/src/gmp/mpn/toom6h_mul.c
Line  | Count  | Source (jump to first uncovered line)  | 
1  |  | /* Implementation of the multiplication algorithm for Toom-Cook 6.5-way.  | 
2  |  |  | 
3  |  |    Contributed to the GNU project by Marco Bodrato.  | 
4  |  |  | 
5  |  |    THE FUNCTION IN THIS FILE IS INTERNAL WITH A MUTABLE INTERFACE.  IT IS ONLY  | 
6  |  |    SAFE TO REACH IT THROUGH DOCUMENTED INTERFACES.  IN FACT, IT IS ALMOST  | 
7  |  |    GUARANTEED THAT IT WILL CHANGE OR DISAPPEAR IN A FUTURE GNU MP RELEASE.  | 
8  |  |  | 
9  |  | Copyright 2009, 2010, 2012 Free Software Foundation, Inc.  | 
10  |  |  | 
11  |  | This file is part of the GNU MP Library.  | 
12  |  |  | 
13  |  | The GNU MP Library is free software; you can redistribute it and/or modify  | 
14  |  | it under the terms of either:  | 
15  |  |  | 
16  |  |   * the GNU Lesser General Public License as published by the Free  | 
17  |  |     Software Foundation; either version 3 of the License, or (at your  | 
18  |  |     option) any later version.  | 
19  |  |  | 
20  |  | or  | 
21  |  |  | 
22  |  |   * the GNU General Public License as published by the Free Software  | 
23  |  |     Foundation; either version 2 of the License, or (at your option) any  | 
24  |  |     later version.  | 
25  |  |  | 
26  |  | or both in parallel, as here.  | 
27  |  |  | 
28  |  | The GNU MP Library is distributed in the hope that it will be useful, but  | 
29  |  | WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY  | 
30  |  | or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License  | 
31  |  | for more details.  | 
32  |  |  | 
33  |  | You should have received copies of the GNU General Public License and the  | 
34  |  | GNU Lesser General Public License along with the GNU MP Library.  If not,  | 
35  |  | see https://www.gnu.org/licenses/.  */  | 
36  |  |  | 
37  |  |  | 
38  |  | #include "gmp-impl.h"  | 
39  |  |  | 
40  |  |  | 
41  |  | #if GMP_NUMB_BITS < 21  | 
42  |  | #error Not implemented.  | 
43  |  | #endif  | 
44  |  |  | 
45  |  | #if TUNE_PROGRAM_BUILD  | 
46  |  | #define MAYBE_mul_basecase 1  | 
47  |  | #define MAYBE_mul_toom22   1  | 
48  |  | #define MAYBE_mul_toom33   1  | 
49  |  | #define MAYBE_mul_toom6h   1  | 
50  |  | #else  | 
51  |  | #define MAYBE_mul_basecase            \  | 
52  | 0  |   (MUL_TOOM6H_THRESHOLD < 6 * MUL_TOOM22_THRESHOLD)  | 
53  |  | #define MAYBE_mul_toom22            \  | 
54  | 0  |   (MUL_TOOM6H_THRESHOLD < 6 * MUL_TOOM33_THRESHOLD)  | 
55  |  | #define MAYBE_mul_toom33            \  | 
56  | 0  |   (MUL_TOOM6H_THRESHOLD < 6 * MUL_TOOM44_THRESHOLD)  | 
57  |  | #define MAYBE_mul_toom6h            \  | 
58  | 0  |   (MUL_FFT_THRESHOLD >= 6 * MUL_TOOM6H_THRESHOLD)  | 
59  |  | #endif  | 
60  |  |  | 
61  |  | #define TOOM6H_MUL_N_REC(p, a, b, f, p2, a2, b2, n, ws)     \  | 
62  | 0  |   do {                 \ | 
63  | 0  |     if (MAYBE_mul_basecase            \  | 
64  | 0  |   && BELOW_THRESHOLD (n, MUL_TOOM22_THRESHOLD)) {     \ | 
65  | 0  |       mpn_mul_basecase (p, a, n, b, n);         \  | 
66  | 0  |       if (f)               \  | 
67  | 0  |   mpn_mul_basecase (p2, a2, n, b2, n);       \  | 
68  | 0  |     } else if (MAYBE_mul_toom22            \  | 
69  | 0  |          && BELOW_THRESHOLD (n, MUL_TOOM33_THRESHOLD)) {   \ | 
70  | 0  |       mpn_toom22_mul (p, a, n, b, n, ws);       \  | 
71  | 0  |       if (f)               \  | 
72  | 0  |   mpn_toom22_mul (p2, a2, n, b2, n, ws);       \  | 
73  | 0  |     } else if (MAYBE_mul_toom33            \  | 
74  | 0  |          && BELOW_THRESHOLD (n, MUL_TOOM44_THRESHOLD)) {   \ | 
75  | 0  |       mpn_toom33_mul (p, a, n, b, n, ws);       \  | 
76  | 0  |       if (f)               \  | 
77  | 0  |   mpn_toom33_mul (p2, a2, n, b2, n, ws);       \  | 
78  | 0  |     } else if (! MAYBE_mul_toom6h          \  | 
79  | 0  |          || BELOW_THRESHOLD (n, MUL_TOOM6H_THRESHOLD)) {   \ | 
80  | 0  |       mpn_toom44_mul (p, a, n, b, n, ws);       \  | 
81  | 0  |       if (f)               \  | 
82  | 0  |   mpn_toom44_mul (p2, a2, n, b2, n, ws);       \  | 
83  | 0  |     } else {               \ | 
84  | 0  |       mpn_toom6h_mul (p, a, n, b, n, ws);       \  | 
85  | 0  |       if (f)               \  | 
86  | 0  |   mpn_toom6h_mul (p2, a2, n, b2, n, ws);       \  | 
87  | 0  |     }                 \  | 
88  | 0  |   } while (0)  | 
89  |  |  | 
90  |  | #define TOOM6H_MUL_REC(p, a, na, b, nb, ws)   \  | 
91  | 0  |   do { mpn_mul (p, a, na, b, nb);     \ | 
92  | 0  |   } while (0)  | 
93  |  |  | 
94  |  | /* Toom-6.5 , compute the product {pp,an+bn} <- {ap,an} * {bp,bn} | 
95  |  |    With: an >= bn >= 46, an*6 <  bn * 17.  | 
96  |  |    It _may_ work with bn<=46 and bn*17 < an*6 < bn*18  | 
97  |  |  | 
98  |  |    Evaluate in: infinity, +4, -4, +2, -2, +1, -1, +1/2, -1/2, +1/4, -1/4, 0.  | 
99  |  | */  | 
100  |  | /* Estimate on needed scratch:  | 
101  |  |    S(n) <= (n+5)\6*10+4+MAX(S((n+5)\6),1+2*(n+5)\6),  | 
102  |  |    since n>42; S(n) <= ceil(log(n)/log(6))*(10+4)+n*12\6 < n*2 + lg2(n)*6  | 
103  |  |  */  | 
104  |  |  | 
105  |  | void  | 
106  |  | mpn_toom6h_mul   (mp_ptr pp,  | 
107  |  |       mp_srcptr ap, mp_size_t an,  | 
108  |  |       mp_srcptr bp, mp_size_t bn, mp_ptr scratch)  | 
109  | 0  | { | 
110  | 0  |   mp_size_t n, s, t;  | 
111  | 0  |   int p, q, half;  | 
112  | 0  |   int sign;  | 
113  |  |  | 
114  |  |   /***************************** decomposition *******************************/  | 
115  |  | 
  | 
116  | 0  |   ASSERT (an >= bn);  | 
117  |  |   /* Can not handle too much unbalancement */  | 
118  | 0  |   ASSERT (bn >= 42);  | 
119  |  |   /* Can not handle too much unbalancement */  | 
120  | 0  |   ASSERT ((an*3 <  bn * 8) || (bn >= 46 && an * 6 <  bn * 17));  | 
121  |  |  | 
122  |  |   /* Limit num/den is a rational number between  | 
123  |  |      (12/11)^(log(4)/log(2*4-1)) and (12/11)^(log(6)/log(2*6-1))             */  | 
124  | 0  | #define LIMIT_numerator (18)  | 
125  | 0  | #define LIMIT_denominat (17)  | 
126  |  | 
  | 
127  | 0  |   if (LIKELY (an * LIMIT_denominat < LIMIT_numerator * bn)) /* is 6*... < 6*... */  | 
128  | 0  |     { | 
129  | 0  |       n = 1 + (an - 1) / (size_t) 6;  | 
130  | 0  |       p = q = 5;  | 
131  | 0  |       half = 0;  | 
132  |  | 
  | 
133  | 0  |       s = an - 5 * n;  | 
134  | 0  |       t = bn - 5 * n;  | 
135  | 0  |     }  | 
136  | 0  |   else { | 
137  | 0  |     if (an * 5 * LIMIT_numerator < LIMIT_denominat * 7 * bn)  | 
138  | 0  |       { p = 7; q = 6; } | 
139  | 0  |     else if (an * 5 * LIMIT_denominat < LIMIT_numerator * 7 * bn)  | 
140  | 0  |       { p = 7; q = 5; } | 
141  | 0  |     else if (an * LIMIT_numerator < LIMIT_denominat * 2 * bn)  /* is 4*... < 8*... */  | 
142  | 0  |       { p = 8; q = 5; } | 
143  | 0  |     else if (an * LIMIT_denominat < LIMIT_numerator * 2 * bn)  /* is 4*... < 8*... */  | 
144  | 0  |       { p = 8; q = 4; } | 
145  | 0  |     else  | 
146  | 0  |       { p = 9; q = 4; } | 
147  |  | 
  | 
148  | 0  |     half = (p ^ q) & 1;  | 
149  | 0  |     n = 1 + (q * an >= p * bn ? (an - 1) / (size_t) p : (bn - 1) / (size_t) q);  | 
150  | 0  |     p--; q--;  | 
151  |  | 
  | 
152  | 0  |     s = an - p * n;  | 
153  | 0  |     t = bn - q * n;  | 
154  |  |  | 
155  |  |     /* With LIMIT = 16/15, the following recover is needed only if bn<=73*/  | 
156  | 0  |     if (half) { /* Recover from badly chosen splitting */ | 
157  | 0  |       if (UNLIKELY (s<1)) {p--; s+=n; half=0;} | 
158  | 0  |       else if (UNLIKELY (t<1)) {q--; t+=n; half=0;} | 
159  | 0  |     }  | 
160  | 0  |   }  | 
161  | 0  | #undef LIMIT_numerator  | 
162  | 0  | #undef LIMIT_denominat  | 
163  |  | 
  | 
164  | 0  |   ASSERT (0 < s && s <= n);  | 
165  | 0  |   ASSERT (0 < t && t <= n);  | 
166  | 0  |   ASSERT (half || s + t > 3);  | 
167  | 0  |   ASSERT (n > 2);  | 
168  |  | 
  | 
169  | 0  | #define   r4    (pp + 3 * n)      /* 3n+1 */  | 
170  | 0  | #define   r2    (pp + 7 * n)      /* 3n+1 */  | 
171  | 0  | #define   r0    (pp +11 * n)      /* s+t <= 2*n */  | 
172  | 0  | #define   r5    (scratch)      /* 3n+1 */  | 
173  | 0  | #define   r3    (scratch + 3 * n + 1)    /* 3n+1 */  | 
174  | 0  | #define   r1    (scratch + 6 * n + 2)    /* 3n+1 */  | 
175  | 0  | #define   v0    (pp + 7 * n)      /* n+1 */  | 
176  | 0  | #define   v1    (pp + 8 * n+1)      /* n+1 */  | 
177  | 0  | #define   v2    (pp + 9 * n+2)      /* n+1 */  | 
178  | 0  | #define   v3    (scratch + 9 * n + 3)    /* n+1 */  | 
179  | 0  | #define   wsi   (scratch + 9 * n + 3)    /* 3n+1 */  | 
180  | 0  | #define   wse   (scratch +10 * n + 4)   /* 2n+1 */  | 
181  |  |  | 
182  |  |   /* Alloc also 3n+1 limbs for wsi... toom_interpolate_12pts may  | 
183  |  |      need all of them  */  | 
184  |  | /*   if (scratch == NULL) */  | 
185  |  | /*     scratch = TMP_SALLOC_LIMBS(mpn_toom6_sqr_itch(n * 6)); */  | 
186  | 0  |   ASSERT (12 * n + 6 <= mpn_toom6h_mul_itch(an,bn));  | 
187  | 0  |   ASSERT (12 * n + 6 <= mpn_toom6_sqr_itch(n * 6));  | 
188  |  |  | 
189  |  |   /********************** evaluation and recursive calls *********************/  | 
190  |  |   /* $\pm1/2$ */  | 
191  | 0  |   sign = mpn_toom_eval_pm2rexp (v2, v0, p, ap, n, s, 1, pp) ^  | 
192  | 0  |    mpn_toom_eval_pm2rexp (v3, v1, q, bp, n, t, 1, pp);  | 
193  |  |   /* A(-1/2)*B(-1/2)*2^. */ /* A(+1/2)*B(+1/2)*2^. */  | 
194  | 0  |   TOOM6H_MUL_N_REC(pp, v0, v1, 2, r5, v2, v3, n + 1, wse);  | 
195  | 0  |   mpn_toom_couple_handling (r5, 2 * n + 1, pp, sign, n, 1+half , half);  | 
196  |  |  | 
197  |  |   /* $\pm1$ */  | 
198  | 0  |   sign = mpn_toom_eval_pm1 (v2, v0, p, ap, n, s,    pp);  | 
199  | 0  |   if (UNLIKELY (q == 3))  | 
200  | 0  |     sign ^= mpn_toom_eval_dgr3_pm1 (v3, v1, bp, n, t,    pp);  | 
201  | 0  |   else  | 
202  | 0  |     sign ^= mpn_toom_eval_pm1 (v3, v1, q, bp, n, t,    pp);  | 
203  |  |   /* A(-1)*B(-1) */ /* A(1)*B(1) */  | 
204  | 0  |   TOOM6H_MUL_N_REC(pp, v0, v1, 2, r3, v2, v3, n + 1, wse);  | 
205  | 0  |   mpn_toom_couple_handling (r3, 2 * n + 1, pp, sign, n, 0, 0);  | 
206  |  |  | 
207  |  |   /* $\pm4$ */  | 
208  | 0  |   sign = mpn_toom_eval_pm2exp (v2, v0, p, ap, n, s, 2, pp) ^  | 
209  | 0  |    mpn_toom_eval_pm2exp (v3, v1, q, bp, n, t, 2, pp);  | 
210  |  |   /* A(-4)*B(-4) */  | 
211  | 0  |   TOOM6H_MUL_N_REC(pp, v0, v1, 2, r1, v2, v3, n + 1, wse); /* A(+4)*B(+4) */  | 
212  | 0  |   mpn_toom_couple_handling (r1, 2 * n + 1, pp, sign, n, 2, 4);  | 
213  |  |  | 
214  |  |   /* $\pm1/4$ */  | 
215  | 0  |   sign = mpn_toom_eval_pm2rexp (v2, v0, p, ap, n, s, 2, pp) ^  | 
216  | 0  |    mpn_toom_eval_pm2rexp (v3, v1, q, bp, n, t, 2, pp);  | 
217  |  |   /* A(-1/4)*B(-1/4)*4^. */ /* A(+1/4)*B(+1/4)*4^. */  | 
218  | 0  |   TOOM6H_MUL_N_REC(pp, v0, v1, 2, r4, v2, v3, n + 1, wse);  | 
219  | 0  |   mpn_toom_couple_handling (r4, 2 * n + 1, pp, sign, n, 2*(1+half), 2*(half));  | 
220  |  |  | 
221  |  |   /* $\pm2$ */  | 
222  | 0  |   sign = mpn_toom_eval_pm2 (v2, v0, p, ap, n, s, pp) ^  | 
223  | 0  |    mpn_toom_eval_pm2 (v3, v1, q, bp, n, t, pp);  | 
224  |  |   /* A(-2)*B(-2) */ /* A(+2)*B(+2) */  | 
225  | 0  |   TOOM6H_MUL_N_REC(pp, v0, v1, 2, r2, v2, v3, n + 1, wse);  | 
226  | 0  |   mpn_toom_couple_handling (r2, 2 * n + 1, pp, sign, n, 1, 2);  | 
227  |  | 
  | 
228  | 0  | #undef v0  | 
229  | 0  | #undef v1  | 
230  | 0  | #undef v2  | 
231  | 0  | #undef v3  | 
232  | 0  | #undef wse  | 
233  |  |  | 
234  |  |   /* A(0)*B(0) */  | 
235  | 0  |   TOOM6H_MUL_N_REC(pp, ap, bp, 0, pp, ap, bp, n, wsi);  | 
236  |  |  | 
237  |  |   /* Infinity */  | 
238  | 0  |   if (UNLIKELY (half != 0)) { | 
239  | 0  |     if (s > t) { | 
240  | 0  |       TOOM6H_MUL_REC(r0, ap + p * n, s, bp + q * n, t, wsi);  | 
241  | 0  |     } else { | 
242  | 0  |       TOOM6H_MUL_REC(r0, bp + q * n, t, ap + p * n, s, wsi);  | 
243  | 0  |     };  | 
244  | 0  |   };  | 
245  |  | 
  | 
246  | 0  |   mpn_toom_interpolate_12pts (pp, r1, r3, r5, n, s+t, half, wsi);  | 
247  |  | 
  | 
248  | 0  | #undef r0  | 
249  | 0  | #undef r1  | 
250  | 0  | #undef r2  | 
251  | 0  | #undef r3  | 
252  | 0  | #undef r4  | 
253  | 0  | #undef r5  | 
254  | 0  | #undef wsi  | 
255  | 0  | }  | 
256  |  |  | 
257  |  | #undef TOOM6H_MUL_N_REC  | 
258  |  | #undef TOOM6H_MUL_REC  | 
259  |  | #undef MAYBE_mul_basecase  | 
260  |  | #undef MAYBE_mul_toom22  | 
261  |  | #undef MAYBE_mul_toom33  | 
262  |  | #undef MAYBE_mul_toom6h  |