Coverage Report

Created: 2023-03-26 08:33

/src/nettle/ccm.c
Line
Count
Source (jump to first uncovered line)
1
/* ccm.c
2
3
   Counter with CBC-MAC mode, specified by NIST,
4
   http://csrc.nist.gov/publications/nistpubs/800-38C/SP800-38C_updated-July20_2007.pdf
5
6
   Copyright (C) 2014 Exegin Technologies Limited
7
   Copyright (C) 2014 Owen Kirby
8
9
   This file is part of GNU Nettle.
10
11
   GNU Nettle is free software: you can redistribute it and/or
12
   modify it under the terms of either:
13
14
     * the GNU Lesser General Public License as published by the Free
15
       Software Foundation; either version 3 of the License, or (at your
16
       option) any later version.
17
18
   or
19
20
     * the GNU General Public License as published by the Free
21
       Software Foundation; either version 2 of the License, or (at your
22
       option) any later version.
23
24
   or both in parallel, as here.
25
26
   GNU Nettle is distributed in the hope that it will be useful,
27
   but WITHOUT ANY WARRANTY; without even the implied warranty of
28
   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
29
   General Public License for more details.
30
31
   You should have received copies of the GNU General Public License and
32
   the GNU Lesser General Public License along with this program.  If
33
   not, see http://www.gnu.org/licenses/.
34
*/
35
36
#if HAVE_CONFIG_H
37
# include "config.h"
38
#endif
39
40
#include <assert.h>
41
#include <stdlib.h>
42
#include <string.h>
43
44
#include "ccm.h"
45
#include "ctr.h"
46
47
#include "memops.h"
48
#include "nettle-internal.h"
49
#include "macros.h"
50
51
/*
52
 * The format of the CCM IV (for both CTR and CBC-MAC) is: flags | nonce | count
53
 *  flags = 1 octet
54
 *  nonce = N octets
55
 *  count >= 1 octet
56
 *
57
 * such that:
58
 *  sizeof(flags) + sizeof(nonce) + sizeof(count) == 1 block
59
 */
60
0
#define CCM_FLAG_L          0x07
61
0
#define CCM_FLAG_M          0x38
62
0
#define CCM_FLAG_ADATA      0x40
63
#define CCM_FLAG_RESERVED   0x80
64
0
#define CCM_FLAG_GET_L(_x_) (((_x_) & CCM_FLAG_L) + 1)
65
0
#define CCM_FLAG_SET_L(_x_) (((_x_) - 1) & CCM_FLAG_L)
66
0
#define CCM_FLAG_SET_M(_x_) ((((_x_) - 2) << 2) & CCM_FLAG_M)
67
68
0
#define CCM_OFFSET_FLAGS    0
69
0
#define CCM_OFFSET_NONCE    1
70
#define CCM_L_SIZE(_nlen_)  (CCM_BLOCK_SIZE - CCM_OFFSET_NONCE - (_nlen_))
71
72
/*
73
 * The data input to the CBC-MAC: L(a) | adata | padding | plaintext | padding
74
 *
75
 * blength is the length of data that has been added to the CBC-MAC modulus the
76
 * cipher block size. If the value of blength is non-zero then some data has
77
 * been XOR'ed into the CBC-MAC, and we will need to pad the block (XOR with 0),
78
 * and iterate the cipher one more time.
79
 *
80
 * The end of adata is detected implicitly by the first call to the encrypt()
81
 * and decrypt() functions, and will call ccm_pad() to insert the padding if
82
 * necessary. Because of the underlying CTR encryption, the encrypt() and
83
 * decrypt() functions must be called with a multiple of the block size and
84
 * therefore blength should be zero on all but the first call.
85
 *
86
 * Likewise, the end of the plaintext is implicitly determined by the first call
87
 * to the digest() function, which will pad if the final CTR encryption was not
88
 * a multiple of the block size.
89
 */
90
static void
91
ccm_pad(struct ccm_ctx *ctx, const void *cipher, nettle_cipher_func *f)
92
0
{
93
0
    if (ctx->blength) f(cipher, CCM_BLOCK_SIZE, ctx->tag.b, ctx->tag.b);
94
0
    ctx->blength = 0;
95
0
}
96
97
static void
98
ccm_build_iv(uint8_t *iv, size_t noncelen, const uint8_t *nonce,
99
       uint8_t flags, size_t count)
100
0
{
101
0
  unsigned int i;
102
103
  /* Sanity check the nonce length. */
104
0
  assert(noncelen >= CCM_MIN_NONCE_SIZE);
105
0
  assert(noncelen <= CCM_MAX_NONCE_SIZE);
106
107
  /* Generate the IV */
108
0
  iv[CCM_OFFSET_FLAGS] = flags | CCM_FLAG_SET_L(CCM_L_SIZE(noncelen));
109
0
  memcpy(&iv[CCM_OFFSET_NONCE], nonce, noncelen);
110
0
  for (i=(CCM_BLOCK_SIZE - 1); i >= (CCM_OFFSET_NONCE + noncelen); i--) {
111
0
    iv[i] = count & 0xff;
112
0
    count >>= 8;
113
0
  }
114
115
  /* Ensure the count was not truncated. */
116
0
  assert(!count);
117
0
}
118
119
void
120
ccm_set_nonce(struct ccm_ctx *ctx, const void *cipher, nettle_cipher_func *f,
121
        size_t length, const uint8_t *nonce,
122
        size_t authlen, size_t msglen, size_t taglen)
123
0
{
124
  /* Generate the IV for the CTR and CBC-MAC */
125
0
  ctx->blength = 0;
126
0
  ccm_build_iv(ctx->tag.b, length, nonce, CCM_FLAG_SET_M(taglen), msglen);
127
0
  ccm_build_iv(ctx->ctr.b, length, nonce, 0, 1);
128
129
  /* If no auth data, encrypt B0 and skip L(a) */
130
0
  if (!authlen) {
131
0
    f(cipher, CCM_BLOCK_SIZE, ctx->tag.b, ctx->tag.b);
132
0
    return;
133
0
  }
134
135
  /* Encrypt B0 (with the adata flag), and input L(a) to the CBC-MAC. */
136
0
  ctx->tag.b[CCM_OFFSET_FLAGS] |= CCM_FLAG_ADATA;
137
0
  f(cipher, CCM_BLOCK_SIZE, ctx->tag.b, ctx->tag.b);
138
0
#if SIZEOF_SIZE_T > 4
139
0
  if (authlen >= (0x01ULL << 32)) {
140
    /* Encode L(a) as 0xff || 0xff || <64-bit integer> */
141
0
    ctx->tag.b[ctx->blength++] ^= 0xff;
142
0
    ctx->tag.b[ctx->blength++] ^= 0xff;
143
0
    ctx->tag.b[ctx->blength++] ^= (authlen >> 56) & 0xff;
144
0
    ctx->tag.b[ctx->blength++] ^= (authlen >> 48) & 0xff;
145
0
    ctx->tag.b[ctx->blength++] ^= (authlen >> 40) & 0xff;
146
0
    ctx->tag.b[ctx->blength++] ^= (authlen >> 32) & 0xff;
147
0
    ctx->tag.b[ctx->blength++] ^= (authlen >> 24) & 0xff;
148
0
    ctx->tag.b[ctx->blength++] ^= (authlen >> 16) & 0xff;
149
0
  }
150
0
  else
151
0
#endif
152
0
    if (authlen >= ((0x1ULL << 16) - (0x1ULL << 8))) {
153
      /* Encode L(a) as 0xff || 0xfe || <32-bit integer> */
154
0
      ctx->tag.b[ctx->blength++] ^= 0xff;
155
0
      ctx->tag.b[ctx->blength++] ^= 0xfe;
156
0
      ctx->tag.b[ctx->blength++] ^= (authlen >> 24) & 0xff;
157
0
      ctx->tag.b[ctx->blength++] ^= (authlen >> 16) & 0xff;
158
0
    }
159
0
  ctx->tag.b[ctx->blength++] ^= (authlen >> 8) & 0xff;
160
0
  ctx->tag.b[ctx->blength++] ^= (authlen >> 0) & 0xff;
161
0
}
162
163
void
164
ccm_update(struct ccm_ctx *ctx, const void *cipher, nettle_cipher_func *f,
165
     size_t length, const uint8_t *data)
166
0
{
167
0
  const uint8_t *end = data + length;
168
169
  /* If we don't have enough to fill a block, save the data for later. */
170
0
  if ((ctx->blength + length) < CCM_BLOCK_SIZE) {
171
0
    memxor(&ctx->tag.b[ctx->blength], data, length);
172
0
    ctx->blength += length;
173
0
    return;
174
0
  }
175
176
  /* Process a partially filled block. */
177
0
  if (ctx->blength) {
178
0
    memxor(&ctx->tag.b[ctx->blength], data, CCM_BLOCK_SIZE - ctx->blength);
179
0
    data += (CCM_BLOCK_SIZE - ctx->blength);
180
0
    f(cipher, CCM_BLOCK_SIZE, ctx->tag.b, ctx->tag.b);
181
0
  }
182
183
  /* Process full blocks. */
184
0
  while ((data + CCM_BLOCK_SIZE) < end) {
185
0
    memxor(ctx->tag.b, data, CCM_BLOCK_SIZE);
186
0
    f(cipher, CCM_BLOCK_SIZE, ctx->tag.b, ctx->tag.b);
187
0
    data += CCM_BLOCK_SIZE;
188
0
  } /* while */
189
190
  /* Save leftovers for later. */
191
0
  ctx->blength = (end - data);
192
0
  if (ctx->blength) memxor(&ctx->tag.b, data, ctx->blength);
193
0
}
194
195
/*
196
 * Because of the underlying CTR mode encryption, when called multiple times
197
 * the data in intermediate calls must be provided in multiples of the block
198
 * size.
199
 */
200
void
201
ccm_encrypt(struct ccm_ctx *ctx, const void *cipher, nettle_cipher_func *f,
202
      size_t length, uint8_t *dst, const uint8_t *src)
203
0
{
204
0
  ccm_pad(ctx, cipher, f);
205
0
  ccm_update(ctx, cipher, f, length, src);
206
0
  ctr_crypt(cipher, f, CCM_BLOCK_SIZE, ctx->ctr.b, length, dst, src);
207
0
}
208
209
/*
210
 * Because of the underlying CTR mode decryption, when called multiple times
211
 * the data in intermediate calls must be provided in multiples of the block
212
 * size.
213
 */
214
void
215
ccm_decrypt(struct ccm_ctx *ctx, const void *cipher, nettle_cipher_func *f,
216
      size_t length, uint8_t *dst, const uint8_t *src)
217
0
{
218
0
  ctr_crypt(cipher, f, CCM_BLOCK_SIZE, ctx->ctr.b, length, dst, src);
219
0
  ccm_pad(ctx, cipher, f);
220
0
  ccm_update(ctx, cipher, f, length, dst);
221
0
}
222
223
void
224
ccm_digest(struct ccm_ctx *ctx, const void *cipher, nettle_cipher_func *f,
225
     size_t length, uint8_t *digest)
226
0
{
227
0
  int i = CCM_BLOCK_SIZE - CCM_FLAG_GET_L(ctx->ctr.b[CCM_OFFSET_FLAGS]);
228
0
  assert(length <= CCM_BLOCK_SIZE);
229
0
  while (i < CCM_BLOCK_SIZE)  ctx->ctr.b[i++] = 0;
230
0
  ccm_pad(ctx, cipher, f);
231
0
  ctr_crypt(cipher, f, CCM_BLOCK_SIZE, ctx->ctr.b, length, digest, ctx->tag.b);
232
0
}
233
234
void
235
ccm_encrypt_message(const void *cipher, nettle_cipher_func *f,
236
        size_t nlength, const uint8_t *nonce,
237
        size_t alength, const uint8_t *adata, size_t tlength,
238
        size_t clength, uint8_t *dst, const uint8_t *src)
239
0
{
240
0
  struct ccm_ctx ctx;
241
0
  uint8_t *tag = dst + (clength-tlength);
242
0
  assert(clength >= tlength);
243
0
  ccm_set_nonce(&ctx, cipher, f, nlength, nonce, alength, clength-tlength, tlength);
244
0
  ccm_update(&ctx, cipher, f, alength, adata);
245
0
  ccm_encrypt(&ctx, cipher, f, clength-tlength, dst, src);
246
0
  ccm_digest(&ctx, cipher, f, tlength, tag);
247
0
}
248
249
int
250
ccm_decrypt_message(const void *cipher, nettle_cipher_func *f,
251
        size_t nlength, const uint8_t *nonce,
252
        size_t alength, const uint8_t *adata, size_t tlength,
253
        size_t mlength, uint8_t *dst, const uint8_t *src)
254
0
{
255
0
  struct ccm_ctx ctx;
256
0
  uint8_t tag[CCM_BLOCK_SIZE];
257
0
  ccm_set_nonce(&ctx, cipher, f, nlength, nonce, alength, mlength, tlength);
258
0
  ccm_update(&ctx, cipher, f, alength, adata);
259
0
  ccm_decrypt(&ctx, cipher, f, mlength, dst, src);
260
0
  ccm_digest(&ctx, cipher, f, tlength, tag);
261
0
  return memeql_sec(tag, src + mlength, tlength);
262
0
}