Line  | Count  | Source (jump to first uncovered line)  | 
1  |  | /* cfb.c  | 
2  |  |  | 
3  |  |    Cipher feedback mode.  | 
4  |  |  | 
5  |  |    Copyright (C) 2015, 2017 Dmitry Eremin-Solenikov  | 
6  |  |    Copyright (C) 2001, 2011 Niels Möller  | 
7  |  |  | 
8  |  |    This file is part of GNU Nettle.  | 
9  |  |  | 
10  |  |    GNU Nettle is free software: you can redistribute it and/or  | 
11  |  |    modify it under the terms of either:  | 
12  |  |  | 
13  |  |      * the GNU Lesser General Public License as published by the Free  | 
14  |  |        Software Foundation; either version 3 of the License, or (at your  | 
15  |  |        option) any later version.  | 
16  |  |  | 
17  |  |    or  | 
18  |  |  | 
19  |  |      * the GNU General Public License as published by the Free  | 
20  |  |        Software Foundation; either version 2 of the License, or (at your  | 
21  |  |        option) any later version.  | 
22  |  |  | 
23  |  |    or both in parallel, as here.  | 
24  |  |  | 
25  |  |    GNU Nettle is distributed in the hope that it will be useful,  | 
26  |  |    but WITHOUT ANY WARRANTY; without even the implied warranty of  | 
27  |  |    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU  | 
28  |  |    General Public License for more details.  | 
29  |  |  | 
30  |  |    You should have received copies of the GNU General Public License and  | 
31  |  |    the GNU Lesser General Public License along with this program.  If  | 
32  |  |    not, see http://www.gnu.org/licenses/.  | 
33  |  | */  | 
34  |  |  | 
35  |  | #if HAVE_CONFIG_H  | 
36  |  | # include "config.h"  | 
37  |  | #endif  | 
38  |  |  | 
39  |  | #include <assert.h>  | 
40  |  | #include <stdlib.h>  | 
41  |  | #include <string.h>  | 
42  |  |  | 
43  |  | #include "cfb.h"  | 
44  |  |  | 
45  |  | #include "memxor.h"  | 
46  |  | #include "nettle-internal.h"  | 
47  |  |  | 
48  |  | void  | 
49  |  | cfb_encrypt(const void *ctx, nettle_cipher_func *f,  | 
50  |  |       size_t block_size, uint8_t *iv,  | 
51  |  |       size_t length, uint8_t *dst,  | 
52  |  |       const uint8_t *src)  | 
53  | 0  | { | 
54  | 0  |   uint8_t *p;  | 
55  | 0  |   TMP_DECL(buffer, uint8_t, NETTLE_MAX_CIPHER_BLOCK_SIZE);  | 
56  |  | 
  | 
57  | 0  |   TMP_ALLOC(buffer, block_size);  | 
58  |  | 
  | 
59  | 0  |   if (src != dst)  | 
60  | 0  |     { | 
61  | 0  |       for (p = iv; length >= block_size; p = dst, dst += block_size, src += block_size, length -= block_size)  | 
62  | 0  |   { | 
63  | 0  |     f(ctx, block_size, dst, p);  | 
64  | 0  |     memxor(dst, src, block_size);  | 
65  | 0  |   }  | 
66  | 0  |     }  | 
67  | 0  |   else  | 
68  | 0  |     { | 
69  | 0  |       for (p = iv; length >= block_size; p = dst, dst += block_size, src += block_size, length -= block_size)  | 
70  | 0  |   { | 
71  | 0  |     f(ctx, block_size, buffer, p);  | 
72  | 0  |     memxor(dst, buffer, block_size);  | 
73  | 0  |   }  | 
74  | 0  |     }  | 
75  |  | 
  | 
76  | 0  |   if (p != iv)  | 
77  | 0  |     memcpy(iv, p, block_size);  | 
78  |  | 
  | 
79  | 0  |   if (length)  | 
80  | 0  |     { | 
81  | 0  |       f(ctx, block_size, buffer, iv);  | 
82  | 0  |       memxor3(dst, buffer, src, length);  | 
83  |  |       /* We do not care about updating IV here. This is the last call in  | 
84  |  |        * message sequence and one has to set IV afterwards anyway */  | 
85  | 0  |     }  | 
86  | 0  | }  | 
87  |  |  | 
88  |  | /* Don't allocate any more space than this on the stack */  | 
89  | 0  | #define CFB_BUFFER_LIMIT 512  | 
90  |  |  | 
91  |  | void  | 
92  |  | cfb_decrypt(const void *ctx, nettle_cipher_func *f,  | 
93  |  |       size_t block_size, uint8_t *iv,  | 
94  |  |       size_t length, uint8_t *dst,  | 
95  |  |       const uint8_t *src)  | 
96  | 0  | { | 
97  | 0  |   if (src != dst)  | 
98  | 0  |     { | 
99  | 0  |       size_t left = length % block_size;  | 
100  |  | 
  | 
101  | 0  |       length -= left;  | 
102  | 0  |       if (length > 0)  | 
103  | 0  |   { | 
104  |  |     /* Decrypt in ECB mode */  | 
105  | 0  |     f(ctx, block_size, dst, iv);  | 
106  | 0  |     f(ctx, length - block_size, dst + block_size, src);  | 
107  | 0  |     memcpy(iv, src + length - block_size, block_size);  | 
108  | 0  |     memxor(dst, src, length);  | 
109  | 0  |   }  | 
110  |  | 
  | 
111  | 0  |       if (left > 0)  | 
112  | 0  |   { | 
113  | 0  |     TMP_DECL(buffer, uint8_t, NETTLE_MAX_CIPHER_BLOCK_SIZE);  | 
114  | 0  |     TMP_ALLOC(buffer, block_size);  | 
115  |  | 
  | 
116  | 0  |     f(ctx, block_size, buffer, iv);  | 
117  | 0  |     memxor3(dst + length, src + length, buffer, left);  | 
118  | 0  |   }  | 
119  | 0  |     }  | 
120  | 0  |   else  | 
121  | 0  |     { | 
122  |  |       /* For in-place CFB, we decrypt into a temporary buffer of size  | 
123  |  |        * at most CFB_BUFFER_LIMIT, and process that amount of data at  | 
124  |  |        * a time. */  | 
125  |  |  | 
126  |  |       /* NOTE: We assume that block_size <= CFB_BUFFER_LIMIT */  | 
127  |  | 
  | 
128  | 0  |       TMP_DECL(buffer, uint8_t, CFB_BUFFER_LIMIT);  | 
129  | 0  |       TMP_DECL(initial_iv, uint8_t, NETTLE_MAX_CIPHER_BLOCK_SIZE);  | 
130  |  | 
  | 
131  | 0  |       size_t buffer_size;  | 
132  | 0  |       size_t left;  | 
133  |  | 
  | 
134  | 0  |       buffer_size = CFB_BUFFER_LIMIT - (CFB_BUFFER_LIMIT % block_size);  | 
135  |  | 
  | 
136  | 0  |       TMP_ALLOC(buffer, buffer_size);  | 
137  | 0  |       TMP_ALLOC(initial_iv, block_size);  | 
138  |  | 
  | 
139  | 0  |       left = length % block_size;  | 
140  | 0  |       length -= left;  | 
141  |  | 
  | 
142  | 0  |       while (length > 0)  | 
143  | 0  |   { | 
144  | 0  |     size_t part = length > buffer_size ? buffer_size : length;  | 
145  |  |  | 
146  |  |     /* length is greater that zero and is divided by block_size, so it is  | 
147  |  |      * not less than block_size. So does part */  | 
148  |  | 
  | 
149  | 0  |     f(ctx, block_size, buffer, iv);  | 
150  | 0  |     f(ctx, part - block_size, buffer + block_size, dst);  | 
151  | 0  |     memcpy(iv, dst + part - block_size, block_size);  | 
152  | 0  |     memxor(dst, buffer, part);  | 
153  |  | 
  | 
154  | 0  |     length -= part;  | 
155  | 0  |     dst += part;  | 
156  | 0  |   }  | 
157  |  | 
  | 
158  | 0  |       if (left > 0)  | 
159  | 0  |   { | 
160  | 0  |     f(ctx, block_size, buffer, iv);  | 
161  | 0  |     memxor(dst, buffer, left);  | 
162  | 0  |   }  | 
163  | 0  |     }  | 
164  | 0  | }  | 
165  |  |  | 
166  |  | /* CFB-8 uses slight optimization: it encrypts or decrypts up to block_size  | 
167  |  |  * bytes and does memcpy/memxor afterwards */  | 
168  |  | void  | 
169  |  | cfb8_encrypt(const void *ctx, nettle_cipher_func *f,  | 
170  |  |        size_t block_size, uint8_t *iv,  | 
171  |  |        size_t length, uint8_t *dst,  | 
172  |  |        const uint8_t *src)  | 
173  | 0  | { | 
174  | 0  |   TMP_DECL(buffer, uint8_t, NETTLE_MAX_CIPHER_BLOCK_SIZE * 2);  | 
175  | 0  |   TMP_DECL(outbuf, uint8_t, NETTLE_MAX_CIPHER_BLOCK_SIZE);  | 
176  | 0  |   TMP_ALLOC(buffer, block_size * 2);  | 
177  | 0  |   TMP_ALLOC(outbuf, block_size);  | 
178  | 0  |   uint8_t pos;  | 
179  |  | 
  | 
180  | 0  |   memcpy(buffer, iv, block_size);  | 
181  | 0  |   pos = 0;  | 
182  | 0  |   while (length)  | 
183  | 0  |     { | 
184  | 0  |       uint8_t t;  | 
185  |  | 
  | 
186  | 0  |       if (pos == block_size)  | 
187  | 0  |   { | 
188  | 0  |     memcpy(buffer, buffer + block_size, block_size);  | 
189  | 0  |     pos = 0;  | 
190  | 0  |   }  | 
191  |  | 
  | 
192  | 0  |       f(ctx, block_size, outbuf, buffer + pos);  | 
193  | 0  |       t = *(dst++) = *(src++) ^ outbuf[0];  | 
194  | 0  |       buffer[pos + block_size] = t;  | 
195  | 0  |       length--;  | 
196  | 0  |       pos ++;  | 
197  | 0  |     }  | 
198  | 0  |   memcpy(iv, buffer + pos, block_size);  | 
199  | 0  | }  | 
200  |  |  | 
201  |  | void  | 
202  |  | cfb8_decrypt(const void *ctx, nettle_cipher_func *f,  | 
203  |  |        size_t block_size, uint8_t *iv,  | 
204  |  |        size_t length, uint8_t *dst,  | 
205  |  |        const uint8_t *src)  | 
206  | 0  | { | 
207  | 0  |   TMP_DECL(buffer, uint8_t, NETTLE_MAX_CIPHER_BLOCK_SIZE * 2);  | 
208  | 0  |   TMP_DECL(outbuf, uint8_t, NETTLE_MAX_CIPHER_BLOCK_SIZE * 2);  | 
209  | 0  |   TMP_ALLOC(buffer, block_size * 2);  | 
210  | 0  |   TMP_ALLOC(outbuf, block_size * 2);  | 
211  | 0  |   uint8_t i = 0;  | 
212  |  | 
  | 
213  | 0  |   memcpy(buffer, iv, block_size);  | 
214  | 0  |   memcpy(buffer + block_size, src,  | 
215  | 0  |    length < block_size ? length : block_size);  | 
216  |  | 
  | 
217  | 0  |   while (length)  | 
218  | 0  |     { | 
219  |  | 
  | 
220  | 0  |       for (i = 0; i < length && i < block_size; i++)  | 
221  | 0  |   f(ctx, block_size, outbuf + i, buffer + i);  | 
222  |  | 
  | 
223  | 0  |       memxor3(dst, src, outbuf, i);  | 
224  |  | 
  | 
225  | 0  |       length -= i;  | 
226  | 0  |       src += i;  | 
227  | 0  |       dst += i;  | 
228  |  | 
  | 
229  | 0  |       if (i == block_size)  | 
230  | 0  |   { | 
231  | 0  |     memcpy(buffer, buffer + block_size, block_size);  | 
232  | 0  |     memcpy(buffer + block_size, src,  | 
233  | 0  |      length < block_size ? length : block_size);  | 
234  | 0  |   }  | 
235  | 0  |     }  | 
236  |  | 
  | 
237  | 0  |   memcpy(iv, buffer + i, block_size);  | 
238  | 0  | }  |