::Value, A::Error>
1669
0
    where
1670
0
        A: EnumAccess<'de>,
1671
0
    {
1672
0
        let _ = data;
1673
0
        Err(Error::invalid_type(Unexpected::Enum, &self))
1674
0
    }
1675
1676
    // Used when deserializing a flattened Option field. Not public API.
1677
    #[doc(hidden)]
1678
0
    fn __private_visit_untagged_option<D>(self, _: D) -> Result<Self::Value, ()>
1679
0
    where
1680
0
        D: Deserializer<'de>,
1681
0
    {
1682
0
        Err(())
1683
0
    }
1684
}
1685
1686
////////////////////////////////////////////////////////////////////////////////
1687
1688
/// Provides a `Visitor` access to each element of a sequence in the input.
1689
///
1690
/// This is a trait that a `Deserializer` passes to a `Visitor` implementation,
1691
/// which deserializes each item in a sequence.
1692
///
1693
/// # Lifetime
1694
///
1695
/// The `'de` lifetime of this trait is the lifetime of data that may be
1696
/// borrowed by deserialized sequence elements. See the page [Understanding
1697
/// deserializer lifetimes] for a more detailed explanation of these lifetimes.
1698
///
1699
/// [Understanding deserializer lifetimes]: https://serde.rs/lifetimes.html
1700
///
1701
/// # Example implementation
1702
///
1703
/// The [example data format] presented on the website demonstrates an
1704
/// implementation of `SeqAccess` for a basic JSON data format.
1705
///
1706
/// [example data format]: https://serde.rs/data-format.html
1707
pub trait SeqAccess<'de> {
1708
    /// The error type that can be returned if some error occurs during
1709
    /// deserialization.
1710
    type Error: Error;
1711
1712
    /// This returns `Ok(Some(value))` for the next value in the sequence, or
1713
    /// `Ok(None)` if there are no more remaining items.
1714
    ///
1715
    /// `Deserialize` implementations should typically use
1716
    /// `SeqAccess::next_element` instead.
1717
    fn next_element_seed<T>(&mut self, seed: T) -> Result<Option<T::Value>, Self::Error>
1718
    where
1719
        T: DeserializeSeed<'de>;
1720
1721
    /// This returns `Ok(Some(value))` for the next value in the sequence, or
1722
    /// `Ok(None)` if there are no more remaining items.
1723
    ///
1724
    /// This method exists as a convenience for `Deserialize` implementations.
1725
    /// `SeqAccess` implementations should not override the default behavior.
1726
    #[inline]
1727
0
    fn next_element<T>(&mut self) -> Result<Option<T>, Self::Error>
1728
0
    where
1729
0
        T: Deserialize<'de>,
1730
0
    {
1731
0
        self.next_element_seed(PhantomData)
1732
0
    }
1733
1734
    /// Returns the number of elements remaining in the sequence, if known.
1735
    #[inline]
1736
0
    fn size_hint(&self) -> Option<usize> {
1737
0
        None
1738
0
    }
1739
}
1740
1741
impl<'de, 'a, A: ?Sized> SeqAccess<'de> for &'a mut A
1742
where
1743
    A: SeqAccess<'de>,
1744
{
1745
    type Error = A::Error;
1746
1747
    #[inline]
1748
0
    fn next_element_seed<T>(&mut self, seed: T) -> Result<Option<T::Value>, Self::Error>
1749
0
    where
1750
0
        T: DeserializeSeed<'de>,
1751
0
    {
1752
0
        (**self).next_element_seed(seed)
1753
0
    }
1754
1755
    #[inline]
1756
0
    fn next_element<T>(&mut self) -> Result<Option<T>, Self::Error>
1757
0
    where
1758
0
        T: Deserialize<'de>,
1759
0
    {
1760
0
        (**self).next_element()
1761
0
    }
1762
1763
    #[inline]
1764
0
    fn size_hint(&self) -> Option<usize> {
1765
0
        (**self).size_hint()
1766
0
    }
1767
}
1768
1769
////////////////////////////////////////////////////////////////////////////////
1770
1771
/// Provides a `Visitor` access to each entry of a map in the input.
1772
///
1773
/// This is a trait that a `Deserializer` passes to a `Visitor` implementation.
1774
///
1775
/// # Lifetime
1776
///
1777
/// The `'de` lifetime of this trait is the lifetime of data that may be
1778
/// borrowed by deserialized map entries. See the page [Understanding
1779
/// deserializer lifetimes] for a more detailed explanation of these lifetimes.
1780
///
1781
/// [Understanding deserializer lifetimes]: https://serde.rs/lifetimes.html
1782
///
1783
/// # Example implementation
1784
///
1785
/// The [example data format] presented on the website demonstrates an
1786
/// implementation of `MapAccess` for a basic JSON data format.
1787
///
1788
/// [example data format]: https://serde.rs/data-format.html
1789
pub trait MapAccess<'de> {
1790
    /// The error type that can be returned if some error occurs during
1791
    /// deserialization.
1792
    type Error: Error;
1793
1794
    /// This returns `Ok(Some(key))` for the next key in the map, or `Ok(None)`
1795
    /// if there are no more remaining entries.
1796
    ///
1797
    /// `Deserialize` implementations should typically use
1798
    /// `MapAccess::next_key` or `MapAccess::next_entry` instead.
1799
    fn next_key_seed<K>(&mut self, seed: K) -> Result<Option<K::Value>, Self::Error>
1800
    where
1801
        K: DeserializeSeed<'de>;
1802
1803
    /// This returns a `Ok(value)` for the next value in the map.
1804
    ///
1805
    /// `Deserialize` implementations should typically use
1806
    /// `MapAccess::next_value` instead.
1807
    ///
1808
    /// # Panics
1809
    ///
1810
    /// Calling `next_value_seed` before `next_key_seed` is incorrect and is
1811
    /// allowed to panic or return bogus results.
1812
    fn next_value_seed<V>(&mut self, seed: V) -> Result<V::Value, Self::Error>
1813
    where
1814
        V: DeserializeSeed<'de>;
1815
1816
    /// This returns `Ok(Some((key, value)))` for the next (key-value) pair in
1817
    /// the map, or `Ok(None)` if there are no more remaining items.
1818
    ///
1819
    /// `MapAccess` implementations should override the default behavior if a
1820
    /// more efficient implementation is possible.
1821
    ///
1822
    /// `Deserialize` implementations should typically use
1823
    /// `MapAccess::next_entry` instead.
1824
    #[inline]
1825
0
    fn next_entry_seed<K, V>(
1826
0
        &mut self,
1827
0
        kseed: K,
1828
0
        vseed: V,
1829
0
    ) -> Result<Option<(K::Value, V::Value)>, Self::Error>
1830
0
    where
1831
0
        K: DeserializeSeed<'de>,
1832
0
        V: DeserializeSeed<'de>,
1833
0
    {
1834
0
        match try!(self.next_key_seed(kseed)) {
1835
0
            Some(key) => {
1836
0
                let value = try!(self.next_value_seed(vseed));
1837
0
                Ok(Some((key, value)))
1838
            }
1839
0
            None => Ok(None),
1840
        }
1841
0
    }
1842
1843
    /// This returns `Ok(Some(key))` for the next key in the map, or `Ok(None)`
1844
    /// if there are no more remaining entries.
1845
    ///
1846
    /// This method exists as a convenience for `Deserialize` implementations.
1847
    /// `MapAccess` implementations should not override the default behavior.
1848
    #[inline]
1849
0
    fn next_key<K>(&mut self) -> Result<Option<K>, Self::Error>
1850
0
    where
1851
0
        K: Deserialize<'de>,
1852
0
    {
1853
0
        self.next_key_seed(PhantomData)
1854
0
    }
1855
1856
    /// This returns a `Ok(value)` for the next value in the map.
1857
    ///
1858
    /// This method exists as a convenience for `Deserialize` implementations.
1859
    /// `MapAccess` implementations should not override the default behavior.
1860
    ///
1861
    /// # Panics
1862
    ///
1863
    /// Calling `next_value` before `next_key` is incorrect and is allowed to
1864
    /// panic or return bogus results.
1865
    #[inline]
1866
0
    fn next_value<V>(&mut self) -> Result<V, Self::Error>
1867
0
    where
1868
0
        V: Deserialize<'de>,
1869
0
    {
1870
0
        self.next_value_seed(PhantomData)
1871
0
    }
1872
1873
    /// This returns `Ok(Some((key, value)))` for the next (key-value) pair in
1874
    /// the map, or `Ok(None)` if there are no more remaining items.
1875
    ///
1876
    /// This method exists as a convenience for `Deserialize` implementations.
1877
    /// `MapAccess` implementations should not override the default behavior.
1878
    #[inline]
1879
0
    fn next_entry<K, V>(&mut self) -> Result<Option<(K, V)>, Self::Error>
1880
0
    where
1881
0
        K: Deserialize<'de>,
1882
0
        V: Deserialize<'de>,
1883
0
    {
1884
0
        self.next_entry_seed(PhantomData, PhantomData)
1885
0
    }
1886
1887
    /// Returns the number of entries remaining in the map, if known.
1888
    #[inline]
1889
0
    fn size_hint(&self) -> Option<usize> {
1890
0
        None
1891
0
    }
1892
}
1893
1894
impl<'de, 'a, A: ?Sized> MapAccess<'de> for &'a mut A
1895
where
1896
    A: MapAccess<'de>,
1897
{
1898
    type Error = A::Error;
1899
1900
    #[inline]
1901
0
    fn next_key_seed<K>(&mut self, seed: K) -> Result<Option<K::Value>, Self::Error>
1902
0
    where
1903
0
        K: DeserializeSeed<'de>,
1904
0
    {
1905
0
        (**self).next_key_seed(seed)
1906
0
    }
1907
1908
    #[inline]
1909
0
    fn next_value_seed<V>(&mut self, seed: V) -> Result<V::Value, Self::Error>
1910
0
    where
1911
0
        V: DeserializeSeed<'de>,
1912
0
    {
1913
0
        (**self).next_value_seed(seed)
1914
0
    }
1915
1916
    #[inline]
1917
0
    fn next_entry_seed<K, V>(
1918
0
        &mut self,
1919
0
        kseed: K,
1920
0
        vseed: V,
1921
0
    ) -> Result<Option<(K::Value, V::Value)>, Self::Error>
1922
0
    where
1923
0
        K: DeserializeSeed<'de>,
1924
0
        V: DeserializeSeed<'de>,
1925
0
    {
1926
0
        (**self).next_entry_seed(kseed, vseed)
1927
0
    }
1928
1929
    #[inline]
1930
0
    fn next_entry<K, V>(&mut self) -> Result<Option<(K, V)>, Self::Error>
1931
0
    where
1932
0
        K: Deserialize<'de>,
1933
0
        V: Deserialize<'de>,
1934
0
    {
1935
0
        (**self).next_entry()
1936
0
    }
1937
1938
    #[inline]
1939
0
    fn next_key<K>(&mut self) -> Result<Option<K>, Self::Error>
1940
0
    where
1941
0
        K: Deserialize<'de>,
1942
0
    {
1943
0
        (**self).next_key()
1944
0
    }
1945
1946
    #[inline]
1947
0
    fn next_value<V>(&mut self) -> Result<V, Self::Error>
1948
0
    where
1949
0
        V: Deserialize<'de>,
1950
0
    {
1951
0
        (**self).next_value()
1952
0
    }
1953
1954
    #[inline]
1955
0
    fn size_hint(&self) -> Option<usize> {
1956
0
        (**self).size_hint()
1957
0
    }
1958
}
1959
1960
////////////////////////////////////////////////////////////////////////////////
1961
1962
/// Provides a `Visitor` access to the data of an enum in the input.
1963
///
1964
/// `EnumAccess` is created by the `Deserializer` and passed to the
1965
/// `Visitor` in order to identify which variant of an enum to deserialize.
1966
///
1967
/// # Lifetime
1968
///
1969
/// The `'de` lifetime of this trait is the lifetime of data that may be
1970
/// borrowed by the deserialized enum variant. See the page [Understanding
1971
/// deserializer lifetimes] for a more detailed explanation of these lifetimes.
1972
///
1973
/// [Understanding deserializer lifetimes]: https://serde.rs/lifetimes.html
1974
///
1975
/// # Example implementation
1976
///
1977
/// The [example data format] presented on the website demonstrates an
1978
/// implementation of `EnumAccess` for a basic JSON data format.
1979
///
1980
/// [example data format]: https://serde.rs/data-format.html
1981
pub trait EnumAccess<'de>: Sized {
1982
    /// The error type that can be returned if some error occurs during
1983
    /// deserialization.
1984
    type Error: Error;
1985
    /// The `Visitor` that will be used to deserialize the content of the enum
1986
    /// variant.
1987
    type Variant: VariantAccess<'de, Error = Self::Error>;
1988
1989
    /// `variant` is called to identify which variant to deserialize.
1990
    ///
1991
    /// `Deserialize` implementations should typically use `EnumAccess::variant`
1992
    /// instead.
1993
    fn variant_seed<V>(self, seed: V) -> Result<(V::Value, Self::Variant), Self::Error>
1994
    where
1995
        V: DeserializeSeed<'de>;
1996
1997
    /// `variant` is called to identify which variant to deserialize.
1998
    ///
1999
    /// This method exists as a convenience for `Deserialize` implementations.
2000
    /// `EnumAccess` implementations should not override the default behavior.
2001
    #[inline]
2002
0
    fn variant<V>(self) -> Result<(V, Self::Variant), Self::Error>
2003
0
    where
2004
0
        V: Deserialize<'de>,
2005
0
    {
2006
0
        self.variant_seed(PhantomData)
2007
0
    }
2008
}
2009
2010
/// `VariantAccess` is a visitor that is created by the `Deserializer` and
2011
/// passed to the `Deserialize` to deserialize the content of a particular enum
2012
/// variant.
2013
///
2014
/// # Lifetime
2015
///
2016
/// The `'de` lifetime of this trait is the lifetime of data that may be
2017
/// borrowed by the deserialized enum variant. See the page [Understanding
2018
/// deserializer lifetimes] for a more detailed explanation of these lifetimes.
2019
///
2020
/// [Understanding deserializer lifetimes]: https://serde.rs/lifetimes.html
2021
///
2022
/// # Example implementation
2023
///
2024
/// The [example data format] presented on the website demonstrates an
2025
/// implementation of `VariantAccess` for a basic JSON data format.
2026
///
2027
/// [example data format]: https://serde.rs/data-format.html
2028
pub trait VariantAccess<'de>: Sized {
2029
    /// The error type that can be returned if some error occurs during
2030
    /// deserialization. Must match the error type of our `EnumAccess`.
2031
    type Error: Error;
2032
2033
    /// Called when deserializing a variant with no values.
2034
    ///
2035
    /// If the data contains a different type of variant, the following
2036
    /// `invalid_type` error should be constructed:
2037
    ///
2038
    /// ```edition2018
2039
    /// # use serde::de::{self, value, DeserializeSeed, Visitor, VariantAccess, Unexpected};
2040
    /// #
2041
    /// # struct X;
2042
    /// #
2043
    /// # impl<'de> VariantAccess<'de> for X {
2044
    /// #     type Error = value::Error;
2045
    /// #
2046
    /// fn unit_variant(self) -> Result<(), Self::Error> {
2047
    ///     // What the data actually contained; suppose it is a tuple variant.
2048
    ///     let unexp = Unexpected::TupleVariant;
2049
    ///     Err(de::Error::invalid_type(unexp, &"unit variant"))
2050
    /// }
2051
    /// #
2052
    /// #     fn newtype_variant_seed<T>(self, _: T) -> Result<T::Value, Self::Error>
2053
    /// #     where
2054
    /// #         T: DeserializeSeed<'de>,
2055
    /// #     { unimplemented!() }
2056
    /// #
2057
    /// #     fn tuple_variant<V>(self, _: usize, _: V) -> Result<V::Value, Self::Error>
2058
    /// #     where
2059
    /// #         V: Visitor<'de>,
2060
    /// #     { unimplemented!() }
2061
    /// #
2062
    /// #     fn struct_variant<V>(self, _: &[&str], _: V) -> Result<V::Value, Self::Error>
2063
    /// #     where
2064
    /// #         V: Visitor<'de>,
2065
    /// #     { unimplemented!() }
2066
    /// # }
2067
    /// ```
2068
    fn unit_variant(self) -> Result<(), Self::Error>;
2069
2070
    /// Called when deserializing a variant with a single value.
2071
    ///
2072
    /// `Deserialize` implementations should typically use
2073
    /// `VariantAccess::newtype_variant` instead.
2074
    ///
2075
    /// If the data contains a different type of variant, the following
2076
    /// `invalid_type` error should be constructed:
2077
    ///
2078
    /// ```edition2018
2079
    /// # use serde::de::{self, value, DeserializeSeed, Visitor, VariantAccess, Unexpected};
2080
    /// #
2081
    /// # struct X;
2082
    /// #
2083
    /// # impl<'de> VariantAccess<'de> for X {
2084
    /// #     type Error = value::Error;
2085
    /// #
2086
    /// #     fn unit_variant(self) -> Result<(), Self::Error> {
2087
    /// #         unimplemented!()
2088
    /// #     }
2089
    /// #
2090
    /// fn newtype_variant_seed<T>(self, _seed: T) -> Result<T::Value, Self::Error>
2091
    /// where
2092
    ///     T: DeserializeSeed<'de>,
2093
    /// {
2094
    ///     // What the data actually contained; suppose it is a unit variant.
2095
    ///     let unexp = Unexpected::UnitVariant;
2096
    ///     Err(de::Error::invalid_type(unexp, &"newtype variant"))
2097
    /// }
2098
    /// #
2099
    /// #     fn tuple_variant<V>(self, _: usize, _: V) -> Result<V::Value, Self::Error>
2100
    /// #     where
2101
    /// #         V: Visitor<'de>,
2102
    /// #     { unimplemented!() }
2103
    /// #
2104
    /// #     fn struct_variant<V>(self, _: &[&str], _: V) -> Result<V::Value, Self::Error>
2105
    /// #     where
2106
    /// #         V: Visitor<'de>,
2107
    /// #     { unimplemented!() }
2108
    /// # }
2109
    /// ```
2110
    fn newtype_variant_seed<T>(self, seed: T) -> Result<T::Value, Self::Error>
2111
    where
2112
        T: DeserializeSeed<'de>;
2113
2114
    /// Called when deserializing a variant with a single value.
2115
    ///
2116
    /// This method exists as a convenience for `Deserialize` implementations.
2117
    /// `VariantAccess` implementations should not override the default
2118
    /// behavior.
2119
    #[inline]
2120
0
    fn newtype_variant<T>(self) -> Result<T, Self::Error>
2121
0
    where
2122
0
        T: Deserialize<'de>,
2123
0
    {
2124
0
        self.newtype_variant_seed(PhantomData)
2125
0
    }
2126
2127
    /// Called when deserializing a tuple-like variant.
2128
    ///
2129
    /// The `len` is the number of fields expected in the tuple variant.
2130
    ///
2131
    /// If the data contains a different type of variant, the following
2132
    /// `invalid_type` error should be constructed:
2133
    ///
2134
    /// ```edition2018
2135
    /// # use serde::de::{self, value, DeserializeSeed, Visitor, VariantAccess, Unexpected};
2136
    /// #
2137
    /// # struct X;
2138
    /// #
2139
    /// # impl<'de> VariantAccess<'de> for X {
2140
    /// #     type Error = value::Error;
2141
    /// #
2142
    /// #     fn unit_variant(self) -> Result<(), Self::Error> {
2143
    /// #         unimplemented!()
2144
    /// #     }
2145
    /// #
2146
    /// #     fn newtype_variant_seed<T>(self, _: T) -> Result<T::Value, Self::Error>
2147
    /// #     where
2148
    /// #         T: DeserializeSeed<'de>,
2149
    /// #     { unimplemented!() }
2150
    /// #
2151
    /// fn tuple_variant<V>(
2152
    ///     self,
2153
    ///     _len: usize,
2154
    ///     _visitor: V,
2155
    /// ) -> Result<V::Value, Self::Error>
2156
    /// where
2157
    ///     V: Visitor<'de>,
2158
    /// {
2159
    ///     // What the data actually contained; suppose it is a unit variant.
2160
    ///     let unexp = Unexpected::UnitVariant;
2161
    ///     Err(de::Error::invalid_type(unexp, &"tuple variant"))
2162
    /// }
2163
    /// #
2164
    /// #     fn struct_variant<V>(self, _: &[&str], _: V) -> Result<V::Value, Self::Error>
2165
    /// #     where
2166
    /// #         V: Visitor<'de>,
2167
    /// #     { unimplemented!() }
2168
    /// # }
2169
    /// ```
2170
    fn tuple_variant<V>(self, len: usize, visitor: V) -> Result<V::Value, Self::Error>
2171
    where
2172
        V: Visitor<'de>;
2173
2174
    /// Called when deserializing a struct-like variant.
2175
    ///
2176
    /// The `fields` are the names of the fields of the struct variant.
2177
    ///
2178
    /// If the data contains a different type of variant, the following
2179
    /// `invalid_type` error should be constructed:
2180
    ///
2181
    /// ```edition2018
2182
    /// # use serde::de::{self, value, DeserializeSeed, Visitor, VariantAccess, Unexpected};
2183
    /// #
2184
    /// # struct X;
2185
    /// #
2186
    /// # impl<'de> VariantAccess<'de> for X {
2187
    /// #     type Error = value::Error;
2188
    /// #
2189
    /// #     fn unit_variant(self) -> Result<(), Self::Error> {
2190
    /// #         unimplemented!()
2191
    /// #     }
2192
    /// #
2193
    /// #     fn newtype_variant_seed<T>(self, _: T) -> Result<T::Value, Self::Error>
2194
    /// #     where
2195
    /// #         T: DeserializeSeed<'de>,
2196
    /// #     { unimplemented!() }
2197
    /// #
2198
    /// #     fn tuple_variant<V>(self, _: usize, _: V) -> Result<V::Value, Self::Error>
2199
    /// #     where
2200
    /// #         V: Visitor<'de>,
2201
    /// #     { unimplemented!() }
2202
    /// #
2203
    /// fn struct_variant<V>(
2204
    ///     self,
2205
    ///     _fields: &'static [&'static str],
2206
    ///     _visitor: V,
2207
    /// ) -> Result<V::Value, Self::Error>
2208
    /// where
2209
    ///     V: Visitor<'de>,
2210
    /// {
2211
    ///     // What the data actually contained; suppose it is a unit variant.
2212
    ///     let unexp = Unexpected::UnitVariant;
2213
    ///     Err(de::Error::invalid_type(unexp, &"struct variant"))
2214
    /// }
2215
    /// # }
2216
    /// ```
2217
    fn struct_variant<V>(
2218
        self,
2219
        fields: &'static [&'static str],
2220
        visitor: V,
2221
    ) -> Result<V::Value, Self::Error>
2222
    where
2223
        V: Visitor<'de>;
2224
}
2225
2226
////////////////////////////////////////////////////////////////////////////////
2227
2228
/// Converts an existing value into a `Deserializer` from which other values can
2229
/// be deserialized.
2230
///
2231
/// # Lifetime
2232
///
2233
/// The `'de` lifetime of this trait is the lifetime of data that may be
2234
/// borrowed from the resulting `Deserializer`. See the page [Understanding
2235
/// deserializer lifetimes] for a more detailed explanation of these lifetimes.
2236
///
2237
/// [Understanding deserializer lifetimes]: https://serde.rs/lifetimes.html
2238
///
2239
/// # Example
2240
///
2241
/// ```edition2018
2242
/// use std::str::FromStr;
2243
/// use serde::Deserialize;
2244
/// use serde::de::{value, IntoDeserializer};
2245
///
2246
/// #[derive(Deserialize)]
2247
/// enum Setting {
2248
///     On,
2249
///     Off,
2250
/// }
2251
///
2252
/// impl FromStr for Setting {
2253
///     type Err = value::Error;
2254
///
2255
///     fn from_str(s: &str) -> Result<Self, Self::Err> {
2256
///         Self::deserialize(s.into_deserializer())
2257
///     }
2258
/// }
2259
/// ```
2260
pub trait IntoDeserializer<'de, E: Error = value::Error> {
2261
    /// The type of the deserializer being converted into.
2262
    type Deserializer: Deserializer<'de, Error = E>;
2263
2264
    /// Convert this value into a deserializer.
2265
    fn into_deserializer(self) -> Self::Deserializer;
2266
}
2267
2268
////////////////////////////////////////////////////////////////////////////////
2269
2270
/// Used in error messages.
2271
///
2272
/// - expected `a`
2273
/// - expected `a` or `b`
2274
/// - expected one of `a`, `b`, `c`
2275
///
2276
/// The slice of names must not be empty.
2277
struct OneOf {
2278
    names: &'static [&'static str],
2279
}
2280
2281
impl Display for OneOf {
2282
    fn fmt(&self, formatter: &mut fmt::Formatter) -> fmt::Result {
2283
        match self.names.len() {
2284
            0 => panic!(), // special case elsewhere
2285
            1 => write!(formatter, "`{}`", self.names[0]),
2286
            2 => write!(formatter, "`{}` or `{}`", self.names[0], self.names[1]),
2287
            _ => {
2288
                try!(write!(formatter, "one of "));
2289
                for (i, alt) in self.names.iter().enumerate() {
2290
                    if i > 0 {
2291
                        try!(write!(formatter, ", "));
2292
                    }
2293
                    try!(write!(formatter, "`{}`", alt));
2294
                }
2295
                Ok(())
2296
            }
2297
        }
2298
    }
2299
}