/src/gmp/mpn/compute_powtab.c
Line  | Count  | Source (jump to first uncovered line)  | 
1  |  | /* mpn_compute_powtab.  | 
2  |  |  | 
3  |  |    Contributed to the GNU project by Torbjorn Granlund.  | 
4  |  |  | 
5  |  |    THE FUNCTIONS IN THIS FILE ARE INTERNAL WITH MUTABLE INTERFACES.  IT IS ONLY  | 
6  |  |    SAFE TO REACH THEM THROUGH DOCUMENTED INTERFACES.  IN FACT, IT IS ALMOST  | 
7  |  |    GUARANTEED THAT THEY WILL CHANGE OR DISAPPEAR IN A FUTURE GNU MP RELEASE.  | 
8  |  |  | 
9  |  | Copyright 1991-2017 Free Software Foundation, Inc.  | 
10  |  |  | 
11  |  | This file is part of the GNU MP Library.  | 
12  |  |  | 
13  |  | The GNU MP Library is free software; you can redistribute it and/or modify  | 
14  |  | it under the terms of either:  | 
15  |  |  | 
16  |  |   * the GNU Lesser General Public License as published by the Free  | 
17  |  |     Software Foundation; either version 3 of the License, or (at your  | 
18  |  |     option) any later version.  | 
19  |  |  | 
20  |  | or  | 
21  |  |  | 
22  |  |   * the GNU General Public License as published by the Free Software  | 
23  |  |     Foundation; either version 2 of the License, or (at your option) any  | 
24  |  |     later version.  | 
25  |  |  | 
26  |  | or both in parallel, as here.  | 
27  |  |  | 
28  |  | The GNU MP Library is distributed in the hope that it will be useful, but  | 
29  |  | WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY  | 
30  |  | or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License  | 
31  |  | for more details.  | 
32  |  |  | 
33  |  | You should have received copies of the GNU General Public License and the  | 
34  |  | GNU Lesser General Public License along with the GNU MP Library.  If not,  | 
35  |  | see https://www.gnu.org/licenses/.  */  | 
36  |  |  | 
37  |  | /*  | 
38  |  |   CAVEATS:  | 
39  |  |   * The exptab and powtab vectors are in opposite orders.  Probably OK.  | 
40  |  |   * Consider getting rid of exptab, doing bit ops on the un argument instead.  | 
41  |  |   * Consider rounding greatest power slightly upwards to save adjustments.  | 
42  |  |   * In powtab_decide, consider computing cost from just the 2-3 largest  | 
43  |  |     operands, since smaller operand contribute little.  This makes most sense  | 
44  |  |     if exptab is suppressed.  | 
45  |  | */  | 
46  |  |  | 
47  |  | #include "gmp-impl.h"  | 
48  |  |  | 
49  |  | #ifndef DIV_1_VS_MUL_1_PERCENT  | 
50  |  | #define DIV_1_VS_MUL_1_PERCENT 150  | 
51  |  | #endif  | 
52  |  |  | 
53  |  | #define SET_powers_t(dest, ptr, size, dib, b, sh) \  | 
54  | 0  |   do {             \ | 
55  | 0  |     dest.p = ptr;         \  | 
56  | 0  |     dest.n = size;          \  | 
57  | 0  |     dest.digits_in_base = dib;        \  | 
58  | 0  |     dest.base = b;          \  | 
59  | 0  |     dest.shift = sh;          \  | 
60  | 0  |   } while (0)  | 
61  |  |  | 
62  |  | #if DIV_1_VS_MUL_1_PERCENT > 120  | 
63  |  | #define HAVE_mpn_compute_powtab_mul 1  | 
64  |  | static void  | 
65  |  | mpn_compute_powtab_mul (powers_t *powtab, mp_ptr powtab_mem, mp_size_t un,  | 
66  |  |       int base, const size_t *exptab, size_t n_pows)  | 
67  | 0  | { | 
68  | 0  |   mp_size_t n;  | 
69  | 0  |   mp_ptr p, t;  | 
70  | 0  |   mp_limb_t cy;  | 
71  | 0  |   long start_idx;  | 
72  | 0  |   int c;  | 
73  |  | 
  | 
74  | 0  |   mp_limb_t big_base = mp_bases[base].big_base;  | 
75  | 0  |   int chars_per_limb = mp_bases[base].chars_per_limb;  | 
76  |  | 
  | 
77  | 0  |   mp_ptr powtab_mem_ptr = powtab_mem;  | 
78  |  | 
  | 
79  | 0  |   size_t digits_in_base = chars_per_limb;  | 
80  |  | 
  | 
81  | 0  |   powers_t *pt = powtab;  | 
82  |  | 
  | 
83  | 0  |   p = powtab_mem_ptr;  | 
84  | 0  |   powtab_mem_ptr += 1;  | 
85  | 0  |   p[0] = big_base;  | 
86  |  | 
  | 
87  | 0  |   SET_powers_t (pt[0], p, 1, digits_in_base, base, 0);  | 
88  | 0  |   pt++;  | 
89  |  | 
  | 
90  | 0  |   t = powtab_mem_ptr;  | 
91  | 0  |   powtab_mem_ptr += 2;  | 
92  | 0  |   t[1] = mpn_mul_1 (t, p, 1, big_base);  | 
93  | 0  |   n = 2;  | 
94  |  | 
  | 
95  | 0  |   digits_in_base *= 2;  | 
96  |  | 
  | 
97  | 0  |   c = t[0] == 0;  | 
98  | 0  |   t += c;  | 
99  | 0  |   n -= c;  | 
100  | 0  |   mp_size_t shift = c;  | 
101  |  | 
  | 
102  | 0  |   SET_powers_t (pt[0], t, n, digits_in_base, base, shift);  | 
103  | 0  |   p = t;  | 
104  | 0  |   pt++;  | 
105  |  | 
  | 
106  | 0  |   if (exptab[0] == ((size_t) chars_per_limb << n_pows))  | 
107  | 0  |     { | 
108  | 0  |       start_idx = n_pows - 2;  | 
109  | 0  |     }  | 
110  | 0  |   else  | 
111  | 0  |     { | 
112  | 0  |       if (((digits_in_base + chars_per_limb) << (n_pows-2)) <= exptab[0])  | 
113  | 0  |   { | 
114  |  |     /* 3, sometimes adjusted to 4.  */  | 
115  | 0  |     t = powtab_mem_ptr;  | 
116  | 0  |     powtab_mem_ptr += 4;  | 
117  | 0  |     t[n] = cy = mpn_mul_1 (t, p, n, big_base);  | 
118  | 0  |     n += cy != 0;;  | 
119  |  | 
  | 
120  | 0  |     digits_in_base += chars_per_limb;  | 
121  |  | 
  | 
122  | 0  |     c  = t[0] == 0;  | 
123  | 0  |     t += c;  | 
124  | 0  |     n -= c;  | 
125  | 0  |     shift += c;  | 
126  | 0  |   }  | 
127  | 0  |       else  | 
128  | 0  |   { | 
129  |  |     /* 2 copy, will always become 3 with back-multiplication.  */  | 
130  | 0  |     t = powtab_mem_ptr;  | 
131  | 0  |     powtab_mem_ptr += 3;  | 
132  | 0  |     t[0] = p[0];  | 
133  | 0  |     t[1] = p[1];  | 
134  | 0  |   }  | 
135  |  | 
  | 
136  | 0  |       SET_powers_t (pt[0], t, n, digits_in_base, base, shift);  | 
137  | 0  |       p = t;  | 
138  | 0  |       pt++;  | 
139  | 0  |       start_idx = n_pows - 3;  | 
140  | 0  |     }  | 
141  |  | 
  | 
142  | 0  |   for (long pi = start_idx; pi >= 0; pi--)  | 
143  | 0  |     { | 
144  | 0  |       t = powtab_mem_ptr;  | 
145  | 0  |       powtab_mem_ptr += 2 * n + 2;  | 
146  |  | 
  | 
147  | 0  |       ASSERT (powtab_mem_ptr < powtab_mem + mpn_str_powtab_alloc (un));  | 
148  |  | 
  | 
149  | 0  |       mpn_sqr (t, p, n);  | 
150  |  | 
  | 
151  | 0  |       digits_in_base *= 2;  | 
152  | 0  |       n *= 2;  | 
153  | 0  |       n -= t[n - 1] == 0;  | 
154  | 0  |       shift *= 2;  | 
155  |  | 
  | 
156  | 0  |       c = t[0] == 0;  | 
157  | 0  |       t += c;  | 
158  | 0  |       n -= c;  | 
159  | 0  |       shift += c;  | 
160  |  |  | 
161  |  |       /* Adjust new value if it is too small as input to the next squaring.  */  | 
162  | 0  |       if (((digits_in_base + chars_per_limb) << pi) <= exptab[0])  | 
163  | 0  |   { | 
164  | 0  |     t[n] = cy = mpn_mul_1 (t, t, n, big_base);  | 
165  | 0  |     n += cy != 0;  | 
166  |  | 
  | 
167  | 0  |     digits_in_base += chars_per_limb;  | 
168  |  | 
  | 
169  | 0  |     c  = t[0] == 0;  | 
170  | 0  |     t += c;  | 
171  | 0  |     n -= c;  | 
172  | 0  |     shift += c;  | 
173  | 0  |   }  | 
174  |  | 
  | 
175  | 0  |       SET_powers_t (pt[0], t, n, digits_in_base, base, shift);  | 
176  |  |  | 
177  |  |       /* Adjust previous value if it is not at its target power.  */  | 
178  | 0  |       if (pt[-1].digits_in_base < exptab[pi + 1])  | 
179  | 0  |   { | 
180  | 0  |     mp_size_t n = pt[-1].n;  | 
181  | 0  |     mp_ptr p = pt[-1].p;  | 
182  | 0  |     p[n] = cy = mpn_mul_1 (p, p, n, big_base);  | 
183  | 0  |     n += cy != 0;  | 
184  |  | 
  | 
185  | 0  |     ASSERT (pt[-1].digits_in_base + chars_per_limb == exptab[pi + 1]);  | 
186  | 0  |     pt[-1].digits_in_base = exptab[pi + 1];  | 
187  |  | 
  | 
188  | 0  |     c = p[0] == 0;  | 
189  | 0  |     pt[-1].p = p + c;  | 
190  | 0  |     pt[-1].n = n - c;  | 
191  | 0  |     pt[-1].shift += c;  | 
192  | 0  |   }  | 
193  |  | 
  | 
194  | 0  |       p = t;  | 
195  | 0  |       pt++;  | 
196  | 0  |     }  | 
197  | 0  | }  | 
198  |  | #endif  | 
199  |  |  | 
200  |  | #if DIV_1_VS_MUL_1_PERCENT < 275  | 
201  |  | #define HAVE_mpn_compute_powtab_div 1  | 
202  |  | static void  | 
203  |  | mpn_compute_powtab_div (powers_t *powtab, mp_ptr powtab_mem, mp_size_t un,  | 
204  |  |       int base, const size_t *exptab, size_t n_pows)  | 
205  |  | { | 
206  |  |   mp_ptr p, t;  | 
207  |  |  | 
208  |  |   mp_limb_t big_base = mp_bases[base].big_base;  | 
209  |  |   int chars_per_limb = mp_bases[base].chars_per_limb;  | 
210  |  |  | 
211  |  |   mp_ptr powtab_mem_ptr = powtab_mem;  | 
212  |  |  | 
213  |  |   size_t digits_in_base = chars_per_limb;  | 
214  |  |  | 
215  |  |   powers_t *pt = powtab;  | 
216  |  |  | 
217  |  |   p = powtab_mem_ptr;  | 
218  |  |   powtab_mem_ptr += 1;  | 
219  |  |   p[0] = big_base;  | 
220  |  |  | 
221  |  |   SET_powers_t (pt[0], p, 1, digits_in_base, base, 0);  | 
222  |  |   pt++;  | 
223  |  |  | 
224  |  |   mp_size_t n = 1;  | 
225  |  |   mp_size_t shift = 0;  | 
226  |  |   for (long pi = n_pows - 1; pi >= 0; pi--)  | 
227  |  |     { | 
228  |  |       t = powtab_mem_ptr;  | 
229  |  |       powtab_mem_ptr += 2 * n;  | 
230  |  |  | 
231  |  |       ASSERT (powtab_mem_ptr < powtab_mem + mpn_str_powtab_alloc (un));  | 
232  |  |  | 
233  |  |       mpn_sqr (t, p, n);  | 
234  |  |       n = 2 * n - 1; n += t[n] != 0;  | 
235  |  |       digits_in_base *= 2;  | 
236  |  |  | 
237  |  |       if (digits_in_base != exptab[pi]) /* if ((((un - 1) >> pi) & 2) == 0) */  | 
238  |  |   { | 
239  |  | #if HAVE_NATIVE_mpn_pi1_bdiv_q_1 || ! HAVE_NATIVE_mpn_divexact_1  | 
240  |  |     if (__GMP_LIKELY (base == 10))  | 
241  |  |       mpn_pi1_bdiv_q_1 (t, t, n, big_base >> MP_BASES_BIG_BASE_CTZ_10,  | 
242  |  |             MP_BASES_BIG_BASE_BINVERTED_10,  | 
243  |  |             MP_BASES_BIG_BASE_CTZ_10);  | 
244  |  |     else  | 
245  |  | #endif  | 
246  |  |       /* FIXME: We could use _pi1 here if we add big_base_binverted and  | 
247  |  |          big_base_ctz fields to struct bases.  That would add about 2 KiB  | 
248  |  |          to mp_bases.c.  | 
249  |  |          FIXME: Use mpn_bdiv_q_1 here when mpn_divexact_1 is converted to  | 
250  |  |          mpn_bdiv_q_1 for more machines. */  | 
251  |  |       mpn_divexact_1 (t, t, n, big_base);  | 
252  |  |  | 
253  |  |     n -= t[n - 1] == 0;  | 
254  |  |     digits_in_base -= chars_per_limb;  | 
255  |  |   }  | 
256  |  |  | 
257  |  |       shift *= 2;  | 
258  |  |       /* Strip low zero limbs, but be careful to keep the result divisible by  | 
259  |  |    big_base.  */  | 
260  |  |       while (t[0] == 0 && (t[1] & ((big_base & -big_base) - 1)) == 0)  | 
261  |  |   { | 
262  |  |     t++;  | 
263  |  |     n--;  | 
264  |  |     shift++;  | 
265  |  |   }  | 
266  |  |       p = t;  | 
267  |  |  | 
268  |  |       SET_powers_t (pt[0], p, n, digits_in_base, base, shift);  | 
269  |  |       pt++;  | 
270  |  |     }  | 
271  |  |  | 
272  |  |   /* Strip any remaining low zero limbs.  */  | 
273  |  |   pt -= n_pows + 1;  | 
274  |  |   for (long pi = n_pows; pi >= 0; pi--)  | 
275  |  |     { | 
276  |  |       mp_ptr t = pt[pi].p;  | 
277  |  |       mp_size_t shift = pt[pi].shift;  | 
278  |  |       mp_size_t n = pt[pi].n;  | 
279  |  |       int c;  | 
280  |  |       c = t[0] == 0;  | 
281  |  |       t += c;  | 
282  |  |       n -= c;  | 
283  |  |       shift += c;  | 
284  |  |       pt[pi].p = t;  | 
285  |  |       pt[pi].shift = shift;  | 
286  |  |       pt[pi].n = n;  | 
287  |  |     }  | 
288  |  | }  | 
289  |  | #endif  | 
290  |  |  | 
291  |  | static long  | 
292  |  | powtab_decide (size_t *exptab, size_t un, int base)  | 
293  | 0  | { | 
294  | 0  |   int chars_per_limb = mp_bases[base].chars_per_limb;  | 
295  | 0  |   long n_pows = 0;  | 
296  | 0  |   for (size_t pn = (un + 1) >> 1; pn != 1; pn = (pn + 1) >> 1)  | 
297  | 0  |     { | 
298  | 0  |       exptab[n_pows] = pn * chars_per_limb;  | 
299  | 0  |       n_pows++;  | 
300  | 0  |     }  | 
301  | 0  |   exptab[n_pows] = chars_per_limb;  | 
302  |  | 
  | 
303  |  | #if HAVE_mpn_compute_powtab_mul && HAVE_mpn_compute_powtab_div  | 
304  |  |   size_t pn = un - 1;  | 
305  |  |   size_t xn = (un + 1) >> 1;  | 
306  |  |   unsigned mcost = 1;  | 
307  |  |   unsigned dcost = 1;  | 
308  |  |   for (long i = n_pows - 2; i >= 0; i--)  | 
309  |  |     { | 
310  |  |       size_t pow = (pn >> (i + 1)) + 1;  | 
311  |  |  | 
312  |  |       if (pow & 1)  | 
313  |  |   dcost += pow;  | 
314  |  |  | 
315  |  |       if (xn != (pow << i))  | 
316  |  |   { | 
317  |  |     if (pow > 2 && (pow & 1) == 0)  | 
318  |  |       mcost += 2 * pow;  | 
319  |  |     else  | 
320  |  |       mcost += pow;  | 
321  |  |   }  | 
322  |  |       else  | 
323  |  |   { | 
324  |  |     if (pow & 1)  | 
325  |  |       mcost += pow;  | 
326  |  |   }  | 
327  |  |     }  | 
328  |  |  | 
329  |  |   dcost = dcost * DIV_1_VS_MUL_1_PERCENT / 100;  | 
330  |  |  | 
331  |  |   if (mcost <= dcost)  | 
332  |  |     return n_pows;  | 
333  |  |   else  | 
334  |  |     return -n_pows;  | 
335  |  | #elif HAVE_mpn_compute_powtab_mul  | 
336  |  |   return n_pows;  | 
337  |  | #elif HAVE_mpn_compute_powtab_div  | 
338  |  |   return -n_pows;  | 
339  |  | #else  | 
340  |  | #error "no powtab function available"  | 
341  |  | #endif  | 
342  | 0  | }  | 
343  |  |  | 
344  |  | size_t  | 
345  |  | mpn_compute_powtab (powers_t *powtab, mp_ptr powtab_mem, mp_size_t un, int base)  | 
346  | 0  | { | 
347  | 0  |   size_t exptab[GMP_LIMB_BITS];  | 
348  |  | 
  | 
349  | 0  |   long n_pows = powtab_decide (exptab, un, base);  | 
350  |  | 
  | 
351  |  | #if HAVE_mpn_compute_powtab_mul && HAVE_mpn_compute_powtab_div  | 
352  |  |   if (n_pows >= 0)  | 
353  |  |     { | 
354  |  |       mpn_compute_powtab_mul (powtab, powtab_mem, un, base, exptab, n_pows);  | 
355  |  |       return n_pows;  | 
356  |  |     }  | 
357  |  |   else  | 
358  |  |     { | 
359  |  |       mpn_compute_powtab_div (powtab, powtab_mem, un, base, exptab, -n_pows);  | 
360  |  |       return -n_pows;  | 
361  |  |     }  | 
362  |  | #elif HAVE_mpn_compute_powtab_mul  | 
363  | 0  |   ASSERT (n_pows > 0);  | 
364  | 0  |   mpn_compute_powtab_mul (powtab, powtab_mem, un, base, exptab, n_pows);  | 
365  | 0  |   return n_pows;  | 
366  |  | #elif HAVE_mpn_compute_powtab_div  | 
367  |  |   ASSERT (n_pows < 0);  | 
368  |  |   mpn_compute_powtab_div (powtab, powtab_mem, un, base, exptab, -n_pows);  | 
369  |  |   return -n_pows;  | 
370  |  | #else  | 
371  |  | #error "no powtab function available"  | 
372  |  | #endif  | 
373  | 0  | }  |