Line  | Count  | Source (jump to first uncovered line)  | 
1  |  | /* mpn_mullo_n -- multiply two n-limb numbers and return the low n limbs  | 
2  |  |    of their products.  | 
3  |  |  | 
4  |  |    Contributed to the GNU project by Torbjorn Granlund and Marco Bodrato.  | 
5  |  |  | 
6  |  |    THIS IS (FOR NOW) AN INTERNAL FUNCTION.  IT IS ONLY SAFE TO REACH THIS  | 
7  |  |    FUNCTION THROUGH DOCUMENTED INTERFACES.  IN FACT, IT IS ALMOST GUARANTEED  | 
8  |  |    THAT IT'LL CHANGE OR DISAPPEAR IN A FUTURE GNU MP RELEASE.  | 
9  |  |  | 
10  |  | Copyright 2004, 2005, 2009, 2010, 2012 Free Software Foundation, Inc.  | 
11  |  |  | 
12  |  | This file is part of the GNU MP Library.  | 
13  |  |  | 
14  |  | The GNU MP Library is free software; you can redistribute it and/or modify  | 
15  |  | it under the terms of either:  | 
16  |  |  | 
17  |  |   * the GNU Lesser General Public License as published by the Free  | 
18  |  |     Software Foundation; either version 3 of the License, or (at your  | 
19  |  |     option) any later version.  | 
20  |  |  | 
21  |  | or  | 
22  |  |  | 
23  |  |   * the GNU General Public License as published by the Free Software  | 
24  |  |     Foundation; either version 2 of the License, or (at your option) any  | 
25  |  |     later version.  | 
26  |  |  | 
27  |  | or both in parallel, as here.  | 
28  |  |  | 
29  |  | The GNU MP Library is distributed in the hope that it will be useful, but  | 
30  |  | WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY  | 
31  |  | or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License  | 
32  |  | for more details.  | 
33  |  |  | 
34  |  | You should have received copies of the GNU General Public License and the  | 
35  |  | GNU Lesser General Public License along with the GNU MP Library.  If not,  | 
36  |  | see https://www.gnu.org/licenses/.  */  | 
37  |  |  | 
38  |  | #include "gmp-impl.h"  | 
39  |  |  | 
40  |  |  | 
41  |  | #if TUNE_PROGRAM_BUILD || WANT_FAT_BINARY  | 
42  |  | #define MAYBE_range_basecase 1  | 
43  |  | #define MAYBE_range_toom22   1  | 
44  |  | #else  | 
45  |  | #define MAYBE_range_basecase                                           \  | 
46  | 0  |   ((MULLO_DC_THRESHOLD == 0 ? MULLO_BASECASE_THRESHOLD : MULLO_DC_THRESHOLD) < MUL_TOOM22_THRESHOLD*36/(36-11))  | 
47  |  | #define MAYBE_range_toom22                                             \  | 
48  | 0  |   ((MULLO_DC_THRESHOLD == 0 ? MULLO_BASECASE_THRESHOLD : MULLO_DC_THRESHOLD) < MUL_TOOM33_THRESHOLD*36/(36-11) )  | 
49  |  | #endif  | 
50  |  |  | 
51  |  | /*  THINK: The DC strategy uses different constants in different Toom's  | 
52  |  |    ranges. Something smoother?  | 
53  |  | */  | 
54  |  |  | 
55  |  | /*  | 
56  |  |   Compute the least significant half of the product {xy,n}*{yp,n}, or | 
57  |  |   formally {rp,n} = {xy,n}*{yp,n} Mod (B^n). | 
58  |  |  | 
59  |  |   Above the given threshold, the Divide and Conquer strategy is used.  | 
60  |  |   The operands are split in two, and a full product plus two mullo  | 
61  |  |   are used to obtain the final result. The more natural strategy is to  | 
62  |  |   split in two halves, but this is far from optimal when a  | 
63  |  |   sub-quadratic multiplication is used.  | 
64  |  |  | 
65  |  |   Mulders suggests an unbalanced split in favour of the full product,  | 
66  |  |   split n = n1 + n2, where an = n1 <= n2 = (1-a)n; i.e. 0 < a <= 1/2.  | 
67  |  |  | 
68  |  |   To compute the value of a, we assume that the cost of mullo for a  | 
69  |  |   given size ML(n) is a fraction of the cost of a full product with  | 
70  |  |   same size M(n), and the cost M(n)=n^e for some exponent 1 < e <= 2;  | 
71  |  |   then we can write:  | 
72  |  |  | 
73  |  |   ML(n) = 2*ML(an) + M((1-a)n) => k*M(n) = 2*k*M(n)*a^e + M(n)*(1-a)^e  | 
74  |  |  | 
75  |  |   Given a value for e, want to minimise the value of k, i.e. the  | 
76  |  |   function k=(1-a)^e/(1-2*a^e).  | 
77  |  |  | 
78  |  |   With e=2, the exponent for schoolbook multiplication, the minimum is  | 
79  |  |   given by the values a=1-a=1/2.  | 
80  |  |  | 
81  |  |   With e=log(3)/log(2), the exponent for Karatsuba (aka toom22),  | 
82  |  |   Mulders compute (1-a) = 0.694... and we approximate a with 11/36.  | 
83  |  |  | 
84  |  |   Other possible approximations follow:  | 
85  |  |   e=log(5)/log(3) [Toom-3] -> a ~= 9/40  | 
86  |  |   e=log(7)/log(4) [Toom-4] -> a ~= 7/39  | 
87  |  |   e=log(11)/log(6) [Toom-6] -> a ~= 1/8  | 
88  |  |   e=log(15)/log(8) [Toom-8] -> a ~= 1/10  | 
89  |  |  | 
90  |  |   The values above where obtained with the following trivial commands  | 
91  |  |   in the gp-pari shell:  | 
92  |  |  | 
93  |  | fun(e,a)=(1-a)^e/(1-2*a^e)  | 
94  |  | mul(a,b,c)={local(m,x,p);if(b-c<1/10000,(b+c)/2,m=1;x=b;forstep(p=c,b,(b-c)/8,if(fun(a,p)<m,m=fun(a,p);x=p));mul(a,(b+x)/2,(c+x)/2))} | 
95  |  | contfracpnqn(contfrac(mul(log(2*2-1)/log(2),1/2,0),5))  | 
96  |  | contfracpnqn(contfrac(mul(log(3*2-1)/log(3),1/2,0),5))  | 
97  |  | contfracpnqn(contfrac(mul(log(4*2-1)/log(4),1/2,0),5))  | 
98  |  | contfracpnqn(contfrac(mul(log(6*2-1)/log(6),1/2,0),3))  | 
99  |  | contfracpnqn(contfrac(mul(log(8*2-1)/log(8),1/2,0),3))  | 
100  |  |  | 
101  |  |   ,  | 
102  |  |   |\  | 
103  |  |   | \  | 
104  |  |   +----,  | 
105  |  |   |    |  | 
106  |  |   |    |  | 
107  |  |   |    |\  | 
108  |  |   |    | \  | 
109  |  |   +----+--`  | 
110  |  |   ^ n2 ^n1^  | 
111  |  |  | 
112  |  |   For an actual implementation, the assumption that M(n)=n^e is  | 
113  |  |   incorrect, as a consequence also the assumption that ML(n)=k*M(n)  | 
114  |  |   with a constant k is wrong.  | 
115  |  |  | 
116  |  |   But theory suggest us two things:  | 
117  |  |   - the best the multiplication product is (lower e), the more k  | 
118  |  |     approaches 1, and a approaches 0.  | 
119  |  |  | 
120  |  |   - A value for a smaller than optimal is probably less bad than a  | 
121  |  |     bigger one: e.g. let e=log(3)/log(2), a=0.3058_ the optimal  | 
122  |  |     value, and k(a)=0.808_ the mul/mullo speed ratio. We get  | 
123  |  |     k(a+1/6)=0.929_ but k(a-1/6)=0.865_.  | 
124  |  | */  | 
125  |  |  | 
126  |  | static mp_size_t  | 
127  |  | mpn_mullo_n_itch (mp_size_t n)  | 
128  | 0  | { | 
129  | 0  |   return 2*n;  | 
130  | 0  | }  | 
131  |  |  | 
132  |  | /*  | 
133  |  |     mpn_dc_mullo_n requires a scratch space of 2*n limbs at tp.  | 
134  |  |     It accepts tp == rp.  | 
135  |  | */  | 
136  |  | static void  | 
137  |  | mpn_dc_mullo_n (mp_ptr rp, mp_srcptr xp, mp_srcptr yp, mp_size_t n, mp_ptr tp)  | 
138  | 0  | { | 
139  | 0  |   mp_size_t n2, n1;  | 
140  | 0  |   ASSERT (n >= 2);  | 
141  | 0  |   ASSERT (! MPN_OVERLAP_P (rp, n, xp, n));  | 
142  | 0  |   ASSERT (! MPN_OVERLAP_P (rp, n, yp, n));  | 
143  | 0  |   ASSERT (MPN_SAME_OR_SEPARATE2_P(rp, n, tp, 2*n));  | 
144  |  |  | 
145  |  |   /* Divide-and-conquer */  | 
146  |  |  | 
147  |  |   /* We need fractional approximation of the value 0 < a <= 1/2  | 
148  |  |      giving the minimum in the function k=(1-a)^e/(1-2*a^e).  | 
149  |  |   */  | 
150  | 0  |   if (MAYBE_range_basecase && BELOW_THRESHOLD (n, MUL_TOOM22_THRESHOLD*36/(36-11)))  | 
151  | 0  |     n1 = n >> 1;  | 
152  | 0  |   else if (MAYBE_range_toom22 && BELOW_THRESHOLD (n, MUL_TOOM33_THRESHOLD*36/(36-11)))  | 
153  | 0  |     n1 = n * 11 / (size_t) 36; /* n1 ~= n*(1-.694...) */  | 
154  | 0  |   else if (BELOW_THRESHOLD (n, MUL_TOOM44_THRESHOLD*40/(40-9)))  | 
155  | 0  |     n1 = n * 9 / (size_t) 40; /* n1 ~= n*(1-.775...) */  | 
156  | 0  |   else if (BELOW_THRESHOLD (n, MUL_TOOM8H_THRESHOLD*10/9))  | 
157  | 0  |     n1 = n * 7 / (size_t) 39; /* n1 ~= n*(1-.821...) */  | 
158  |  |   /* n1 = n * 4 / (size_t) 31;  // n1 ~= n*(1-.871...) [TOOM66] */  | 
159  | 0  |   else  | 
160  | 0  |     n1 = n / (size_t) 10;   /* n1 ~= n*(1-.899...) [TOOM88] */  | 
161  |  | 
  | 
162  | 0  |   n2 = n - n1;  | 
163  |  |  | 
164  |  |   /* Split as x = x1 2^(n2 GMP_NUMB_BITS) + x0,  | 
165  |  |         y = y1 2^(n2 GMP_NUMB_BITS) + y0 */  | 
166  |  |  | 
167  |  |   /* x0 * y0 */  | 
168  | 0  |   mpn_mul_n (tp, xp, yp, n2);  | 
169  | 0  |   MPN_COPY (rp, tp, n2);  | 
170  |  |  | 
171  |  |   /* x1 * y0 * 2^(n2 GMP_NUMB_BITS) */  | 
172  | 0  |   if (BELOW_THRESHOLD (n1, MULLO_BASECASE_THRESHOLD))  | 
173  | 0  |     mpn_mul_basecase (tp + n, xp + n2, n1, yp, n1);  | 
174  | 0  |   else if (BELOW_THRESHOLD (n1, MULLO_DC_THRESHOLD))  | 
175  | 0  |     mpn_mullo_basecase (tp + n, xp + n2, yp, n1);  | 
176  | 0  |   else  | 
177  | 0  |     mpn_dc_mullo_n (tp + n, xp + n2, yp, n1, tp + n);  | 
178  | 0  |   mpn_add_n (rp + n2, tp + n2, tp + n, n1);  | 
179  |  |  | 
180  |  |   /* x0 * y1 * 2^(n2 GMP_NUMB_BITS) */  | 
181  | 0  |   if (BELOW_THRESHOLD (n1, MULLO_BASECASE_THRESHOLD))  | 
182  | 0  |     mpn_mul_basecase (tp + n, xp, n1, yp + n2, n1);  | 
183  | 0  |   else if (BELOW_THRESHOLD (n1, MULLO_DC_THRESHOLD))  | 
184  | 0  |     mpn_mullo_basecase (tp + n, xp, yp + n2, n1);  | 
185  | 0  |   else  | 
186  | 0  |     mpn_dc_mullo_n (tp + n, xp, yp + n2, n1, tp + n);  | 
187  | 0  |   mpn_add_n (rp + n2, rp + n2, tp + n, n1);  | 
188  | 0  | }  | 
189  |  |  | 
190  |  | /* Avoid zero allocations when MULLO_BASECASE_THRESHOLD is 0.  */  | 
191  |  | #define MUL_BASECASE_ALLOC \  | 
192  |  |  (MULLO_BASECASE_THRESHOLD_LIMIT == 0 ? 1 : 2*MULLO_BASECASE_THRESHOLD_LIMIT)  | 
193  |  |  | 
194  |  | /* FIXME: This function should accept a temporary area; dc_mullow_n  | 
195  |  |    accepts a pointer tp, and handle the case tp == rp, do the same here.  | 
196  |  |    Maybe recombine the two functions.  | 
197  |  |    THINK: If mpn_mul_basecase is always faster than mpn_mullo_basecase  | 
198  |  |     (typically thanks to mpn_addmul_2) should we unconditionally use  | 
199  |  |     mpn_mul_n?  | 
200  |  | */  | 
201  |  |  | 
202  |  | void  | 
203  |  | mpn_mullo_n (mp_ptr rp, mp_srcptr xp, mp_srcptr yp, mp_size_t n)  | 
204  | 0  | { | 
205  | 0  |   ASSERT (n >= 1);  | 
206  | 0  |   ASSERT (! MPN_OVERLAP_P (rp, n, xp, n));  | 
207  | 0  |   ASSERT (! MPN_OVERLAP_P (rp, n, yp, n));  | 
208  |  | 
  | 
209  | 0  |   if (BELOW_THRESHOLD (n, MULLO_BASECASE_THRESHOLD))  | 
210  | 0  |     { | 
211  |  |       /* Allocate workspace of fixed size on stack: fast! */  | 
212  | 0  |       mp_limb_t tp[MUL_BASECASE_ALLOC];  | 
213  | 0  |       mpn_mul_basecase (tp, xp, n, yp, n);  | 
214  | 0  |       MPN_COPY (rp, tp, n);  | 
215  | 0  |     }  | 
216  | 0  |   else if (BELOW_THRESHOLD (n, MULLO_DC_THRESHOLD))  | 
217  | 0  |     { | 
218  | 0  |       mpn_mullo_basecase (rp, xp, yp, n);  | 
219  | 0  |     }  | 
220  | 0  |   else  | 
221  | 0  |     { | 
222  | 0  |       mp_ptr tp;  | 
223  | 0  |       TMP_DECL;  | 
224  | 0  |       TMP_MARK;  | 
225  | 0  |       tp = TMP_ALLOC_LIMBS (mpn_mullo_n_itch (n));  | 
226  | 0  |       if (BELOW_THRESHOLD (n, MULLO_MUL_N_THRESHOLD))  | 
227  | 0  |   { | 
228  | 0  |     mpn_dc_mullo_n (rp, xp, yp, n, tp);  | 
229  | 0  |   }  | 
230  | 0  |       else  | 
231  | 0  |   { | 
232  |  |     /* For really large operands, use plain mpn_mul_n but throw away upper n  | 
233  |  |        limbs of result.  */  | 
234  | 0  | #if !TUNE_PROGRAM_BUILD && (MULLO_MUL_N_THRESHOLD > MUL_FFT_THRESHOLD)  | 
235  | 0  |     mpn_fft_mul (tp, xp, n, yp, n);  | 
236  |  | #else  | 
237  |  |     mpn_mul_n (tp, xp, yp, n);  | 
238  |  | #endif  | 
239  | 0  |     MPN_COPY (rp, tp, n);  | 
240  | 0  |   }  | 
241  | 0  |       TMP_FREE;  | 
242  | 0  |     }  | 
243  | 0  | }  |