Line | Count | Source (jump to first uncovered line) |
1 | | /* ecc-mul-m.c |
2 | | |
3 | | Point multiplication using Montgomery curve representation. |
4 | | |
5 | | Copyright (C) 2014 Niels Möller |
6 | | |
7 | | This file is part of GNU Nettle. |
8 | | |
9 | | GNU Nettle is free software: you can redistribute it and/or |
10 | | modify it under the terms of either: |
11 | | |
12 | | * the GNU Lesser General Public License as published by the Free |
13 | | Software Foundation; either version 3 of the License, or (at your |
14 | | option) any later version. |
15 | | |
16 | | or |
17 | | |
18 | | * the GNU General Public License as published by the Free |
19 | | Software Foundation; either version 2 of the License, or (at your |
20 | | option) any later version. |
21 | | |
22 | | or both in parallel, as here. |
23 | | |
24 | | GNU Nettle is distributed in the hope that it will be useful, |
25 | | but WITHOUT ANY WARRANTY; without even the implied warranty of |
26 | | MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU |
27 | | General Public License for more details. |
28 | | |
29 | | You should have received copies of the GNU General Public License and |
30 | | the GNU Lesser General Public License along with this program. If |
31 | | not, see http://www.gnu.org/licenses/. |
32 | | */ |
33 | | |
34 | | #if HAVE_CONFIG_H |
35 | | # include "config.h" |
36 | | #endif |
37 | | |
38 | | #include <assert.h> |
39 | | |
40 | | #include "ecc.h" |
41 | | #include "ecc-internal.h" |
42 | | |
43 | | void |
44 | | ecc_mul_m (const struct ecc_modulo *m, |
45 | | mp_limb_t a24, |
46 | | unsigned bit_low, unsigned bit_high, |
47 | | mp_limb_t *qx, const uint8_t *n, const mp_limb_t *px, |
48 | | mp_limb_t *scratch) |
49 | 0 | { |
50 | 0 | unsigned i; |
51 | 0 | mp_limb_t swap; |
52 | |
|
53 | 0 | #define x2 (scratch) |
54 | 0 | #define z2 (scratch + m->size) |
55 | 0 | #define x3 (scratch + 2*m->size) |
56 | 0 | #define z3 (scratch + 3*m->size) |
57 | | |
58 | | /* Formulas from RFC 7748: |
59 | | |
60 | | A = x_2 + z_2 |
61 | | AA = A^2 |
62 | | B = x_2 - z_2 |
63 | | BB = B^2 |
64 | | E = AA - BB |
65 | | C = x_3 + z_3 |
66 | | D = x_3 - z_3 |
67 | | DA = D * A |
68 | | CB = C * B |
69 | | x_3 = (DA + CB)^2 |
70 | | z_3 = x_1 * (DA - CB)^2 |
71 | | x_2 = AA * BB |
72 | | z_2 = E * (AA + a24 * E) |
73 | | |
74 | | For pure doubling, we use: |
75 | | |
76 | | A = x_2 + z_2 |
77 | | AA = A^2 |
78 | | B = x_2 - z_2 |
79 | | BB = B^2 |
80 | | E = AA - BB |
81 | | x3 = AA * BB |
82 | | z3 = E * (AA + a24 * E) |
83 | | */ |
84 | |
|
85 | 0 | #define A (scratch + 4*m->size) |
86 | 0 | #define AA A |
87 | 0 | #define D (scratch + 5*m->size) |
88 | 0 | #define DA D |
89 | |
|
90 | 0 | #define tp (scratch + 6*m->size) |
91 | | |
92 | | /* For the doubling formulas. */ |
93 | 0 | #define B D |
94 | 0 | #define BB D |
95 | 0 | #define E D |
96 | | |
97 | | /* Initialize, x2 = px, z2 = 1 */ |
98 | 0 | mpn_copyi (x2, px, m->size); |
99 | 0 | z2[0] = 1; |
100 | 0 | mpn_zero (z2+1, m->size - 1); |
101 | | |
102 | | /* Get x3, z3 from doubling. Since most significant bit is forced to 1. */ |
103 | 0 | ecc_mod_add (m, A, x2, z2); |
104 | 0 | ecc_mod_sub (m, B, x2, z2); |
105 | 0 | ecc_mod_sqr (m, AA, A, tp); |
106 | 0 | ecc_mod_sqr (m, BB, B, tp); |
107 | 0 | ecc_mod_mul (m, x3, AA, BB, tp); |
108 | 0 | ecc_mod_sub (m, E, AA, BB); |
109 | 0 | ecc_mod_addmul_1 (m, AA, E, a24); |
110 | 0 | ecc_mod_mul (m, z3, E, AA, tp); |
111 | |
|
112 | 0 | for (i = bit_high, swap = 0; i >= bit_low; i--) |
113 | 0 | { |
114 | 0 | mp_limb_t bit = (n[i/8] >> (i & 7)) & 1; |
115 | |
|
116 | 0 | mpn_cnd_swap (swap ^ bit, x2, x3, 2*m->size); |
117 | 0 | swap = bit; |
118 | |
|
119 | 0 | ecc_mod_add (m, A, x2, z2); |
120 | 0 | ecc_mod_sub (m, D, x3, z3); |
121 | 0 | ecc_mod_mul (m, DA, D, A, tp); |
122 | 0 | ecc_mod_sqr (m, AA, A, tp); |
123 | | |
124 | | /* Store B, BB and E at z2 */ |
125 | 0 | ecc_mod_sub (m, z2, x2, z2); /* B */ |
126 | | /* Store C and CB at z3 */ |
127 | 0 | ecc_mod_add (m, z3, x3, z3); /* C */ |
128 | 0 | ecc_mod_mul (m, z3, z3, z2, tp); /* CB */ |
129 | 0 | ecc_mod_sqr (m, z2, z2, tp); /* BB */ |
130 | | |
131 | | /* Finish x2 */ |
132 | 0 | ecc_mod_mul (m, x2, AA, z2, tp); |
133 | |
|
134 | 0 | ecc_mod_sub (m, z2, AA, z2); /* E */ |
135 | | |
136 | | /* Finish z2 */ |
137 | 0 | ecc_mod_addmul_1 (m, AA, z2, a24); |
138 | 0 | ecc_mod_mul (m, z2, z2, AA, tp); |
139 | | |
140 | | /* Finish x3 */ |
141 | 0 | ecc_mod_add (m, x3, DA, z3); |
142 | 0 | ecc_mod_sqr (m, x3, x3, tp); |
143 | | |
144 | | /* Finish z3 */ |
145 | 0 | ecc_mod_sub (m, z3, DA, z3); /* DA - CB */ |
146 | 0 | ecc_mod_sqr (m, z3, z3, tp); |
147 | 0 | ecc_mod_mul (m, z3, z3, px, tp); |
148 | 0 | } |
149 | 0 | mpn_cnd_swap (swap, x2, x3, 2*m->size); |
150 | | |
151 | | /* Do the low zero bits, just duplicating x2 */ |
152 | 0 | for (i = 0; i < bit_low; i++) |
153 | 0 | { |
154 | 0 | ecc_mod_add (m, A, x2, z2); |
155 | 0 | ecc_mod_sub (m, B, x2, z2); |
156 | 0 | ecc_mod_sqr (m, AA, A, tp); |
157 | 0 | ecc_mod_sqr (m, BB, B, tp); |
158 | 0 | ecc_mod_mul (m, x2, AA, BB, tp); |
159 | 0 | ecc_mod_sub (m, E, AA, BB); |
160 | 0 | ecc_mod_addmul_1 (m, AA, E, a24); |
161 | 0 | ecc_mod_mul (m, z2, E, AA, tp); |
162 | 0 | } |
163 | 0 | assert (m->invert_itch <= 7 * m->size); |
164 | 0 | m->invert (m, x3, z2, z3 + m->size); |
165 | 0 | ecc_mod_mul_canonical (m, qx, x2, x3, z3); |
166 | 0 | } |