/src/nettle/ecc-secp224r1.c
Line  | Count  | Source (jump to first uncovered line)  | 
1  |  | /* ecc-secp224r1.c  | 
2  |  |  | 
3  |  |    Compile time constant (but machine dependent) tables.  | 
4  |  |  | 
5  |  |    Copyright (C) 2013, 2014 Niels Möller  | 
6  |  |  | 
7  |  |    This file is part of GNU Nettle.  | 
8  |  |  | 
9  |  |    GNU Nettle is free software: you can redistribute it and/or  | 
10  |  |    modify it under the terms of either:  | 
11  |  |  | 
12  |  |      * the GNU Lesser General Public License as published by the Free  | 
13  |  |        Software Foundation; either version 3 of the License, or (at your  | 
14  |  |        option) any later version.  | 
15  |  |  | 
16  |  |    or  | 
17  |  |  | 
18  |  |      * the GNU General Public License as published by the Free  | 
19  |  |        Software Foundation; either version 2 of the License, or (at your  | 
20  |  |        option) any later version.  | 
21  |  |  | 
22  |  |    or both in parallel, as here.  | 
23  |  |  | 
24  |  |    GNU Nettle is distributed in the hope that it will be useful,  | 
25  |  |    but WITHOUT ANY WARRANTY; without even the implied warranty of  | 
26  |  |    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU  | 
27  |  |    General Public License for more details.  | 
28  |  |  | 
29  |  |    You should have received copies of the GNU General Public License and  | 
30  |  |    the GNU Lesser General Public License along with this program.  If  | 
31  |  |    not, see http://www.gnu.org/licenses/.  | 
32  |  | */  | 
33  |  |  | 
34  |  | /* Development of Nettle's ECC support was funded by the .SE Internet Fund. */  | 
35  |  |  | 
36  |  | #if HAVE_CONFIG_H  | 
37  |  | # include "config.h"  | 
38  |  | #endif  | 
39  |  |  | 
40  |  | #include <assert.h>  | 
41  |  |  | 
42  |  | #include "ecc-internal.h"  | 
43  |  |  | 
44  |  | #if HAVE_NATIVE_ecc_secp224r1_modp  | 
45  |  |  | 
46  |  | #define USE_REDC 0  | 
47  |  | #define ecc_secp224r1_modp _nettle_ecc_secp224r1_modp  | 
48  |  | void  | 
49  |  | ecc_secp224r1_modp (const struct ecc_modulo *m, mp_limb_t *rp, mp_limb_t *xp);  | 
50  |  |  | 
51  |  | #else  | 
52  |  | #define USE_REDC (ECC_REDC_SIZE != 0)  | 
53  |  | #define ecc_secp224r1_modp ecc_mod  | 
54  |  | #endif  | 
55  |  |  | 
56  |  | #include "ecc-secp224r1.h"  | 
57  |  |  | 
58  |  | #if ECC_REDC_SIZE < 0  | 
59  |  | # define ecc_secp224r1_redc ecc_pm1_redc  | 
60  |  | #elif ECC_REDC_SIZE == 0  | 
61  |  | # define ecc_secp224r1_redc NULL  | 
62  |  | #else  | 
63  |  | # error Configuration error  | 
64  |  | #endif  | 
65  |  |  | 
66  |  | /* Computes a^{2^{127} - 1} mod m. Also produces the intermediate value a^{2^{96} - 1}. | 
67  |  |    Needs 3*ECC_LIMB_SIZE scratch. */  | 
68  |  | static void  | 
69  |  | ecc_mod_pow_127m1 (const struct ecc_modulo *m,  | 
70  |  |        mp_limb_t *rp, mp_limb_t *a96m1, const mp_limb_t *ap, mp_limb_t *scratch)  | 
71  | 0  | { | 
72  |  |   /* Addition chain for 2^127 - 1:  | 
73  |  |  | 
74  |  |        7           = 1 + 2 (2+1)                       2 S + 2 M  | 
75  |  |        2^{31} - 1  = 1 + 2 (2^{15} + 1)(1 + 2 (2^7 + 1) (1 + 2 (2^3+1) * 7)) | 
76  |  |                                                       28 S + 6 M  | 
77  |  |        2^{34} - 1  = 2^3 (2^{31} - 1) + 7              3 S +   M | 
78  |  |        2^{65} - 1  = 2^{31}(2^{34} - 1) + 2^{31} - 1  31 S +   M | 
79  |  |        2^{96} - 1  = 2^{31}(2^{65} - 1) + 2^{31} - 1  31 S +   M | 
80  |  |        2^{127} - 1 = 2^{31}(2^{96} - 1) + 2^{31} - 1  31 S +   M | 
81  |  |  | 
82  |  |      This addition chain needs 126 squarings and 12 multiplies.  | 
83  |  |   */  | 
84  | 0  | #define a7 a96m1  | 
85  | 0  | #define t0 scratch  | 
86  | 0  | #define a31m1 t0  | 
87  | 0  | #define tp (scratch + ECC_LIMB_SIZE)  | 
88  |  | 
  | 
89  | 0  |   ecc_mod_sqr        (m, rp, ap, tp);          /* a^2 */  | 
90  | 0  |   ecc_mod_mul        (m, rp, rp, ap, tp);  /* a^3 */  | 
91  | 0  |   ecc_mod_sqr        (m, rp, rp, tp);    /* a^6 */  | 
92  | 0  |   ecc_mod_mul        (m, a7, rp, ap, tp);  /* a^{2^3-1} a7 */ | 
93  |  | 
  | 
94  | 0  |   ecc_mod_pow_2kp1   (m, rp, a7, 3, tp);  /* a^{2^6 - 1} */ | 
95  | 0  |   ecc_mod_sqr        (m, rp, rp, tp);    /* a^{2^7 - 2} */ | 
96  | 0  |   ecc_mod_mul        (m, rp, rp, ap, tp);  /* a^{2^7 - 1} */ | 
97  | 0  |   ecc_mod_pow_2kp1   (m, t0, rp, 7, tp);  /* a^{2^14 - 1} */ | 
98  | 0  |   ecc_mod_sqr        (m, rp, t0, tp);    /* a^{2^15 - 2} */ | 
99  | 0  |   ecc_mod_mul        (m, rp, rp, ap, tp);  /* a^{2^15 - 1} */ | 
100  | 0  |   ecc_mod_pow_2kp1   (m, t0, rp, 15, tp); /* a^{2^30 - 1} */ | 
101  | 0  |   ecc_mod_sqr        (m, rp, t0, tp);    /* a^{2^31 - 2} */ | 
102  | 0  |   ecc_mod_mul        (m, a31m1, rp, ap, tp);  /* a^{2^31 - 1} a7, a31m1 */ | 
103  |  | 
  | 
104  | 0  |   ecc_mod_pow_2k_mul (m, rp, a31m1, 3, a7, tp); /* a^{2^34 - 1} a31m1 */ | 
105  | 0  |   ecc_mod_pow_2k_mul (m, rp, rp, 31, a31m1, tp); /* a^{2^65 - 1} a31m1 */ | 
106  | 0  |   ecc_mod_pow_2k_mul (m, a96m1, rp, 31, a31m1, tp); /* a^{2^96 - 1} a31m1, a96m1 */ | 
107  | 0  |   ecc_mod_pow_2k_mul (m, rp, a96m1, 31, a31m1, tp); /* a^{2^{127} - 1} a96m1 */ | 
108  | 0  | #undef a7  | 
109  | 0  | #undef t0  | 
110  | 0  | #undef a31m1  | 
111  | 0  | #undef tp  | 
112  | 0  | }  | 
113  |  |  | 
114  |  | #define ECC_SECP224R1_INV_ITCH (4*ECC_LIMB_SIZE)  | 
115  |  |  | 
116  |  | static void  | 
117  |  | ecc_secp224r1_inv (const struct ecc_modulo *p,  | 
118  |  |        mp_limb_t *rp, const mp_limb_t *ap,  | 
119  |  |        mp_limb_t *scratch)  | 
120  | 0  | { | 
121  | 0  | #define a96m1 scratch  | 
122  | 0  | #define tp (scratch + ECC_LIMB_SIZE)  | 
123  |  |  | 
124  |  |   /* Compute a^{p - 2}, with | 
125  |  |  | 
126  |  |        p-2 = 2^{224} - 2^{96} - 1 | 
127  |  |                    = 2^{97}(2^{127} - 1) + 2^{96} - 1 | 
128  |  |  | 
129  |  |      This addition chain needs 97 squarings and one multiply in  | 
130  |  |      addition to ecc_mod_pow_127m1, for a total of 223 squarings and  | 
131  |  |      13 multiplies.  | 
132  |  |   */  | 
133  | 0  |   ecc_mod_pow_127m1 (p, rp, a96m1, ap, tp);  | 
134  | 0  |   ecc_mod_pow_2k_mul (p, rp, rp, 97, a96m1, tp); /* a^{2^{224} - 2^{96} - 1 */ | 
135  |  | 
  | 
136  | 0  | #undef a96m1  | 
137  | 0  | #undef tp  | 
138  | 0  | }  | 
139  |  |  | 
140  |  | #define ECC_SECP224R1_SQRT_ITCH (5*ECC_LIMB_SIZE)  | 
141  |  |  | 
142  |  | static int  | 
143  |  | ecc_secp224r1_sqrt (const struct ecc_modulo *p,  | 
144  |  |         mp_limb_t *xp,  | 
145  |  |         const mp_limb_t *cp,  | 
146  |  |         mp_limb_t *scratch)  | 
147  | 0  | { | 
148  | 0  |   unsigned r;  | 
149  |  | 
  | 
150  | 0  | #define bp scratch  | 
151  | 0  | #define yp (scratch + ECC_LIMB_SIZE)  | 
152  | 0  | #define t0 (scratch + 2*ECC_LIMB_SIZE)  | 
153  | 0  | #define tp (scratch + 3*ECC_LIMB_SIZE)  | 
154  |  |  | 
155  |  |   /* Uses Tonnelli-Shanks' algorithm, and which isn't side-channel silent.  | 
156  |  |  | 
157  |  |      We have p - 1 = 2^e q, with e = 2^{96} and q = 2^{128} - 1. | 
158  |  |  | 
159  |  |      Initially, we need b = c^q and x = c^{(q+1)/2}, and to get both, | 
160  |  |      we start with  | 
161  |  |  | 
162  |  |      c^{(q-1)/2} = a^{2^{127}-1} | 
163  |  |   */  | 
164  |  |  | 
165  |  |   /* Needs total 4 * ECC_LIMB_SIZE scratch space */  | 
166  | 0  |   ecc_mod_pow_127m1 (p, xp, scratch, cp, scratch + ECC_LIMB_SIZE);  | 
167  |  | 
  | 
168  | 0  |   ecc_mod_sqr (p, bp, xp, tp);  /* b <-- c^{2^{128} - 2 */ | 
169  | 0  |   ecc_mod_mul (p, bp, bp, cp, tp);  /* b <-- c^{2^{128} - 1 */ | 
170  | 0  |   ecc_mod_mul (p, xp, xp, cp, tp);  /* x <-- c^{2^{127}} */ | 
171  |  | 
  | 
172  | 0  |   mpn_copyi (yp, ecc_sqrt_z, p->size);  | 
173  | 0  |   r = ECC_SQRT_E;  | 
174  |  |  | 
175  |  |   /* The algoritm maintains x^2 = c b; when b == 1, we are done. We  | 
176  |  |      also have the invariants b^{2^{r-1}} = 1 (assuming square root | 
177  |  |      exists), and y^{2^{r-1}} = -1. */ | 
178  | 0  |   for (;;)  | 
179  | 0  |     { | 
180  | 0  |       unsigned m;  | 
181  | 0  |       if (ecc_mod_equal_p (p, bp, ecc_unit, tp))  | 
182  | 0  |   return 1;  | 
183  |  |  | 
184  | 0  |       ecc_mod_sqr (p, t0, bp, tp);  | 
185  | 0  |       for (m = 1;  | 
186  | 0  |      m < r && !ecc_mod_equal_p (p, t0, ecc_unit, tp);  | 
187  | 0  |      m++)  | 
188  | 0  |   ecc_mod_sqr (p, t0, t0, tp);  | 
189  |  | 
  | 
190  | 0  |       if (m == r)  | 
191  | 0  |   { | 
192  |  |     /* We get here if there is no square root, or input is zero.  | 
193  |  |        Will always be detected on first round in the outer  | 
194  |  |        loop. */  | 
195  | 0  |     assert (r == ECC_SQRT_E);  | 
196  | 0  |     return ecc_mod_zero_p (p, xp);  | 
197  | 0  |   }  | 
198  |  |  | 
199  | 0  |       if (m < r - 1)  | 
200  | 0  |   ecc_mod_pow_2k (p, yp, yp, r - m - 1, tp);  | 
201  |  | 
  | 
202  | 0  |       r = m;  | 
203  | 0  |       ecc_mod_mul (p, xp, xp, yp, tp);  /* x' <-- x y^{2^{r-m-1} */ | 
204  | 0  |       ecc_mod_sqr (p, yp, yp, tp);  /* y' <-- y^{2^{r-m}} */ | 
205  | 0  |       ecc_mod_mul (p, bp, bp, yp, tp);  /* b' <-- b y^{2^{r-m}} */ | 
206  | 0  |     }  | 
207  | 0  | #undef bp  | 
208  | 0  | #undef yp  | 
209  | 0  | #undef tp  | 
210  | 0  | }  | 
211  |  |  | 
212  |  | const struct ecc_curve _nettle_secp_224r1 =  | 
213  |  | { | 
214  |  |   { | 
215  |  |     224,  | 
216  |  |     ECC_LIMB_SIZE,      | 
217  |  |     ECC_BMODP_SIZE,  | 
218  |  |     -ECC_REDC_SIZE,  | 
219  |  |     ECC_SECP224R1_INV_ITCH,  | 
220  |  |     ECC_SECP224R1_SQRT_ITCH,  | 
221  |  |     0,  | 
222  |  |  | 
223  |  |     ecc_p,  | 
224  |  |     ecc_Bmodp,  | 
225  |  |     ecc_Bmodp_shifted,  | 
226  |  |     ecc_Bm2p,  | 
227  |  |     ecc_redc_ppm1,  | 
228  |  |     ecc_pp1h,  | 
229  |  |  | 
230  |  |     ecc_secp224r1_modp,  | 
231  |  |     USE_REDC ? ecc_secp224r1_redc : ecc_secp224r1_modp,  | 
232  |  |     ecc_secp224r1_inv,  | 
233  |  |     ecc_secp224r1_sqrt,  | 
234  |  |     NULL,  | 
235  |  |   },  | 
236  |  |   { | 
237  |  |     224,  | 
238  |  |     ECC_LIMB_SIZE,      | 
239  |  |     ECC_BMODQ_SIZE,  | 
240  |  |     0,  | 
241  |  |     ECC_MOD_INV_ITCH (ECC_LIMB_SIZE),  | 
242  |  |     0,  | 
243  |  |     0,  | 
244  |  |  | 
245  |  |     ecc_q,  | 
246  |  |     ecc_Bmodq,  | 
247  |  |     ecc_Bmodq_shifted,  | 
248  |  |     ecc_Bm2q,  | 
249  |  |     NULL,  | 
250  |  |     ecc_qp1h,  | 
251  |  |  | 
252  |  |     ecc_mod,  | 
253  |  |     ecc_mod,  | 
254  |  |     ecc_mod_inv,  | 
255  |  |     NULL,  | 
256  |  |     NULL,  | 
257  |  |   },  | 
258  |  |     | 
259  |  |   USE_REDC,  | 
260  |  |   ECC_PIPPENGER_K,  | 
261  |  |   ECC_PIPPENGER_C,  | 
262  |  |  | 
263  |  |   ECC_ADD_JJA_ITCH (ECC_LIMB_SIZE),  | 
264  |  |   ECC_ADD_JJJ_ITCH (ECC_LIMB_SIZE),  | 
265  |  |   ECC_DUP_JJ_ITCH (ECC_LIMB_SIZE),  | 
266  |  |   ECC_MUL_A_ITCH (ECC_LIMB_SIZE),  | 
267  |  |   ECC_MUL_G_ITCH (ECC_LIMB_SIZE),  | 
268  |  |   ECC_J_TO_A_ITCH(ECC_LIMB_SIZE, ECC_SECP224R1_INV_ITCH),  | 
269  |  |  | 
270  |  |   ecc_add_jja,  | 
271  |  |   ecc_add_jjj,  | 
272  |  |   ecc_dup_jj,  | 
273  |  |   ecc_mul_a,  | 
274  |  |   ecc_mul_g,  | 
275  |  |   ecc_j_to_a,  | 
276  |  |  | 
277  |  |   ecc_b,  | 
278  |  |   ecc_unit,  | 
279  |  |   ecc_table  | 
280  |  | };  | 
281  |  |  | 
282  |  | const struct ecc_curve *nettle_get_secp_224r1(void)  | 
283  | 0  | { | 
284  | 0  |   return &_nettle_secp_224r1;  | 
285  | 0  | }  |