Line  | Count  | Source (jump to first uncovered line)  | 
1  |  | /* hgcd.c.  | 
2  |  |  | 
3  |  |    THE FUNCTIONS IN THIS FILE ARE INTERNAL WITH MUTABLE INTERFACES.  IT IS ONLY  | 
4  |  |    SAFE TO REACH THEM THROUGH DOCUMENTED INTERFACES.  IN FACT, IT IS ALMOST  | 
5  |  |    GUARANTEED THAT THEY'LL CHANGE OR DISAPPEAR IN A FUTURE GNU MP RELEASE.  | 
6  |  |  | 
7  |  | Copyright 2003-2005, 2008, 2011, 2012 Free Software Foundation, Inc.  | 
8  |  |  | 
9  |  | This file is part of the GNU MP Library.  | 
10  |  |  | 
11  |  | The GNU MP Library is free software; you can redistribute it and/or modify  | 
12  |  | it under the terms of either:  | 
13  |  |  | 
14  |  |   * the GNU Lesser General Public License as published by the Free  | 
15  |  |     Software Foundation; either version 3 of the License, or (at your  | 
16  |  |     option) any later version.  | 
17  |  |  | 
18  |  | or  | 
19  |  |  | 
20  |  |   * the GNU General Public License as published by the Free Software  | 
21  |  |     Foundation; either version 2 of the License, or (at your option) any  | 
22  |  |     later version.  | 
23  |  |  | 
24  |  | or both in parallel, as here.  | 
25  |  |  | 
26  |  | The GNU MP Library is distributed in the hope that it will be useful, but  | 
27  |  | WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY  | 
28  |  | or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License  | 
29  |  | for more details.  | 
30  |  |  | 
31  |  | You should have received copies of the GNU General Public License and the  | 
32  |  | GNU Lesser General Public License along with the GNU MP Library.  If not,  | 
33  |  | see https://www.gnu.org/licenses/.  */  | 
34  |  |  | 
35  |  | #include "gmp-impl.h"  | 
36  |  | #include "longlong.h"  | 
37  |  |  | 
38  |  |  | 
39  |  | /* Size analysis for hgcd:  | 
40  |  |  | 
41  |  |    For the recursive calls, we have n1 <= ceil(n / 2). Then the  | 
42  |  |    storage need is determined by the storage for the recursive call  | 
43  |  |    computing M1, and hgcd_matrix_adjust and hgcd_matrix_mul calls that use M1  | 
44  |  |    (after this, the storage needed for M1 can be recycled).  | 
45  |  |  | 
46  |  |    Let S(r) denote the required storage. For M1 we need 4 * (ceil(n1/2) + 1)  | 
47  |  |    = 4 * (ceil(n/4) + 1), for the hgcd_matrix_adjust call, we need n + 2,  | 
48  |  |    and for the hgcd_matrix_mul, we may need 3 ceil(n/2) + 8. In total,  | 
49  |  |    4 * ceil(n/4) + 3 ceil(n/2) + 12 <= 10 ceil(n/4) + 12.  | 
50  |  |  | 
51  |  |    For the recursive call, we need S(n1) = S(ceil(n/2)).  | 
52  |  |  | 
53  |  |    S(n) <= 10*ceil(n/4) + 12 + S(ceil(n/2))  | 
54  |  |   <= 10*(ceil(n/4) + ... + ceil(n/2^(1+k))) + 12k + S(ceil(n/2^k))  | 
55  |  |   <= 10*(2 ceil(n/4) + k) + 12k + S(ceil(n/2^k))  | 
56  |  |   <= 20 ceil(n/4) + 22k + S(ceil(n/2^k))  | 
57  |  | */  | 
58  |  |  | 
59  |  | mp_size_t  | 
60  |  | mpn_hgcd_itch (mp_size_t n)  | 
61  | 0  | { | 
62  | 0  |   unsigned k;  | 
63  | 0  |   int count;  | 
64  | 0  |   mp_size_t nscaled;  | 
65  |  | 
  | 
66  | 0  |   if (BELOW_THRESHOLD (n, HGCD_THRESHOLD))  | 
67  | 0  |     return n;  | 
68  |  |  | 
69  |  |   /* Get the recursion depth. */  | 
70  | 0  |   nscaled = (n - 1) / (HGCD_THRESHOLD - 1);  | 
71  | 0  |   count_leading_zeros (count, nscaled);  | 
72  | 0  |   k = GMP_LIMB_BITS - count;  | 
73  |  | 
  | 
74  | 0  |   return 20 * ((n+3) / 4) + 22 * k + HGCD_THRESHOLD;  | 
75  | 0  | }  | 
76  |  |  | 
77  |  | /* Reduces a,b until |a-b| fits in n/2 + 1 limbs. Constructs matrix M  | 
78  |  |    with elements of size at most (n+1)/2 - 1. Returns new size of a,  | 
79  |  |    b, or zero if no reduction is possible. */  | 
80  |  |  | 
81  |  | mp_size_t  | 
82  |  | mpn_hgcd (mp_ptr ap, mp_ptr bp, mp_size_t n,  | 
83  |  |     struct hgcd_matrix *M, mp_ptr tp)  | 
84  | 0  | { | 
85  | 0  |   mp_size_t s = n/2 + 1;  | 
86  |  | 
  | 
87  | 0  |   mp_size_t nn;  | 
88  | 0  |   int success = 0;  | 
89  |  | 
  | 
90  | 0  |   if (n <= s)  | 
91  |  |     /* Happens when n <= 2, a fairly uninteresting case but exercised  | 
92  |  |        by the random inputs of the testsuite. */  | 
93  | 0  |     return 0;  | 
94  |  |  | 
95  | 0  |   ASSERT ((ap[n-1] | bp[n-1]) > 0);  | 
96  |  | 
  | 
97  | 0  |   ASSERT ((n+1)/2 - 1 < M->alloc);  | 
98  |  | 
  | 
99  | 0  |   if (ABOVE_THRESHOLD (n, HGCD_THRESHOLD))  | 
100  | 0  |     { | 
101  | 0  |       mp_size_t n2 = (3*n)/4 + 1;  | 
102  | 0  |       mp_size_t p = n/2;  | 
103  |  | 
  | 
104  | 0  |       nn = mpn_hgcd_reduce (M, ap, bp, n, p, tp);  | 
105  | 0  |       if (nn)  | 
106  | 0  |   { | 
107  | 0  |     n = nn;  | 
108  | 0  |     success = 1;  | 
109  | 0  |   }  | 
110  |  |  | 
111  |  |       /* NOTE: It appears this loop never runs more than once (at  | 
112  |  |    least when not recursing to hgcd_appr). */  | 
113  | 0  |       while (n > n2)  | 
114  | 0  |   { | 
115  |  |     /* Needs n + 1 storage */  | 
116  | 0  |     nn = mpn_hgcd_step (n, ap, bp, s, M, tp);  | 
117  | 0  |     if (!nn)  | 
118  | 0  |       return success ? n : 0;  | 
119  |  |  | 
120  | 0  |     n = nn;  | 
121  | 0  |     success = 1;  | 
122  | 0  |   }  | 
123  |  |  | 
124  | 0  |       if (n > s + 2)  | 
125  | 0  |   { | 
126  | 0  |     struct hgcd_matrix M1;  | 
127  | 0  |     mp_size_t scratch;  | 
128  |  | 
  | 
129  | 0  |     p = 2*s - n + 1;  | 
130  | 0  |     scratch = MPN_HGCD_MATRIX_INIT_ITCH (n-p);  | 
131  |  | 
  | 
132  | 0  |     mpn_hgcd_matrix_init(&M1, n - p, tp);  | 
133  |  |  | 
134  |  |     /* FIXME: Should use hgcd_reduce, but that may require more  | 
135  |  |        scratch space, which requires review. */  | 
136  |  | 
  | 
137  | 0  |     nn = mpn_hgcd (ap + p, bp + p, n - p, &M1, tp + scratch);  | 
138  | 0  |     if (nn > 0)  | 
139  | 0  |       { | 
140  |  |         /* We always have max(M) > 2^{-(GMP_NUMB_BITS + 1)} max(M1) */ | 
141  | 0  |         ASSERT (M->n + 2 >= M1.n);  | 
142  |  |  | 
143  |  |         /* Furthermore, assume M ends with a quotient (1, q; 0, 1),  | 
144  |  |      then either q or q + 1 is a correct quotient, and M1 will  | 
145  |  |      start with either (1, 0; 1, 1) or (2, 1; 1, 1). This  | 
146  |  |      rules out the case that the size of M * M1 is much  | 
147  |  |      smaller than the expected M->n + M1->n. */  | 
148  |  | 
  | 
149  | 0  |         ASSERT (M->n + M1.n < M->alloc);  | 
150  |  |  | 
151  |  |         /* Needs 2 (p + M->n) <= 2 (2*s - n2 + 1 + n2 - s - 1)  | 
152  |  |      = 2*s <= 2*(floor(n/2) + 1) <= n + 2. */  | 
153  | 0  |         n = mpn_hgcd_matrix_adjust (&M1, p + nn, ap, bp, p, tp + scratch);  | 
154  |  |  | 
155  |  |         /* We need a bound for of M->n + M1.n. Let n be the original  | 
156  |  |      input size. Then  | 
157  |  |  | 
158  |  |      ceil(n/2) - 1 >= size of product >= M.n + M1.n - 2  | 
159  |  |  | 
160  |  |      and it follows that  | 
161  |  |  | 
162  |  |      M.n + M1.n <= ceil(n/2) + 1  | 
163  |  |  | 
164  |  |      Then 3*(M.n + M1.n) + 5 <= 3 * ceil(n/2) + 8 is the  | 
165  |  |      amount of needed scratch space. */  | 
166  | 0  |         mpn_hgcd_matrix_mul (M, &M1, tp + scratch);  | 
167  | 0  |         success = 1;  | 
168  | 0  |       }  | 
169  | 0  |   }  | 
170  | 0  |     }  | 
171  |  |  | 
172  | 0  |   for (;;)  | 
173  | 0  |     { | 
174  |  |       /* Needs s+3 < n */  | 
175  | 0  |       nn = mpn_hgcd_step (n, ap, bp, s, M, tp);  | 
176  | 0  |       if (!nn)  | 
177  | 0  |   return success ? n : 0;  | 
178  |  |  | 
179  | 0  |       n = nn;  | 
180  | 0  |       success = 1;  | 
181  | 0  |     }  | 
182  | 0  | }  |