Line  | Count  | Source (jump to first uncovered line)  | 
1  |  | /* mpn_fib2m -- calculate Fibonacci numbers, modulo m.  | 
2  |  |  | 
3  |  | Contributed to the GNU project by Marco Bodrato, based on the previous  | 
4  |  | fib2_ui.c file.  | 
5  |  |  | 
6  |  |    THE FUNCTIONS IN THIS FILE ARE FOR INTERNAL USE ONLY.  THEY'RE ALMOST  | 
7  |  |    CERTAIN TO BE SUBJECT TO INCOMPATIBLE CHANGES OR DISAPPEAR COMPLETELY IN  | 
8  |  |    FUTURE GNU MP RELEASES.  | 
9  |  |  | 
10  |  | Copyright 2001, 2002, 2005, 2009, 2018 Free Software Foundation, Inc.  | 
11  |  |  | 
12  |  | This file is part of the GNU MP Library.  | 
13  |  |  | 
14  |  | The GNU MP Library is free software; you can redistribute it and/or modify  | 
15  |  | it under the terms of either:  | 
16  |  |  | 
17  |  |   * the GNU Lesser General Public License as published by the Free  | 
18  |  |     Software Foundation; either version 3 of the License, or (at your  | 
19  |  |     option) any later version.  | 
20  |  |  | 
21  |  | or  | 
22  |  |  | 
23  |  |   * the GNU General Public License as published by the Free Software  | 
24  |  |     Foundation; either version 2 of the License, or (at your option) any  | 
25  |  |     later version.  | 
26  |  |  | 
27  |  | or both in parallel, as here.  | 
28  |  |  | 
29  |  | The GNU MP Library is distributed in the hope that it will be useful, but  | 
30  |  | WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY  | 
31  |  | or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License  | 
32  |  | for more details.  | 
33  |  |  | 
34  |  | You should have received copies of the GNU General Public License and the  | 
35  |  | GNU Lesser General Public License along with the GNU MP Library.  If not,  | 
36  |  | see https://www.gnu.org/licenses/.  */  | 
37  |  |  | 
38  |  | #include <stdio.h>  | 
39  |  | #include "gmp-impl.h"  | 
40  |  | #include "longlong.h"  | 
41  |  |  | 
42  |  |  | 
43  |  | /* Stores |{ap,n}-{bp,n}| in {rp,n}, | 
44  |  |    returns the sign of {ap,n}-{bp,n}. */ | 
45  |  | static int  | 
46  |  | abs_sub_n (mp_ptr rp, mp_srcptr ap, mp_srcptr bp, mp_size_t n)  | 
47  | 0  | { | 
48  | 0  |   mp_limb_t  x, y;  | 
49  | 0  |   while (--n >= 0)  | 
50  | 0  |     { | 
51  | 0  |       x = ap[n];  | 
52  | 0  |       y = bp[n];  | 
53  | 0  |       if (x != y)  | 
54  | 0  |         { | 
55  | 0  |           ++n;  | 
56  | 0  |           if (x > y)  | 
57  | 0  |             { | 
58  | 0  |               ASSERT_NOCARRY (mpn_sub_n (rp, ap, bp, n));  | 
59  | 0  |               return 1;  | 
60  | 0  |             }  | 
61  | 0  |           else  | 
62  | 0  |             { | 
63  | 0  |               ASSERT_NOCARRY (mpn_sub_n (rp, bp, ap, n));  | 
64  | 0  |               return -1;  | 
65  | 0  |             }  | 
66  | 0  |         }  | 
67  | 0  |       rp[n] = 0;  | 
68  | 0  |     }  | 
69  | 0  |   return 0;  | 
70  | 0  | }  | 
71  |  |  | 
72  |  | /* Store F[n] at fp and F[n-1] at f1p.  Both are computed modulo m.  | 
73  |  |    fp and f1p should have room for mn*2+1 limbs.  | 
74  |  |  | 
75  |  |    The sign of one or both the values may be flipped (n-F, instead of F),  | 
76  |  |    the return value is 0 (zero) if the signs are coherent (both positive  | 
77  |  |    or both negative) and 1 (one) otherwise.  | 
78  |  |  | 
79  |  |    Notes:  | 
80  |  |  | 
81  |  |    In F[2k+1] with k even, +2 is applied to 4*F[k]^2 just by ORing into the  | 
82  |  |    low limb.  | 
83  |  |  | 
84  |  |    In F[2k+1] with k odd, -2 is applied to F[k-1]^2 just by ORing into the  | 
85  |  |    low limb.  | 
86  |  |  | 
87  |  |    TODO: Should {tp, 2 * mn} be passed as a scratch pointer? | 
88  |  |    Should the call to mpn_fib2_ui() obtain (up to) 2*mn limbs?  | 
89  |  | */  | 
90  |  |  | 
91  |  | int  | 
92  |  | mpn_fib2m (mp_ptr fp, mp_ptr f1p, mp_srcptr np, mp_size_t nn, mp_srcptr mp, mp_size_t mn)  | 
93  | 0  | { | 
94  | 0  |   unsigned long nfirst;  | 
95  | 0  |   mp_limb_t nh;  | 
96  | 0  |   mp_bitcnt_t nbi;  | 
97  | 0  |   mp_size_t sn, fn;  | 
98  | 0  |   int   fcnt, ncnt;  | 
99  |  | 
  | 
100  | 0  |   ASSERT (! MPN_OVERLAP_P (fp, MAX(2*mn+1,5), f1p, MAX(2*mn+1,5)));  | 
101  | 0  |   ASSERT (nn > 0 && np[nn - 1] != 0);  | 
102  |  |  | 
103  |  |   /* Estimate the maximal n such that fibonacci(n) fits in mn limbs. */  | 
104  | 0  | #if GMP_NUMB_BITS % 16 == 0  | 
105  | 0  |   if (UNLIKELY (ULONG_MAX / (23 * (GMP_NUMB_BITS / 16)) <= mn))  | 
106  | 0  |     nfirst = ULONG_MAX;  | 
107  | 0  |   else  | 
108  | 0  |     nfirst = mn * (23 * (GMP_NUMB_BITS / 16));  | 
109  |  | #else  | 
110  |  |   { | 
111  |  |     mp_bitcnt_t mbi;  | 
112  |  |     mbi = (mp_bitcnt_t) mn * GMP_NUMB_BITS;  | 
113  |  |  | 
114  |  |     if (UNLIKELY (ULONG_MAX / 23 < mbi))  | 
115  |  |       { | 
116  |  |   if (UNLIKELY (ULONG_MAX / 23 * 16 <= mbi))  | 
117  |  |     nfirst = ULONG_MAX;  | 
118  |  |   else  | 
119  |  |     nfirst = mbi / 16 * 23;  | 
120  |  |       }  | 
121  |  |     else  | 
122  |  |       nfirst = mbi * 23 / 16;  | 
123  |  |   }  | 
124  |  | #endif  | 
125  |  | 
  | 
126  | 0  |   sn = nn - 1;  | 
127  | 0  |   nh = np[sn];  | 
128  | 0  |   count_leading_zeros (ncnt, nh);  | 
129  | 0  |   count_leading_zeros (fcnt, nfirst);  | 
130  |  | 
  | 
131  | 0  |   if (fcnt >= ncnt)  | 
132  | 0  |     { | 
133  | 0  |       ncnt = fcnt - ncnt;  | 
134  | 0  |       nh >>= ncnt;  | 
135  | 0  |     }  | 
136  | 0  |   else if (sn > 0)  | 
137  | 0  |     { | 
138  | 0  |       ncnt -= fcnt;  | 
139  | 0  |       nh <<= ncnt;  | 
140  | 0  |       ncnt = GMP_NUMB_BITS - ncnt;  | 
141  | 0  |       --sn;  | 
142  | 0  |       nh |= np[sn] >> ncnt;  | 
143  | 0  |     }  | 
144  | 0  |   else  | 
145  | 0  |     ncnt = 0;  | 
146  |  | 
  | 
147  | 0  |   nbi = sn * GMP_NUMB_BITS + ncnt;  | 
148  | 0  |   if (nh > nfirst)  | 
149  | 0  |     { | 
150  | 0  |       nh >>= 1;  | 
151  | 0  |       ++nbi;  | 
152  | 0  |     }  | 
153  |  | 
  | 
154  | 0  |   ASSERT (nh <= nfirst);  | 
155  |  |   /* Take a starting pair from mpn_fib2_ui. */  | 
156  | 0  |   fn = mpn_fib2_ui (fp, f1p, nh);  | 
157  | 0  |   MPN_ZERO (fp + fn, mn - fn);  | 
158  | 0  |   MPN_ZERO (f1p + fn, mn - fn);  | 
159  |  | 
  | 
160  | 0  |   if (nbi == 0)  | 
161  | 0  |     { | 
162  | 0  |       if (fn == mn)  | 
163  | 0  |   { | 
164  | 0  |     mp_limb_t qp[2];  | 
165  | 0  |     mpn_tdiv_qr (qp, fp, 0, fp, fn, mp, mn);  | 
166  | 0  |     mpn_tdiv_qr (qp, f1p, 0, f1p, fn, mp, mn);  | 
167  | 0  |   }  | 
168  |  | 
  | 
169  | 0  |       return 0;  | 
170  | 0  |     }  | 
171  | 0  |   else  | 
172  | 0  |     { | 
173  | 0  |       mp_ptr  tp;  | 
174  | 0  |       unsigned  pb = nh & 1;  | 
175  | 0  |       int neg;  | 
176  | 0  |       TMP_DECL;  | 
177  |  | 
  | 
178  | 0  |       TMP_MARK;  | 
179  |  | 
  | 
180  | 0  |       tp = TMP_ALLOC_LIMBS (2 * mn + (mn < 2));  | 
181  |  | 
  | 
182  | 0  |       do  | 
183  | 0  |   { | 
184  | 0  |     mp_ptr  rp;  | 
185  |  |     /* Here fp==F[k] and f1p==F[k-1], with k being the bits of n from  | 
186  |  |        nbi upwards.  | 
187  |  |  | 
188  |  |        Based on the next bit of n, we'll double to the pair  | 
189  |  |        fp==F[2k],f1p==F[2k-1] or fp==F[2k+1],f1p==F[2k], according as  | 
190  |  |        that bit is 0 or 1 respectively.  */  | 
191  |  | 
  | 
192  | 0  |     mpn_sqr (tp, fp,  mn);  | 
193  | 0  |     mpn_sqr (fp, f1p, mn);  | 
194  |  |  | 
195  |  |     /* Calculate F[2k-1] = F[k]^2 + F[k-1]^2. */  | 
196  | 0  |     f1p[2 * mn] = mpn_add_n (f1p, tp, fp, 2 * mn);  | 
197  |  |  | 
198  |  |     /* Calculate F[2k+1] = 4*F[k]^2 - F[k-1]^2 + 2*(-1)^k.  | 
199  |  |        pb is the low bit of our implied k.  */  | 
200  |  |  | 
201  |  |     /* fp is F[k-1]^2 == 0 or 1 mod 4, like all squares. */  | 
202  | 0  |     ASSERT ((fp[0] & 2) == 0);  | 
203  | 0  |     ASSERT (pb == (pb & 1));  | 
204  | 0  |     ASSERT ((fp[0] + (pb ? 2 : 0)) == (fp[0] | (pb << 1)));  | 
205  | 0  |     fp[0] |= pb << 1;   /* possible -2 */  | 
206  | 0  | #if HAVE_NATIVE_mpn_rsblsh2_n  | 
207  | 0  |     fp[2 * mn] = 1 + mpn_rsblsh2_n (fp, fp, tp, 2 * mn);  | 
208  | 0  |     MPN_INCR_U(fp, 2 * mn + 1, (1 ^ pb) << 1);  /* possible +2 */  | 
209  | 0  |     fp[2 * mn] = (fp[2 * mn] - 1) & GMP_NUMB_MAX;  | 
210  |  | #else  | 
211  |  |     { | 
212  |  |       mp_limb_t  c;  | 
213  |  |  | 
214  |  |       c = mpn_lshift (tp, tp, 2 * mn, 2);  | 
215  |  |       tp[0] |= (1 ^ pb) << 1; /* possible +2 */  | 
216  |  |       c -= mpn_sub_n (fp, tp, fp, 2 * mn);  | 
217  |  |       fp[2 * mn] = c & GMP_NUMB_MAX;  | 
218  |  |     }  | 
219  |  | #endif  | 
220  | 0  |     neg = fp[2 * mn] == GMP_NUMB_MAX;  | 
221  |  |  | 
222  |  |     /* Calculate F[2k-1] = F[k]^2 + F[k-1]^2 */  | 
223  |  |     /* Calculate F[2k+1] = 4*F[k]^2 - F[k-1]^2 + 2*(-1)^k */  | 
224  |  |  | 
225  |  |     /* Calculate F[2k] = F[2k+1] - F[2k-1], replacing the unwanted one of  | 
226  |  |        F[2k+1] and F[2k-1].  */  | 
227  | 0  |     --nbi;  | 
228  | 0  |     pb = (np [nbi / GMP_NUMB_BITS] >> (nbi % GMP_NUMB_BITS)) & 1;  | 
229  | 0  |     rp = pb ? f1p : fp;  | 
230  | 0  |     if (neg)  | 
231  | 0  |       { | 
232  |  |         /* Calculate -(F[2k+1] - F[2k-1]) */  | 
233  | 0  |         rp[2 * mn] = f1p[2 * mn] + 1 - mpn_sub_n (rp, f1p, fp, 2 * mn);  | 
234  | 0  |         neg = ! pb;  | 
235  | 0  |         if (pb) /* fp not overwritten, negate it. */  | 
236  | 0  |     fp [2 * mn] = 1 ^ mpn_neg (fp, fp, 2 * mn);  | 
237  | 0  |       }  | 
238  | 0  |     else  | 
239  | 0  |       { | 
240  | 0  |         neg = abs_sub_n (rp, fp, f1p, 2 * mn + 1) < 0;  | 
241  | 0  |       }  | 
242  |  | 
  | 
243  | 0  |     mpn_tdiv_qr (tp, fp, 0, fp, 2 * mn + 1, mp, mn);  | 
244  | 0  |     mpn_tdiv_qr (tp, f1p, 0, f1p, 2 * mn + 1, mp, mn);  | 
245  | 0  |   }  | 
246  | 0  |       while (nbi != 0);  | 
247  |  | 
  | 
248  | 0  |       TMP_FREE;  | 
249  |  | 
  | 
250  | 0  |       return neg;  | 
251  | 0  |     }  | 
252  | 0  | }  |