Line  | Count  | Source (jump to first uncovered line)  | 
1  |  | /* hash - hashing table processing.  | 
2  |  |  | 
3  |  |    Copyright (C) 1998-2004, 2006-2007, 2009-2025 Free Software Foundation, Inc.  | 
4  |  |  | 
5  |  |    Written by Jim Meyering, 1992.  | 
6  |  |  | 
7  |  |    This file is free software: you can redistribute it and/or modify  | 
8  |  |    it under the terms of the GNU Lesser General Public License as  | 
9  |  |    published by the Free Software Foundation; either version 2.1 of the  | 
10  |  |    License, or (at your option) any later version.  | 
11  |  |  | 
12  |  |    This file is distributed in the hope that it will be useful,  | 
13  |  |    but WITHOUT ANY WARRANTY; without even the implied warranty of  | 
14  |  |    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the  | 
15  |  |    GNU Lesser General Public License for more details.  | 
16  |  |  | 
17  |  |    You should have received a copy of the GNU Lesser General Public License  | 
18  |  |    along with this program.  If not, see <https://www.gnu.org/licenses/>.  */  | 
19  |  |  | 
20  |  | /* A generic hash table package.  */  | 
21  |  |  | 
22  |  | /* Define USE_OBSTACK to 1 if you want the allocator to use obstacks instead  | 
23  |  |    of malloc.  If you change USE_OBSTACK, you have to recompile!  */  | 
24  |  |  | 
25  |  | #include <config.h>  | 
26  |  |  | 
27  |  | #include "hash.h"  | 
28  |  |  | 
29  |  | #include "bitrotate.h"  | 
30  |  | #include "xalloc-oversized.h"  | 
31  |  |  | 
32  |  | #include <errno.h>  | 
33  |  | #include <stdint.h>  | 
34  |  | #include <stdio.h>  | 
35  |  | #include <stdlib.h>  | 
36  |  |  | 
37  |  | #if USE_OBSTACK  | 
38  |  | # include "obstack.h"  | 
39  |  | # ifndef obstack_chunk_alloc  | 
40  |  | #  define obstack_chunk_alloc malloc  | 
41  |  | # endif  | 
42  |  | # ifndef obstack_chunk_free  | 
43  |  | #  define obstack_chunk_free free  | 
44  |  | # endif  | 
45  |  | #endif  | 
46  |  |  | 
47  |  | struct hash_entry  | 
48  |  |   { | 
49  |  |     void *data;  | 
50  |  |     struct hash_entry *next;  | 
51  |  |   };  | 
52  |  |  | 
53  |  | struct hash_table  | 
54  |  |   { | 
55  |  |     /* The array of buckets starts at BUCKET and extends to BUCKET_LIMIT-1,  | 
56  |  |        for a possibility of N_BUCKETS.  Among those, N_BUCKETS_USED buckets  | 
57  |  |        are not empty, there are N_ENTRIES active entries in the table.  */  | 
58  |  |     struct hash_entry *bucket;  | 
59  |  |     struct hash_entry const *bucket_limit;  | 
60  |  |     size_t n_buckets;  | 
61  |  |     size_t n_buckets_used;  | 
62  |  |     size_t n_entries;  | 
63  |  |  | 
64  |  |     /* Tuning arguments, kept in a physically separate structure.  */  | 
65  |  |     const Hash_tuning *tuning;  | 
66  |  |  | 
67  |  |     /* Three functions are given to 'hash_initialize', see the documentation  | 
68  |  |        block for this function.  In a word, HASHER randomizes a user entry  | 
69  |  |        into a number up from 0 up to some maximum minus 1; COMPARATOR returns  | 
70  |  |        true if two user entries compare equally; and DATA_FREER is the cleanup  | 
71  |  |        function for a user entry.  */  | 
72  |  |     Hash_hasher hasher;  | 
73  |  |     Hash_comparator comparator;  | 
74  |  |     Hash_data_freer data_freer;  | 
75  |  |  | 
76  |  |     /* A linked list of freed struct hash_entry structs.  */  | 
77  |  |     struct hash_entry *free_entry_list;  | 
78  |  |  | 
79  |  | #if USE_OBSTACK  | 
80  |  |     /* Whenever obstacks are used, it is possible to allocate all overflowed  | 
81  |  |        entries into a single stack, so they all can be freed in a single  | 
82  |  |        operation.  It is not clear if the speedup is worth the trouble.  */  | 
83  |  |     struct obstack entry_stack;  | 
84  |  | #endif  | 
85  |  |   };  | 
86  |  |  | 
87  |  | /* A hash table contains many internal entries, each holding a pointer to  | 
88  |  |    some user-provided data (also called a user entry).  An entry indistinctly  | 
89  |  |    refers to both the internal entry and its associated user entry.  A user  | 
90  |  |    entry contents may be hashed by a randomization function (the hashing  | 
91  |  |    function, or just "hasher" for short) into a number (or "slot") between 0  | 
92  |  |    and the current table size.  At each slot position in the hash table,  | 
93  |  |    starts a linked chain of entries for which the user data all hash to this  | 
94  |  |    slot.  A bucket is the collection of all entries hashing to the same slot.  | 
95  |  |  | 
96  |  |    A good "hasher" function will distribute entries rather evenly in buckets.  | 
97  |  |    In the ideal case, the length of each bucket is roughly the number of  | 
98  |  |    entries divided by the table size.  Finding the slot for a data is usually  | 
99  |  |    done in constant time by the "hasher", and the later finding of a precise  | 
100  |  |    entry is linear in time with the size of the bucket.  Consequently, a  | 
101  |  |    larger hash table size (that is, a larger number of buckets) is prone to  | 
102  |  |    yielding shorter chains, *given* the "hasher" function behaves properly.  | 
103  |  |  | 
104  |  |    Long buckets slow down the lookup algorithm.  One might use big hash table  | 
105  |  |    sizes in hope to reduce the average length of buckets, but this might  | 
106  |  |    become inordinate, as unused slots in the hash table take some space.  The  | 
107  |  |    best bet is to make sure you are using a good "hasher" function (beware  | 
108  |  |    that those are not that easy to write! :-), and to use a table size  | 
109  |  |    larger than the actual number of entries.  */  | 
110  |  |  | 
111  |  | /* If an insertion makes the ratio of nonempty buckets to table size larger  | 
112  |  |    than the growth threshold (a number between 0.0 and 1.0), then increase  | 
113  |  |    the table size by multiplying by the growth factor (a number greater than  | 
114  |  |    1.0).  The growth threshold defaults to 0.8, and the growth factor  | 
115  |  |    defaults to 1.414, meaning that the table will have doubled its size  | 
116  |  |    every second time 80% of the buckets get used.  */  | 
117  |  | #define DEFAULT_GROWTH_THRESHOLD 0.8f  | 
118  |  | #define DEFAULT_GROWTH_FACTOR 1.414f  | 
119  |  |  | 
120  |  | /* If a deletion empties a bucket and causes the ratio of used buckets to  | 
121  |  |    table size to become smaller than the shrink threshold (a number between  | 
122  |  |    0.0 and 1.0), then shrink the table by multiplying by the shrink factor (a  | 
123  |  |    number greater than the shrink threshold but smaller than 1.0).  The shrink  | 
124  |  |    threshold and factor default to 0.0 and 1.0, meaning that the table never  | 
125  |  |    shrinks.  */  | 
126  |  | #define DEFAULT_SHRINK_THRESHOLD 0.0f  | 
127  |  | #define DEFAULT_SHRINK_FACTOR 1.0f  | 
128  |  |  | 
129  |  | /* Use this to initialize or reset a TUNING structure to  | 
130  |  |    some sensible values. */  | 
131  |  | static const Hash_tuning default_tuning =  | 
132  |  |   { | 
133  |  |     DEFAULT_SHRINK_THRESHOLD,  | 
134  |  |     DEFAULT_SHRINK_FACTOR,  | 
135  |  |     DEFAULT_GROWTH_THRESHOLD,  | 
136  |  |     DEFAULT_GROWTH_FACTOR,  | 
137  |  |     false  | 
138  |  |   };  | 
139  |  |  | 
140  |  | /* Information and lookup.  */  | 
141  |  |  | 
142  |  | size_t  | 
143  |  | hash_get_n_buckets (const Hash_table *table)  | 
144  | 0  | { | 
145  | 0  |   return table->n_buckets;  | 
146  | 0  | }  | 
147  |  |  | 
148  |  | size_t  | 
149  |  | hash_get_n_buckets_used (const Hash_table *table)  | 
150  | 0  | { | 
151  | 0  |   return table->n_buckets_used;  | 
152  | 0  | }  | 
153  |  |  | 
154  |  | size_t  | 
155  |  | hash_get_n_entries (const Hash_table *table)  | 
156  | 0  | { | 
157  | 0  |   return table->n_entries;  | 
158  | 0  | }  | 
159  |  |  | 
160  |  | size_t  | 
161  |  | hash_get_max_bucket_length (const Hash_table *table)  | 
162  | 0  | { | 
163  | 0  |   struct hash_entry const *bucket;  | 
164  | 0  |   size_t max_bucket_length = 0;  | 
165  |  | 
  | 
166  | 0  |   for (bucket = table->bucket; bucket < table->bucket_limit; bucket++)  | 
167  | 0  |     { | 
168  | 0  |       if (bucket->data)  | 
169  | 0  |         { | 
170  | 0  |           struct hash_entry const *cursor = bucket;  | 
171  | 0  |           size_t bucket_length = 1;  | 
172  |  | 
  | 
173  | 0  |           while (cursor = cursor->next, cursor)  | 
174  | 0  |             bucket_length++;  | 
175  |  | 
  | 
176  | 0  |           if (bucket_length > max_bucket_length)  | 
177  | 0  |             max_bucket_length = bucket_length;  | 
178  | 0  |         }  | 
179  | 0  |     }  | 
180  |  | 
  | 
181  | 0  |   return max_bucket_length;  | 
182  | 0  | }  | 
183  |  |  | 
184  |  | bool  | 
185  |  | hash_table_ok (const Hash_table *table)  | 
186  | 0  | { | 
187  | 0  |   struct hash_entry const *bucket;  | 
188  | 0  |   size_t n_buckets_used = 0;  | 
189  | 0  |   size_t n_entries = 0;  | 
190  |  | 
  | 
191  | 0  |   for (bucket = table->bucket; bucket < table->bucket_limit; bucket++)  | 
192  | 0  |     { | 
193  | 0  |       if (bucket->data)  | 
194  | 0  |         { | 
195  | 0  |           struct hash_entry const *cursor = bucket;  | 
196  |  |  | 
197  |  |           /* Count bucket head.  */  | 
198  | 0  |           n_buckets_used++;  | 
199  | 0  |           n_entries++;  | 
200  |  |  | 
201  |  |           /* Count bucket overflow.  */  | 
202  | 0  |           while (cursor = cursor->next, cursor)  | 
203  | 0  |             n_entries++;  | 
204  | 0  |         }  | 
205  | 0  |     }  | 
206  |  | 
  | 
207  | 0  |   if (n_buckets_used == table->n_buckets_used && n_entries == table->n_entries)  | 
208  | 0  |     return true;  | 
209  |  |  | 
210  | 0  |   return false;  | 
211  | 0  | }  | 
212  |  |  | 
213  |  | void  | 
214  |  | hash_print_statistics (const Hash_table *table, FILE *stream)  | 
215  | 0  | { | 
216  | 0  |   size_t n_entries = hash_get_n_entries (table);  | 
217  | 0  |   size_t n_buckets = hash_get_n_buckets (table);  | 
218  | 0  |   size_t n_buckets_used = hash_get_n_buckets_used (table);  | 
219  | 0  |   size_t max_bucket_length = hash_get_max_bucket_length (table);  | 
220  |  | 
  | 
221  | 0  |   fprintf (stream, "# entries:         %lu\n", (unsigned long int) n_entries);  | 
222  | 0  |   fprintf (stream, "# buckets:         %lu\n", (unsigned long int) n_buckets);  | 
223  | 0  |   fprintf (stream, "# buckets used:    %lu (%.2f%%)\n",  | 
224  | 0  |            (unsigned long int) n_buckets_used,  | 
225  | 0  |            (100.0 * n_buckets_used) / n_buckets);  | 
226  | 0  |   fprintf (stream, "max bucket length: %lu\n",  | 
227  | 0  |            (unsigned long int) max_bucket_length);  | 
228  | 0  | }  | 
229  |  |  | 
230  |  | /* Hash KEY and return a pointer to the selected bucket.  | 
231  |  |    If TABLE->hasher misbehaves, abort.  */  | 
232  |  | static struct hash_entry *  | 
233  |  | safe_hasher (const Hash_table *table, const void *key)  | 
234  | 0  | { | 
235  | 0  |   size_t n = table->hasher (key, table->n_buckets);  | 
236  | 0  |   if (! (n < table->n_buckets))  | 
237  | 0  |     abort ();  | 
238  | 0  |   return table->bucket + n;  | 
239  | 0  | }  | 
240  |  |  | 
241  |  | void *  | 
242  |  | hash_lookup (const Hash_table *table, const void *entry)  | 
243  | 0  | { | 
244  | 0  |   struct hash_entry const *bucket = safe_hasher (table, entry);  | 
245  | 0  |   struct hash_entry const *cursor;  | 
246  |  | 
  | 
247  | 0  |   if (bucket->data == NULL)  | 
248  | 0  |     return NULL;  | 
249  |  |  | 
250  | 0  |   for (cursor = bucket; cursor; cursor = cursor->next)  | 
251  | 0  |     if (entry == cursor->data || table->comparator (entry, cursor->data))  | 
252  | 0  |       return cursor->data;  | 
253  |  |  | 
254  | 0  |   return NULL;  | 
255  | 0  | }  | 
256  |  |  | 
257  |  | /* Walking.  */  | 
258  |  |  | 
259  |  | void *  | 
260  |  | hash_get_first (const Hash_table *table)  | 
261  | 0  | { | 
262  | 0  |   struct hash_entry const *bucket;  | 
263  |  | 
  | 
264  | 0  |   if (table->n_entries == 0)  | 
265  | 0  |     return NULL;  | 
266  |  |  | 
267  | 0  |   for (bucket = table->bucket; ; bucket++)  | 
268  | 0  |     if (! (bucket < table->bucket_limit))  | 
269  | 0  |       abort ();  | 
270  | 0  |     else if (bucket->data)  | 
271  | 0  |       return bucket->data;  | 
272  | 0  | }  | 
273  |  |  | 
274  |  | void *  | 
275  |  | hash_get_next (const Hash_table *table, const void *entry)  | 
276  | 0  | { | 
277  | 0  |   struct hash_entry const *bucket = safe_hasher (table, entry);  | 
278  | 0  |   struct hash_entry const *cursor;  | 
279  |  |  | 
280  |  |   /* Find next entry in the same bucket.  */  | 
281  | 0  |   cursor = bucket;  | 
282  | 0  |   do  | 
283  | 0  |     { | 
284  | 0  |       if (cursor->data == entry && cursor->next)  | 
285  | 0  |         return cursor->next->data;  | 
286  | 0  |       cursor = cursor->next;  | 
287  | 0  |     }  | 
288  | 0  |   while (cursor != NULL);  | 
289  |  |  | 
290  |  |   /* Find first entry in any subsequent bucket.  */  | 
291  | 0  |   while (++bucket < table->bucket_limit)  | 
292  | 0  |     if (bucket->data)  | 
293  | 0  |       return bucket->data;  | 
294  |  |  | 
295  |  |   /* None found.  */  | 
296  | 0  |   return NULL;  | 
297  | 0  | }  | 
298  |  |  | 
299  |  | size_t  | 
300  |  | hash_get_entries (const Hash_table *table, void **buffer,  | 
301  |  |                   size_t buffer_size)  | 
302  | 0  | { | 
303  | 0  |   size_t counter = 0;  | 
304  | 0  |   struct hash_entry const *bucket;  | 
305  | 0  |   struct hash_entry const *cursor;  | 
306  |  | 
  | 
307  | 0  |   for (bucket = table->bucket; bucket < table->bucket_limit; bucket++)  | 
308  | 0  |     { | 
309  | 0  |       if (bucket->data)  | 
310  | 0  |         { | 
311  | 0  |           for (cursor = bucket; cursor; cursor = cursor->next)  | 
312  | 0  |             { | 
313  | 0  |               if (counter >= buffer_size)  | 
314  | 0  |                 return counter;  | 
315  | 0  |               buffer[counter++] = cursor->data;  | 
316  | 0  |             }  | 
317  | 0  |         }  | 
318  | 0  |     }  | 
319  |  |  | 
320  | 0  |   return counter;  | 
321  | 0  | }  | 
322  |  |  | 
323  |  | size_t  | 
324  |  | hash_do_for_each (const Hash_table *table, Hash_processor processor,  | 
325  |  |                   void *processor_data)  | 
326  | 0  | { | 
327  | 0  |   size_t counter = 0;  | 
328  | 0  |   struct hash_entry const *bucket;  | 
329  | 0  |   struct hash_entry const *cursor;  | 
330  |  | 
  | 
331  | 0  |   for (bucket = table->bucket; bucket < table->bucket_limit; bucket++)  | 
332  | 0  |     { | 
333  | 0  |       if (bucket->data)  | 
334  | 0  |         { | 
335  | 0  |           for (cursor = bucket; cursor; cursor = cursor->next)  | 
336  | 0  |             { | 
337  | 0  |               if (! processor (cursor->data, processor_data))  | 
338  | 0  |                 return counter;  | 
339  | 0  |               counter++;  | 
340  | 0  |             }  | 
341  | 0  |         }  | 
342  | 0  |     }  | 
343  |  |  | 
344  | 0  |   return counter;  | 
345  | 0  | }  | 
346  |  |  | 
347  |  | /* Allocation and clean-up.  */  | 
348  |  |  | 
349  |  | #if USE_DIFF_HASH  | 
350  |  |  | 
351  |  | /* About hashings, Paul Eggert writes to me (FP), on 1994-01-01: "Please see  | 
352  |  |    B. J. McKenzie, R. Harries & T. Bell, Selecting a hashing algorithm,  | 
353  |  |    Software--practice & experience 20, 2 (Feb 1990), 209-224.  Good hash  | 
354  |  |    algorithms tend to be domain-specific, so what's good for [diffutils'] io.c  | 
355  |  |    may not be good for your application."  */  | 
356  |  |  | 
357  |  | size_t  | 
358  |  | hash_string (const char *string, size_t n_buckets)  | 
359  |  | { | 
360  |  | # define HASH_ONE_CHAR(Value, Byte) \  | 
361  |  |   ((Byte) + rotl_sz (Value, 7))  | 
362  |  |  | 
363  |  |   size_t value = 0;  | 
364  |  |   unsigned char ch;  | 
365  |  |  | 
366  |  |   for (; (ch = *string); string++)  | 
367  |  |     value = HASH_ONE_CHAR (value, ch);  | 
368  |  |   return value % n_buckets;  | 
369  |  |  | 
370  |  | # undef HASH_ONE_CHAR  | 
371  |  | }  | 
372  |  |  | 
373  |  | #else /* not USE_DIFF_HASH */  | 
374  |  |  | 
375  |  | /* This one comes from 'recode', and performs a bit better than the above as  | 
376  |  |    per a few experiments.  It is inspired from a hashing routine found in the  | 
377  |  |    very old Cyber 'snoop', itself written in typical Greg Mansfield style.  | 
378  |  |    (By the way, what happened to this excellent man?  Is he still alive?)  */  | 
379  |  |  | 
380  |  | size_t  | 
381  |  | hash_string (const char *string, size_t n_buckets)  | 
382  | 0  | { | 
383  | 0  |   size_t value = 0;  | 
384  | 0  |   unsigned char ch;  | 
385  |  | 
  | 
386  | 0  |   for (; (ch = *string); string++)  | 
387  | 0  |     value = (value * 31 + ch) % n_buckets;  | 
388  | 0  |   return value;  | 
389  | 0  | }  | 
390  |  |  | 
391  |  | #endif /* not USE_DIFF_HASH */  | 
392  |  |  | 
393  |  | /* Return true if CANDIDATE is a prime number.  CANDIDATE should be an odd  | 
394  |  |    number at least equal to 11.  */  | 
395  |  |  | 
396  |  | static bool _GL_ATTRIBUTE_CONST  | 
397  |  | is_prime (size_t candidate)  | 
398  | 0  | { | 
399  | 0  |   size_t divisor = 3;  | 
400  | 0  |   size_t square = divisor * divisor;  | 
401  |  | 
  | 
402  | 0  |   while (square < candidate && (candidate % divisor))  | 
403  | 0  |     { | 
404  | 0  |       divisor++;  | 
405  | 0  |       square += 4 * divisor;  | 
406  | 0  |       divisor++;  | 
407  | 0  |     }  | 
408  |  | 
  | 
409  | 0  |   return (candidate % divisor ? true : false);  | 
410  | 0  | }  | 
411  |  |  | 
412  |  | /* Round a given CANDIDATE number up to the nearest prime, and return that  | 
413  |  |    prime.  Primes lower than 10 are merely skipped.  */  | 
414  |  |  | 
415  |  | static size_t _GL_ATTRIBUTE_CONST  | 
416  |  | next_prime (size_t candidate)  | 
417  | 0  | { | 
418  |  |   /* Skip small primes.  */  | 
419  | 0  |   if (candidate < 10)  | 
420  | 0  |     candidate = 10;  | 
421  |  |  | 
422  |  |   /* Make it definitely odd.  */  | 
423  | 0  |   candidate |= 1;  | 
424  |  | 
  | 
425  | 0  |   while (SIZE_MAX != candidate && !is_prime (candidate))  | 
426  | 0  |     candidate += 2;  | 
427  |  | 
  | 
428  | 0  |   return candidate;  | 
429  | 0  | }  | 
430  |  |  | 
431  |  | void  | 
432  |  | hash_reset_tuning (Hash_tuning *tuning)  | 
433  | 0  | { | 
434  | 0  |   *tuning = default_tuning;  | 
435  | 0  | }  | 
436  |  |  | 
437  |  | /* If the user passes a NULL hasher, we hash the raw pointer.  */  | 
438  |  | static size_t  | 
439  |  | raw_hasher (const void *data, size_t n)  | 
440  | 0  | { | 
441  |  |   /* When hashing unique pointers, it is often the case that they were  | 
442  |  |      generated by malloc and thus have the property that the low-order  | 
443  |  |      bits are 0.  As this tends to give poorer performance with small  | 
444  |  |      tables, we rotate the pointer value before performing division,  | 
445  |  |      in an attempt to improve hash quality.  */  | 
446  | 0  |   size_t val = rotr_sz ((size_t) data, 3);  | 
447  | 0  |   return val % n;  | 
448  | 0  | }  | 
449  |  |  | 
450  |  | /* If the user passes a NULL comparator, we use pointer comparison.  */  | 
451  |  | static bool  | 
452  |  | raw_comparator (const void *a, const void *b)  | 
453  | 0  | { | 
454  | 0  |   return a == b;  | 
455  | 0  | }  | 
456  |  |  | 
457  |  |  | 
458  |  | /* For the given hash TABLE, check the user supplied tuning structure for  | 
459  |  |    reasonable values, and return true if there is no gross error with it.  | 
460  |  |    Otherwise, definitively reset the TUNING field to some acceptable default  | 
461  |  |    in the hash table (that is, the user loses the right of further modifying  | 
462  |  |    tuning arguments), and return false.  */  | 
463  |  |  | 
464  |  | static bool  | 
465  |  | check_tuning (Hash_table *table)  | 
466  | 0  | { | 
467  | 0  |   const Hash_tuning *tuning = table->tuning;  | 
468  | 0  |   float epsilon;  | 
469  | 0  |   if (tuning == &default_tuning)  | 
470  | 0  |     return true;  | 
471  |  |  | 
472  |  |   /* Be a bit stricter than mathematics would require, so that  | 
473  |  |      rounding errors in size calculations do not cause allocations to  | 
474  |  |      fail to grow or shrink as they should.  The smallest allocation  | 
475  |  |      is 11 (due to next_prime's algorithm), so an epsilon of 0.1  | 
476  |  |      should be good enough.  */  | 
477  | 0  |   epsilon = 0.1f;  | 
478  |  | 
  | 
479  | 0  |   if (epsilon < tuning->growth_threshold  | 
480  | 0  |       && tuning->growth_threshold < 1 - epsilon  | 
481  | 0  |       && 1 + epsilon < tuning->growth_factor  | 
482  | 0  |       && 0 <= tuning->shrink_threshold  | 
483  | 0  |       && tuning->shrink_threshold + epsilon < tuning->shrink_factor  | 
484  | 0  |       && tuning->shrink_factor <= 1  | 
485  | 0  |       && tuning->shrink_threshold + epsilon < tuning->growth_threshold)  | 
486  | 0  |     return true;  | 
487  |  |  | 
488  | 0  |   table->tuning = &default_tuning;  | 
489  | 0  |   return false;  | 
490  | 0  | }  | 
491  |  |  | 
492  |  | /* Compute the size of the bucket array for the given CANDIDATE and  | 
493  |  |    TUNING, or return 0 if there is no possible way to allocate that  | 
494  |  |    many entries.  */  | 
495  |  |  | 
496  |  | static size_t _GL_ATTRIBUTE_PURE  | 
497  |  | compute_bucket_size (size_t candidate, const Hash_tuning *tuning)  | 
498  | 0  | { | 
499  | 0  |   if (!tuning->is_n_buckets)  | 
500  | 0  |     { | 
501  | 0  |       float new_candidate = candidate / tuning->growth_threshold;  | 
502  | 0  |       if ((float) SIZE_MAX <= new_candidate)  | 
503  | 0  |         goto nomem;  | 
504  | 0  |       candidate = new_candidate;  | 
505  | 0  |     }  | 
506  | 0  |   candidate = next_prime (candidate);  | 
507  | 0  |   if (xalloc_oversized (candidate, sizeof (struct hash_entry *)))  | 
508  | 0  |     goto nomem;  | 
509  | 0  |   return candidate;  | 
510  |  |  | 
511  | 0  |  nomem:  | 
512  | 0  |   errno = ENOMEM;  | 
513  | 0  |   return 0;  | 
514  | 0  | }  | 
515  |  |  | 
516  |  | Hash_table *  | 
517  |  | hash_initialize (size_t candidate, const Hash_tuning *tuning,  | 
518  |  |                  Hash_hasher hasher, Hash_comparator comparator,  | 
519  |  |                  Hash_data_freer data_freer)  | 
520  | 0  | { | 
521  | 0  |   Hash_table *table;  | 
522  |  | 
  | 
523  | 0  |   if (hasher == NULL)  | 
524  | 0  |     hasher = raw_hasher;  | 
525  | 0  |   if (comparator == NULL)  | 
526  | 0  |     comparator = raw_comparator;  | 
527  |  | 
  | 
528  | 0  |   table = malloc (sizeof *table);  | 
529  | 0  |   if (table == NULL)  | 
530  | 0  |     return NULL;  | 
531  |  |  | 
532  | 0  |   if (!tuning)  | 
533  | 0  |     tuning = &default_tuning;  | 
534  | 0  |   table->tuning = tuning;  | 
535  | 0  |   if (!check_tuning (table))  | 
536  | 0  |     { | 
537  |  |       /* Fail if the tuning options are invalid.  This is the only occasion  | 
538  |  |          when the user gets some feedback about it.  Once the table is created,  | 
539  |  |          if the user provides invalid tuning options, we silently revert to  | 
540  |  |          using the defaults, and ignore further request to change the tuning  | 
541  |  |          options.  */  | 
542  | 0  |       errno = EINVAL;  | 
543  | 0  |       goto fail;  | 
544  | 0  |     }  | 
545  |  |  | 
546  | 0  |   table->n_buckets = compute_bucket_size (candidate, tuning);  | 
547  | 0  |   if (!table->n_buckets)  | 
548  | 0  |     goto fail;  | 
549  |  |  | 
550  | 0  |   table->bucket = calloc (table->n_buckets, sizeof *table->bucket);  | 
551  | 0  |   if (table->bucket == NULL)  | 
552  | 0  |     goto fail;  | 
553  | 0  |   table->bucket_limit = table->bucket + table->n_buckets;  | 
554  | 0  |   table->n_buckets_used = 0;  | 
555  | 0  |   table->n_entries = 0;  | 
556  |  | 
  | 
557  | 0  |   table->hasher = hasher;  | 
558  | 0  |   table->comparator = comparator;  | 
559  | 0  |   table->data_freer = data_freer;  | 
560  |  | 
  | 
561  | 0  |   table->free_entry_list = NULL;  | 
562  |  | #if USE_OBSTACK  | 
563  |  |   obstack_init (&table->entry_stack);  | 
564  |  | #endif  | 
565  | 0  |   return table;  | 
566  |  |  | 
567  | 0  |  fail:  | 
568  | 0  |   free (table);  | 
569  | 0  |   return NULL;  | 
570  | 0  | }  | 
571  |  |  | 
572  |  | void  | 
573  |  | hash_clear (Hash_table *table)  | 
574  | 0  | { | 
575  | 0  |   struct hash_entry *bucket;  | 
576  |  | 
  | 
577  | 0  |   for (bucket = table->bucket; bucket < table->bucket_limit; bucket++)  | 
578  | 0  |     { | 
579  | 0  |       if (bucket->data)  | 
580  | 0  |         { | 
581  | 0  |           struct hash_entry *cursor;  | 
582  | 0  |           struct hash_entry *next;  | 
583  |  |  | 
584  |  |           /* Free the bucket overflow.  */  | 
585  | 0  |           for (cursor = bucket->next; cursor; cursor = next)  | 
586  | 0  |             { | 
587  | 0  |               if (table->data_freer)  | 
588  | 0  |                 table->data_freer (cursor->data);  | 
589  | 0  |               cursor->data = NULL;  | 
590  |  | 
  | 
591  | 0  |               next = cursor->next;  | 
592  |  |               /* Relinking is done one entry at a time, as it is to be expected  | 
593  |  |                  that overflows are either rare or short.  */  | 
594  | 0  |               cursor->next = table->free_entry_list;  | 
595  | 0  |               table->free_entry_list = cursor;  | 
596  | 0  |             }  | 
597  |  |  | 
598  |  |           /* Free the bucket head.  */  | 
599  | 0  |           if (table->data_freer)  | 
600  | 0  |             table->data_freer (bucket->data);  | 
601  | 0  |           bucket->data = NULL;  | 
602  | 0  |           bucket->next = NULL;  | 
603  | 0  |         }  | 
604  | 0  |     }  | 
605  |  | 
  | 
606  | 0  |   table->n_buckets_used = 0;  | 
607  | 0  |   table->n_entries = 0;  | 
608  | 0  | }  | 
609  |  |  | 
610  |  | void  | 
611  |  | hash_free (Hash_table *table)  | 
612  | 0  | { | 
613  | 0  |   struct hash_entry *bucket;  | 
614  | 0  |   struct hash_entry *cursor;  | 
615  | 0  |   struct hash_entry *next;  | 
616  | 0  |   int err = errno;  | 
617  |  |  | 
618  |  |   /* Call the user data_freer function.  */  | 
619  | 0  |   if (table->data_freer && table->n_entries)  | 
620  | 0  |     { | 
621  | 0  |       for (bucket = table->bucket; bucket < table->bucket_limit; bucket++)  | 
622  | 0  |         { | 
623  | 0  |           if (bucket->data)  | 
624  | 0  |             { | 
625  | 0  |               for (cursor = bucket; cursor; cursor = cursor->next)  | 
626  | 0  |                 table->data_freer (cursor->data);  | 
627  | 0  |             }  | 
628  | 0  |         }  | 
629  | 0  |     }  | 
630  |  | 
  | 
631  |  | #if USE_OBSTACK  | 
632  |  |  | 
633  |  |   obstack_free (&table->entry_stack, NULL);  | 
634  |  |  | 
635  |  | #else  | 
636  |  |  | 
637  |  |   /* Free all bucket overflowed entries.  */  | 
638  | 0  |   for (bucket = table->bucket; bucket < table->bucket_limit; bucket++)  | 
639  | 0  |     { | 
640  | 0  |       for (cursor = bucket->next; cursor; cursor = next)  | 
641  | 0  |         { | 
642  | 0  |           next = cursor->next;  | 
643  | 0  |           free (cursor);  | 
644  | 0  |         }  | 
645  | 0  |     }  | 
646  |  |  | 
647  |  |   /* Also reclaim the internal list of previously freed entries.  */  | 
648  | 0  |   for (cursor = table->free_entry_list; cursor; cursor = next)  | 
649  | 0  |     { | 
650  | 0  |       next = cursor->next;  | 
651  | 0  |       free (cursor);  | 
652  | 0  |     }  | 
653  |  | 
  | 
654  | 0  | #endif  | 
655  |  |  | 
656  |  |   /* Free the remainder of the hash table structure.  */  | 
657  | 0  |   free (table->bucket);  | 
658  | 0  |   free (table);  | 
659  |  | 
  | 
660  | 0  |   errno = err;  | 
661  | 0  | }  | 
662  |  |  | 
663  |  | /* Insertion and deletion.  */  | 
664  |  |  | 
665  |  | /* Get a new hash entry for a bucket overflow, possibly by recycling a  | 
666  |  |    previously freed one.  If this is not possible, allocate a new one.  */  | 
667  |  |  | 
668  |  | static struct hash_entry *  | 
669  |  | allocate_entry (Hash_table *table)  | 
670  | 0  | { | 
671  | 0  |   struct hash_entry *new;  | 
672  |  | 
  | 
673  | 0  |   if (table->free_entry_list)  | 
674  | 0  |     { | 
675  | 0  |       new = table->free_entry_list;  | 
676  | 0  |       table->free_entry_list = new->next;  | 
677  | 0  |     }  | 
678  | 0  |   else  | 
679  | 0  |     { | 
680  |  | #if USE_OBSTACK  | 
681  |  |       new = obstack_alloc (&table->entry_stack, sizeof *new);  | 
682  |  | #else  | 
683  | 0  |       new = malloc (sizeof *new);  | 
684  | 0  | #endif  | 
685  | 0  |     }  | 
686  |  | 
  | 
687  | 0  |   return new;  | 
688  | 0  | }  | 
689  |  |  | 
690  |  | /* Free a hash entry which was part of some bucket overflow,  | 
691  |  |    saving it for later recycling.  */  | 
692  |  |  | 
693  |  | static void  | 
694  |  | free_entry (Hash_table *table, struct hash_entry *entry)  | 
695  | 0  | { | 
696  | 0  |   entry->data = NULL;  | 
697  | 0  |   entry->next = table->free_entry_list;  | 
698  | 0  |   table->free_entry_list = entry;  | 
699  | 0  | }  | 
700  |  |  | 
701  |  | /* This private function is used to help with insertion and deletion.  When  | 
702  |  |    ENTRY matches an entry in the table, return a pointer to the corresponding  | 
703  |  |    user data and set *BUCKET_HEAD to the head of the selected bucket.  | 
704  |  |    Otherwise, return NULL.  When DELETE is true and ENTRY matches an entry in  | 
705  |  |    the table, unlink the matching entry.  */  | 
706  |  |  | 
707  |  | static void *  | 
708  |  | hash_find_entry (Hash_table *table, const void *entry,  | 
709  |  |                  struct hash_entry **bucket_head, bool delete)  | 
710  | 0  | { | 
711  | 0  |   struct hash_entry *bucket = safe_hasher (table, entry);  | 
712  | 0  |   struct hash_entry *cursor;  | 
713  |  | 
  | 
714  | 0  |   *bucket_head = bucket;  | 
715  |  |  | 
716  |  |   /* Test for empty bucket.  */  | 
717  | 0  |   if (bucket->data == NULL)  | 
718  | 0  |     return NULL;  | 
719  |  |  | 
720  |  |   /* See if the entry is the first in the bucket.  */  | 
721  | 0  |   if (entry == bucket->data || table->comparator (entry, bucket->data))  | 
722  | 0  |     { | 
723  | 0  |       void *data = bucket->data;  | 
724  |  | 
  | 
725  | 0  |       if (delete)  | 
726  | 0  |         { | 
727  | 0  |           if (bucket->next)  | 
728  | 0  |             { | 
729  | 0  |               struct hash_entry *next = bucket->next;  | 
730  |  |  | 
731  |  |               /* Bump the first overflow entry into the bucket head, then save  | 
732  |  |                  the previous first overflow entry for later recycling.  */  | 
733  | 0  |               *bucket = *next;  | 
734  | 0  |               free_entry (table, next);  | 
735  | 0  |             }  | 
736  | 0  |           else  | 
737  | 0  |             { | 
738  | 0  |               bucket->data = NULL;  | 
739  | 0  |             }  | 
740  | 0  |         }  | 
741  |  | 
  | 
742  | 0  |       return data;  | 
743  | 0  |     }  | 
744  |  |  | 
745  |  |   /* Scan the bucket overflow.  */  | 
746  | 0  |   for (cursor = bucket; cursor->next; cursor = cursor->next)  | 
747  | 0  |     { | 
748  | 0  |       if (entry == cursor->next->data  | 
749  | 0  |           || table->comparator (entry, cursor->next->data))  | 
750  | 0  |         { | 
751  | 0  |           void *data = cursor->next->data;  | 
752  |  | 
  | 
753  | 0  |           if (delete)  | 
754  | 0  |             { | 
755  | 0  |               struct hash_entry *next = cursor->next;  | 
756  |  |  | 
757  |  |               /* Unlink the entry to delete, then save the freed entry for later  | 
758  |  |                  recycling.  */  | 
759  | 0  |               cursor->next = next->next;  | 
760  | 0  |               free_entry (table, next);  | 
761  | 0  |             }  | 
762  |  | 
  | 
763  | 0  |           return data;  | 
764  | 0  |         }  | 
765  | 0  |     }  | 
766  |  |  | 
767  |  |   /* No entry found.  */  | 
768  | 0  |   return NULL;  | 
769  | 0  | }  | 
770  |  |  | 
771  |  | /* Internal helper, to move entries from SRC to DST.  Both tables must  | 
772  |  |    share the same free entry list.  If SAFE, only move overflow  | 
773  |  |    entries, saving bucket heads for later, so that no allocations will  | 
774  |  |    occur.  Return false (setting errno) if the free entry list is  | 
775  |  |    exhausted and an allocation fails.  */  | 
776  |  |  | 
777  |  | static bool  | 
778  |  | transfer_entries (Hash_table *dst, Hash_table *src, bool safe)  | 
779  | 0  | { | 
780  | 0  |   struct hash_entry *bucket;  | 
781  | 0  |   struct hash_entry *cursor;  | 
782  | 0  |   struct hash_entry *next;  | 
783  | 0  |   for (bucket = src->bucket; bucket < src->bucket_limit; bucket++)  | 
784  | 0  |     if (bucket->data)  | 
785  | 0  |       { | 
786  | 0  |         void *data;  | 
787  | 0  |         struct hash_entry *new_bucket;  | 
788  |  |  | 
789  |  |         /* Within each bucket, transfer overflow entries first and  | 
790  |  |            then the bucket head, to minimize memory pressure.  After  | 
791  |  |            all, the only time we might allocate is when moving the  | 
792  |  |            bucket head, but moving overflow entries first may create  | 
793  |  |            free entries that can be recycled by the time we finally  | 
794  |  |            get to the bucket head.  */  | 
795  | 0  |         for (cursor = bucket->next; cursor; cursor = next)  | 
796  | 0  |           { | 
797  | 0  |             data = cursor->data;  | 
798  | 0  |             new_bucket = safe_hasher (dst, data);  | 
799  |  | 
  | 
800  | 0  |             next = cursor->next;  | 
801  |  | 
  | 
802  | 0  |             if (new_bucket->data)  | 
803  | 0  |               { | 
804  |  |                 /* Merely relink an existing entry, when moving from a  | 
805  |  |                    bucket overflow into a bucket overflow.  */  | 
806  | 0  |                 cursor->next = new_bucket->next;  | 
807  | 0  |                 new_bucket->next = cursor;  | 
808  | 0  |               }  | 
809  | 0  |             else  | 
810  | 0  |               { | 
811  |  |                 /* Free an existing entry, when moving from a bucket  | 
812  |  |                    overflow into a bucket header.  */  | 
813  | 0  |                 new_bucket->data = data;  | 
814  | 0  |                 dst->n_buckets_used++;  | 
815  | 0  |                 free_entry (dst, cursor);  | 
816  | 0  |               }  | 
817  | 0  |           }  | 
818  |  |         /* Now move the bucket head.  Be sure that if we fail due to  | 
819  |  |            allocation failure that the src table is in a consistent  | 
820  |  |            state.  */  | 
821  | 0  |         data = bucket->data;  | 
822  | 0  |         bucket->next = NULL;  | 
823  | 0  |         if (safe)  | 
824  | 0  |           continue;  | 
825  | 0  |         new_bucket = safe_hasher (dst, data);  | 
826  |  | 
  | 
827  | 0  |         if (new_bucket->data)  | 
828  | 0  |           { | 
829  |  |             /* Allocate or recycle an entry, when moving from a bucket  | 
830  |  |                header into a bucket overflow.  */  | 
831  | 0  |             struct hash_entry *new_entry = allocate_entry (dst);  | 
832  |  | 
  | 
833  | 0  |             if (new_entry == NULL)  | 
834  | 0  |               return false;  | 
835  |  |  | 
836  | 0  |             new_entry->data = data;  | 
837  | 0  |             new_entry->next = new_bucket->next;  | 
838  | 0  |             new_bucket->next = new_entry;  | 
839  | 0  |           }  | 
840  | 0  |         else  | 
841  | 0  |           { | 
842  |  |             /* Move from one bucket header to another.  */  | 
843  | 0  |             new_bucket->data = data;  | 
844  | 0  |             dst->n_buckets_used++;  | 
845  | 0  |           }  | 
846  | 0  |         bucket->data = NULL;  | 
847  | 0  |         src->n_buckets_used--;  | 
848  | 0  |       }  | 
849  | 0  |   return true;  | 
850  | 0  | }  | 
851  |  |  | 
852  |  | bool  | 
853  |  | hash_rehash (Hash_table *table, size_t candidate)  | 
854  | 0  | { | 
855  | 0  |   Hash_table storage;  | 
856  | 0  |   Hash_table *new_table;  | 
857  | 0  |   size_t new_size = compute_bucket_size (candidate, table->tuning);  | 
858  |  | 
  | 
859  | 0  |   if (!new_size)  | 
860  | 0  |     return false;  | 
861  | 0  |   if (new_size == table->n_buckets)  | 
862  | 0  |     return true;  | 
863  | 0  |   new_table = &storage;  | 
864  | 0  |   new_table->bucket = calloc (new_size, sizeof *new_table->bucket);  | 
865  | 0  |   if (new_table->bucket == NULL)  | 
866  | 0  |     return false;  | 
867  | 0  |   new_table->n_buckets = new_size;  | 
868  | 0  |   new_table->bucket_limit = new_table->bucket + new_size;  | 
869  | 0  |   new_table->n_buckets_used = 0;  | 
870  | 0  |   new_table->n_entries = 0;  | 
871  | 0  |   new_table->tuning = table->tuning;  | 
872  | 0  |   new_table->hasher = table->hasher;  | 
873  | 0  |   new_table->comparator = table->comparator;  | 
874  | 0  |   new_table->data_freer = table->data_freer;  | 
875  |  |  | 
876  |  |   /* In order for the transfer to successfully complete, we need  | 
877  |  |      additional overflow entries when distinct buckets in the old  | 
878  |  |      table collide into a common bucket in the new table.  The worst  | 
879  |  |      case possible is a hasher that gives a good spread with the old  | 
880  |  |      size, but returns a constant with the new size; if we were to  | 
881  |  |      guarantee table->n_buckets_used-1 free entries in advance, then  | 
882  |  |      the transfer would be guaranteed to not allocate memory.  | 
883  |  |      However, for large tables, a guarantee of no further allocation  | 
884  |  |      introduces a lot of extra memory pressure, all for an unlikely  | 
885  |  |      corner case (most rehashes reduce, rather than increase, the  | 
886  |  |      number of overflow entries needed).  So, we instead ensure that  | 
887  |  |      the transfer process can be reversed if we hit a memory  | 
888  |  |      allocation failure mid-transfer.  */  | 
889  |  |  | 
890  |  |   /* Merely reuse the extra old space into the new table.  */  | 
891  |  | #if USE_OBSTACK  | 
892  |  |   new_table->entry_stack = table->entry_stack;  | 
893  |  | #endif  | 
894  | 0  |   new_table->free_entry_list = table->free_entry_list;  | 
895  |  | 
  | 
896  | 0  |   if (transfer_entries (new_table, table, false))  | 
897  | 0  |     { | 
898  |  |       /* Entries transferred successfully; tie up the loose ends.  */  | 
899  | 0  |       free (table->bucket);  | 
900  | 0  |       table->bucket = new_table->bucket;  | 
901  | 0  |       table->bucket_limit = new_table->bucket_limit;  | 
902  | 0  |       table->n_buckets = new_table->n_buckets;  | 
903  | 0  |       table->n_buckets_used = new_table->n_buckets_used;  | 
904  | 0  |       table->free_entry_list = new_table->free_entry_list;  | 
905  |  |       /* table->n_entries and table->entry_stack already hold their value.  */  | 
906  | 0  |       return true;  | 
907  | 0  |     }  | 
908  |  |  | 
909  |  |   /* We've allocated new_table->bucket (and possibly some entries),  | 
910  |  |      exhausted the free list, and moved some but not all entries into  | 
911  |  |      new_table.  We must undo the partial move before returning  | 
912  |  |      failure.  The only way to get into this situation is if new_table  | 
913  |  |      uses fewer buckets than the old table, so we will reclaim some  | 
914  |  |      free entries as overflows in the new table are put back into  | 
915  |  |      distinct buckets in the old table.  | 
916  |  |  | 
917  |  |      There are some pathological cases where a single pass through the  | 
918  |  |      table requires more intermediate overflow entries than using two  | 
919  |  |      passes.  Two passes give worse cache performance and takes  | 
920  |  |      longer, but at this point, we're already out of memory, so slow  | 
921  |  |      and safe is better than failure.  */  | 
922  | 0  |   int err = errno;  | 
923  | 0  |   table->free_entry_list = new_table->free_entry_list;  | 
924  | 0  |   if (! (transfer_entries (table, new_table, true)  | 
925  | 0  |          && transfer_entries (table, new_table, false)))  | 
926  | 0  |     abort ();  | 
927  |  |   /* table->n_entries already holds its value.  */  | 
928  | 0  |   free (new_table->bucket);  | 
929  | 0  |   errno = err;  | 
930  | 0  |   return false;  | 
931  | 0  | }  | 
932  |  |  | 
933  |  | int  | 
934  |  | hash_insert_if_absent (Hash_table *table, void const *entry,  | 
935  |  |                        void const **matched_ent)  | 
936  | 0  | { | 
937  | 0  |   void *data;  | 
938  | 0  |   struct hash_entry *bucket;  | 
939  |  |  | 
940  |  |   /* The caller cannot insert a NULL entry, since hash_lookup returns NULL  | 
941  |  |      to indicate "not found", and hash_find_entry uses "bucket->data == NULL"  | 
942  |  |      to indicate an empty bucket.  */  | 
943  | 0  |   if (! entry)  | 
944  | 0  |     abort ();  | 
945  |  |  | 
946  |  |   /* If there's a matching entry already in the table, return that.  */  | 
947  | 0  |   if ((data = hash_find_entry (table, entry, &bucket, false)) != NULL)  | 
948  | 0  |     { | 
949  | 0  |       if (matched_ent)  | 
950  | 0  |         *matched_ent = data;  | 
951  | 0  |       return 0;  | 
952  | 0  |     }  | 
953  |  |  | 
954  |  |   /* If the growth threshold of the buckets in use has been reached, increase  | 
955  |  |      the table size and rehash.  There's no point in checking the number of  | 
956  |  |      entries:  if the hashing function is ill-conditioned, rehashing is not  | 
957  |  |      likely to improve it.  */  | 
958  |  |  | 
959  | 0  |   if (table->n_buckets_used  | 
960  | 0  |       > table->tuning->growth_threshold * table->n_buckets)  | 
961  | 0  |     { | 
962  |  |       /* Check more fully, before starting real work.  If tuning arguments  | 
963  |  |          became invalid, the second check will rely on proper defaults.  */  | 
964  | 0  |       check_tuning (table);  | 
965  | 0  |       if (table->n_buckets_used  | 
966  | 0  |           > table->tuning->growth_threshold * table->n_buckets)  | 
967  | 0  |         { | 
968  | 0  |           const Hash_tuning *tuning = table->tuning;  | 
969  | 0  |           float candidate =  | 
970  | 0  |             (tuning->is_n_buckets  | 
971  | 0  |              ? (table->n_buckets * tuning->growth_factor)  | 
972  | 0  |              : (table->n_buckets * tuning->growth_factor  | 
973  | 0  |                 * tuning->growth_threshold));  | 
974  |  | 
  | 
975  | 0  |           if ((float) SIZE_MAX <= candidate)  | 
976  | 0  |             { | 
977  | 0  |               errno = ENOMEM;  | 
978  | 0  |               return -1;  | 
979  | 0  |             }  | 
980  |  |  | 
981  |  |           /* If the rehash fails, arrange to return NULL.  */  | 
982  | 0  |           if (!hash_rehash (table, candidate))  | 
983  | 0  |             return -1;  | 
984  |  |  | 
985  |  |           /* Update the bucket we are interested in.  */  | 
986  | 0  |           if (hash_find_entry (table, entry, &bucket, false) != NULL)  | 
987  | 0  |             abort ();  | 
988  | 0  |         }  | 
989  | 0  |     }  | 
990  |  |  | 
991  |  |   /* ENTRY is not matched, it should be inserted.  */  | 
992  |  |  | 
993  | 0  |   if (bucket->data)  | 
994  | 0  |     { | 
995  | 0  |       struct hash_entry *new_entry = allocate_entry (table);  | 
996  |  | 
  | 
997  | 0  |       if (new_entry == NULL)  | 
998  | 0  |         return -1;  | 
999  |  |  | 
1000  |  |       /* Add ENTRY in the overflow of the bucket.  */  | 
1001  |  |  | 
1002  | 0  |       new_entry->data = (void *) entry;  | 
1003  | 0  |       new_entry->next = bucket->next;  | 
1004  | 0  |       bucket->next = new_entry;  | 
1005  | 0  |       table->n_entries++;  | 
1006  | 0  |       return 1;  | 
1007  | 0  |     }  | 
1008  |  |  | 
1009  |  |   /* Add ENTRY right in the bucket head.  */  | 
1010  |  |  | 
1011  | 0  |   bucket->data = (void *) entry;  | 
1012  | 0  |   table->n_entries++;  | 
1013  | 0  |   table->n_buckets_used++;  | 
1014  |  | 
  | 
1015  | 0  |   return 1;  | 
1016  | 0  | }  | 
1017  |  |  | 
1018  |  | void *  | 
1019  |  | hash_insert (Hash_table *table, void const *entry)  | 
1020  | 0  | { | 
1021  | 0  |   void const *matched_ent;  | 
1022  | 0  |   int err = hash_insert_if_absent (table, entry, &matched_ent);  | 
1023  | 0  |   return (err == -1  | 
1024  | 0  |           ? NULL  | 
1025  | 0  |           : (void *) (err == 0 ? matched_ent : entry));  | 
1026  | 0  | }  | 
1027  |  |  | 
1028  |  | void *  | 
1029  |  | hash_remove (Hash_table *table, const void *entry)  | 
1030  | 0  | { | 
1031  | 0  |   void *data;  | 
1032  | 0  |   struct hash_entry *bucket;  | 
1033  |  | 
  | 
1034  | 0  |   data = hash_find_entry (table, entry, &bucket, true);  | 
1035  | 0  |   if (!data)  | 
1036  | 0  |     return NULL;  | 
1037  |  |  | 
1038  | 0  |   table->n_entries--;  | 
1039  | 0  |   if (!bucket->data)  | 
1040  | 0  |     { | 
1041  | 0  |       table->n_buckets_used--;  | 
1042  |  |  | 
1043  |  |       /* If the shrink threshold of the buckets in use has been reached,  | 
1044  |  |          rehash into a smaller table.  */  | 
1045  |  | 
  | 
1046  | 0  |       if (table->n_buckets_used  | 
1047  | 0  |           < table->tuning->shrink_threshold * table->n_buckets)  | 
1048  | 0  |         { | 
1049  |  |           /* Check more fully, before starting real work.  If tuning arguments  | 
1050  |  |              became invalid, the second check will rely on proper defaults.  */  | 
1051  | 0  |           check_tuning (table);  | 
1052  | 0  |           if (table->n_buckets_used  | 
1053  | 0  |               < table->tuning->shrink_threshold * table->n_buckets)  | 
1054  | 0  |             { | 
1055  | 0  |               const Hash_tuning *tuning = table->tuning;  | 
1056  | 0  |               size_t candidate =  | 
1057  | 0  |                 (tuning->is_n_buckets  | 
1058  | 0  |                  ? table->n_buckets * tuning->shrink_factor  | 
1059  | 0  |                  : (table->n_buckets * tuning->shrink_factor  | 
1060  | 0  |                     * tuning->growth_threshold));  | 
1061  |  | 
  | 
1062  | 0  |               if (!hash_rehash (table, candidate))  | 
1063  | 0  |                 { | 
1064  |  |                   /* Failure to allocate memory in an attempt to  | 
1065  |  |                      shrink the table is not fatal.  But since memory  | 
1066  |  |                      is low, we can at least be kind and free any  | 
1067  |  |                      spare entries, rather than keeping them tied up  | 
1068  |  |                      in the free entry list.  */  | 
1069  | 0  | #if ! USE_OBSTACK  | 
1070  | 0  |                   struct hash_entry *cursor = table->free_entry_list;  | 
1071  | 0  |                   struct hash_entry *next;  | 
1072  | 0  |                   while (cursor)  | 
1073  | 0  |                     { | 
1074  | 0  |                       next = cursor->next;  | 
1075  | 0  |                       free (cursor);  | 
1076  | 0  |                       cursor = next;  | 
1077  | 0  |                     }  | 
1078  | 0  |                   table->free_entry_list = NULL;  | 
1079  | 0  | #endif  | 
1080  | 0  |                 }  | 
1081  | 0  |             }  | 
1082  | 0  |         }  | 
1083  | 0  |     }  | 
1084  |  | 
  | 
1085  | 0  |   return data;  | 
1086  | 0  | }  | 
1087  |  |  | 
1088  |  | void *  | 
1089  |  | hash_delete (Hash_table *table, const void *entry)  | 
1090  | 0  | { | 
1091  | 0  |   return hash_remove (table, entry);  | 
1092  | 0  | }  | 
1093  |  |  | 
1094  |  | /* Testing.  */  | 
1095  |  |  | 
1096  |  | #if TESTING  | 
1097  |  |  | 
1098  |  | void  | 
1099  |  | hash_print (const Hash_table *table)  | 
1100  |  | { | 
1101  |  |   struct hash_entry *bucket = (struct hash_entry *) table->bucket;  | 
1102  |  |  | 
1103  |  |   for ( ; bucket < table->bucket_limit; bucket++)  | 
1104  |  |     { | 
1105  |  |       struct hash_entry *cursor;  | 
1106  |  |  | 
1107  |  |       if (bucket)  | 
1108  |  |         printf ("%lu:\n", (unsigned long int) (bucket - table->bucket)); | 
1109  |  |  | 
1110  |  |       for (cursor = bucket; cursor; cursor = cursor->next)  | 
1111  |  |         { | 
1112  |  |           char const *s = cursor->data;  | 
1113  |  |           /* FIXME */  | 
1114  |  |           if (s)  | 
1115  |  |             printf ("  %s\n", s); | 
1116  |  |         }  | 
1117  |  |     }  | 
1118  |  | }  | 
1119  |  |  | 
1120  |  | #endif /* TESTING */  |