Line  | Count  | Source (jump to first uncovered line)  | 
1  |  | /* mpn_sec_powm -- Compute R = U^E mod M.  Secure variant, side-channel silent  | 
2  |  |    under the assumption that the multiply instruction is side channel silent.  | 
3  |  |  | 
4  |  |    Contributed to the GNU project by Torbjörn Granlund.  | 
5  |  |  | 
6  |  | Copyright 2007-2009, 2011-2014, 2018-2019, 2021 Free Software Foundation, Inc.  | 
7  |  |  | 
8  |  | This file is part of the GNU MP Library.  | 
9  |  |  | 
10  |  | The GNU MP Library is free software; you can redistribute it and/or modify  | 
11  |  | it under the terms of either:  | 
12  |  |  | 
13  |  |   * the GNU Lesser General Public License as published by the Free  | 
14  |  |     Software Foundation; either version 3 of the License, or (at your  | 
15  |  |     option) any later version.  | 
16  |  |  | 
17  |  | or  | 
18  |  |  | 
19  |  |   * the GNU General Public License as published by the Free Software  | 
20  |  |     Foundation; either version 2 of the License, or (at your option) any  | 
21  |  |     later version.  | 
22  |  |  | 
23  |  | or both in parallel, as here.  | 
24  |  |  | 
25  |  | The GNU MP Library is distributed in the hope that it will be useful, but  | 
26  |  | WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY  | 
27  |  | or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License  | 
28  |  | for more details.  | 
29  |  |  | 
30  |  | You should have received copies of the GNU General Public License and the  | 
31  |  | GNU Lesser General Public License along with the GNU MP Library.  If not,  | 
32  |  | see https://www.gnu.org/licenses/.  */  | 
33  |  |  | 
34  |  |  | 
35  |  | /*  | 
36  |  |   BASIC ALGORITHM, Compute U^E mod M, where M < B^n is odd.  | 
37  |  |  | 
38  |  |   1. T <- (B^n * U) mod M; convert to REDC form  | 
39  |  |  | 
40  |  |   2. Compute table U^0, U^1, U^2... of floor(log(E))-dependent size  | 
41  |  |  | 
42  |  |   3. While there are more bits in E  | 
43  |  |        W <- power left-to-right base-k  | 
44  |  |  | 
45  |  |   The article "Defeating modexp side-channel attacks with data-independent  | 
46  |  |   execution traces", https://gmplib.org/~tege/modexp-silent.pdf, has details.  | 
47  |  |  | 
48  |  |  | 
49  |  |   TODO:  | 
50  |  |  | 
51  |  |    * Make getbits a macro, thereby allowing it to update the index operand.  | 
52  |  |      That will simplify the code using getbits.  (Perhaps make getbits' sibling  | 
53  |  |      getbit then have similar form, for symmetry.)  | 
54  |  |  | 
55  |  |    * Choose window size without looping.  (Superoptimize or think(tm).)  | 
56  |  |  | 
57  |  |    * REDC_1_TO_REDC_2_THRESHOLD might actually represent the cutoff between  | 
58  |  |      redc_1 and redc_n.  On such systems, we will switch to redc_2 causing  | 
59  |  |      slowdown.  | 
60  |  | */  | 
61  |  |  | 
62  |  | #include "gmp-impl.h"  | 
63  |  | #include "longlong.h"  | 
64  |  |  | 
65  |  | #undef MPN_REDC_1_SEC  | 
66  |  | #if HAVE_NATIVE_mpn_sbpi1_bdiv_r  | 
67  |  | #define MPN_REDC_1_SEC(rp, up, mp, n, invm)       \  | 
68  | 0  |   do {                 \ | 
69  | 0  |     mp_limb_t cy;             \  | 
70  | 0  |     cy = mpn_sbpi1_bdiv_r (up, 2 * n, mp, n, invm);      \  | 
71  | 0  |     mpn_cnd_sub_n (cy, rp, up + n, mp, n);       \  | 
72  | 0  |   } while (0)  | 
73  |  | #else  | 
74  |  | #define MPN_REDC_1_SEC(rp, up, mp, n, invm)       \  | 
75  |  |   do {                  \ | 
76  |  |     mp_limb_t cy;             \  | 
77  |  |     cy = mpn_redc_1 (rp, up, mp, n, invm);        \  | 
78  |  |     mpn_cnd_sub_n (cy, rp, rp, mp, n);          \  | 
79  |  |   } while (0)  | 
80  |  | #endif  | 
81  |  |  | 
82  |  | #if HAVE_NATIVE_mpn_addmul_2 || HAVE_NATIVE_mpn_redc_2  | 
83  |  | #undef MPN_REDC_2_SEC  | 
84  |  | #define MPN_REDC_2_SEC(rp, up, mp, n, mip)        \  | 
85  |  |   do {                  \ | 
86  |  |     mp_limb_t cy;             \  | 
87  |  |     cy = mpn_redc_2 (rp, up, mp, n, mip);       \  | 
88  |  |     mpn_cnd_sub_n (cy, rp, rp, mp, n);          \  | 
89  |  |   } while (0)  | 
90  |  | #else  | 
91  |  | #define MPN_REDC_2_SEC(rp, up, mp, n, mip) /* empty */  | 
92  |  | #undef REDC_1_TO_REDC_2_THRESHOLD  | 
93  |  | #define REDC_1_TO_REDC_2_THRESHOLD MP_SIZE_T_MAX  | 
94  |  | #endif  | 
95  |  |  | 
96  |  | /* Define our own mpn squaring function.  We do this since we cannot use a  | 
97  |  |    native mpn_sqr_basecase over TUNE_SQR_TOOM2_MAX, or a non-native one over  | 
98  |  |    SQR_TOOM2_THRESHOLD.  This is so because of fixed size stack allocations  | 
99  |  |    made inside mpn_sqr_basecase.  */  | 
100  |  |  | 
101  |  | #if ! HAVE_NATIVE_mpn_sqr_basecase  | 
102  |  | /* The limit of the generic code is SQR_TOOM2_THRESHOLD.  */  | 
103  |  | #define SQR_BASECASE_LIM  SQR_TOOM2_THRESHOLD  | 
104  |  | #endif  | 
105  |  |  | 
106  |  | #if HAVE_NATIVE_mpn_sqr_basecase  | 
107  |  | #ifdef TUNE_SQR_TOOM2_MAX  | 
108  |  | /* We slightly abuse TUNE_SQR_TOOM2_MAX here.  If it is set for an assembly  | 
109  |  |    mpn_sqr_basecase, it comes from SQR_TOOM2_THRESHOLD_MAX in the assembly  | 
110  |  |    file.  An assembly mpn_sqr_basecase that does not define it should allow  | 
111  |  |    any size.  */  | 
112  |  | #define SQR_BASECASE_LIM  SQR_TOOM2_THRESHOLD  | 
113  |  | #endif  | 
114  |  | #endif  | 
115  |  |  | 
116  |  | #ifdef WANT_FAT_BINARY  | 
117  |  | /* For fat builds, we use SQR_TOOM2_THRESHOLD which will expand to a read from  | 
118  |  |    __gmpn_cpuvec.  Perhaps any possible sqr_basecase.asm allow any size, and we  | 
119  |  |    limit the use unnecessarily.  We cannot tell, so play it safe.  FIXME.  */  | 
120  |  | #define SQR_BASECASE_LIM  SQR_TOOM2_THRESHOLD  | 
121  |  | #endif  | 
122  |  |  | 
123  |  | #ifndef SQR_BASECASE_LIM  | 
124  |  | /* If SQR_BASECASE_LIM is now not defined, use mpn_sqr_basecase for any operand  | 
125  |  |    size.  */  | 
126  |  | #define SQR_BASECASE_LIM  MP_SIZE_T_MAX  | 
127  |  | #endif  | 
128  |  |  | 
129  |  | #define mpn_local_sqr(rp,up,n)            \  | 
130  | 0  |   do {                 \ | 
131  | 0  |     if (ABOVE_THRESHOLD (n, SQR_BASECASE_THRESHOLD)      \  | 
132  | 0  |   && BELOW_THRESHOLD (n, SQR_BASECASE_LIM))     \  | 
133  | 0  |       mpn_sqr_basecase (rp, up, n);         \  | 
134  | 0  |     else                \  | 
135  | 0  |       mpn_mul_basecase(rp, up, n, up, n);       \  | 
136  | 0  |   } while (0)  | 
137  |  |  | 
138  |  | #define getbit(p,bi) \  | 
139  |  |   ((p[(bi - 1) / GMP_NUMB_BITS] >> (bi - 1) % GMP_NUMB_BITS) & 1)  | 
140  |  |  | 
141  |  | /* FIXME: Maybe some things would get simpler if all callers ensure  | 
142  |  |    that bi >= nbits. As far as I understand, with the current code bi  | 
143  |  |    < nbits can happen only for the final iteration. */  | 
144  |  | static inline mp_limb_t  | 
145  |  | getbits (const mp_limb_t *p, mp_bitcnt_t bi, int nbits)  | 
146  | 0  | { | 
147  | 0  |   int nbits_in_r;  | 
148  | 0  |   mp_limb_t r;  | 
149  | 0  |   mp_size_t i;  | 
150  |  | 
  | 
151  | 0  |   if (bi < nbits)  | 
152  | 0  |     { | 
153  | 0  |       return p[0] & (((mp_limb_t) 1 << bi) - 1);  | 
154  | 0  |     }  | 
155  | 0  |   else  | 
156  | 0  |     { | 
157  | 0  |       bi -= nbits;      /* bit index of low bit to extract */  | 
158  | 0  |       i = bi / GMP_NUMB_BITS;   /* word index of low bit to extract */  | 
159  | 0  |       bi %= GMP_NUMB_BITS;   /* bit index in low word */  | 
160  | 0  |       r = p[i] >> bi;     /* extract (low) bits */  | 
161  | 0  |       nbits_in_r = GMP_NUMB_BITS - bi;  /* number of bits now in r */  | 
162  | 0  |       if (nbits_in_r < nbits)   /* did we get enough bits? */  | 
163  | 0  |   r += p[i + 1] << nbits_in_r; /* prepend bits from higher word */  | 
164  | 0  |       return r & (((mp_limb_t ) 1 << nbits) - 1);  | 
165  | 0  |     }  | 
166  | 0  | }  | 
167  |  |  | 
168  |  | #ifndef POWM_SEC_TABLE  | 
169  |  | #if GMP_NUMB_BITS < 50  | 
170  |  | #define POWM_SEC_TABLE  2,33,96,780,2741  | 
171  |  | #else  | 
172  |  | #define POWM_SEC_TABLE  2,130,524,2578  | 
173  |  | #endif  | 
174  |  | #endif  | 
175  |  |  | 
176  |  | #if TUNE_PROGRAM_BUILD  | 
177  |  | extern int win_size (mp_bitcnt_t);  | 
178  |  | #else  | 
179  |  | static inline int  | 
180  |  | win_size (mp_bitcnt_t enb)  | 
181  | 0  | { | 
182  | 0  |   int k;  | 
183  |  |   /* Find k, such that x[k-1] < enb <= x[k].  | 
184  |  |  | 
185  |  |      We require that x[k] >= k, then it follows that enb > x[k-1] >=  | 
186  |  |      k-1, which implies k <= enb.  | 
187  |  |   */  | 
188  | 0  |   static const mp_bitcnt_t x[] = {POWM_SEC_TABLE,~(mp_bitcnt_t)0}; | 
189  | 0  |   for (k = 0; enb > x[k++]; )  | 
190  | 0  |     ;  | 
191  | 0  |   ASSERT (k <= enb);  | 
192  | 0  |   return k;  | 
193  | 0  | }  | 
194  |  | #endif  | 
195  |  |  | 
196  |  | /* Convert U to REDC form, U_r = B^n * U mod M.  | 
197  |  |    Uses scratch space at tp of size 2un + n + 1.  */  | 
198  |  | static void  | 
199  |  | redcify (mp_ptr rp, mp_srcptr up, mp_size_t un, mp_srcptr mp, mp_size_t n, mp_ptr tp)  | 
200  | 0  | { | 
201  | 0  |   MPN_ZERO (tp, n);  | 
202  | 0  |   MPN_COPY (tp + n, up, un);  | 
203  |  | 
  | 
204  | 0  |   mpn_sec_div_r (tp, un + n, mp, n, tp + un + n);  | 
205  | 0  |   MPN_COPY (rp, tp, n);  | 
206  | 0  | }  | 
207  |  |  | 
208  |  | static mp_limb_t  | 
209  |  | sec_binvert_limb (mp_limb_t n)  | 
210  | 0  | { | 
211  | 0  |   mp_limb_t inv, t;  | 
212  | 0  |   ASSERT ((n & 1) == 1);  | 
213  |  |   /* 3 + 2 -> 5 */  | 
214  | 0  |   inv = n + (((n + 1) << 1) & 0x18);  | 
215  |  | 
  | 
216  | 0  |   t = n * inv;  | 
217  |  | #if GMP_NUMB_BITS <= 10  | 
218  |  |   /* 5 x 2 -> 10 */  | 
219  |  |   inv = 2 * inv - inv * t;  | 
220  |  | #else /* GMP_NUMB_BITS > 10 */  | 
221  |  |   /* 5 x 2 + 2 -> 12 */  | 
222  | 0  |   inv = 2 * inv - inv * t + ((inv<<10)&-(t&(1<<5)));  | 
223  | 0  | #endif /* GMP_NUMB_BITS <= 10 */  | 
224  |  | 
  | 
225  | 0  |   if (GMP_NUMB_BITS > 12)  | 
226  | 0  |     { | 
227  | 0  |       t = n * inv - 1;  | 
228  | 0  |       if (GMP_NUMB_BITS <= 36)  | 
229  | 0  |   { | 
230  |  |     /* 12 x 3 -> 36 */  | 
231  | 0  |     inv += inv * t * (t - 1);  | 
232  | 0  |   }  | 
233  | 0  |       else /* GMP_NUMB_BITS > 36 */  | 
234  | 0  |   { | 
235  | 0  |     mp_limb_t t2 = t * t;  | 
236  |  | #if GMP_NUMB_BITS <= 60  | 
237  |  |     /* 12 x 5 -> 60 */  | 
238  |  |     inv += inv * (t2 + 1) * (t2 - t);  | 
239  |  | #else /* GMP_NUMB_BITS > 60 */  | 
240  |  |     /* 12 x 5 + 4 -> 64 */  | 
241  | 0  |     inv *= (t2 + 1) * (t2 - t) + 1 - ((t<<48)&-(t&(1<<12)));  | 
242  |  |  | 
243  |  |     /* 64 -> 128 -> 256 -> ... */  | 
244  | 0  |     for (int todo = (GMP_NUMB_BITS - 1) >> 6; todo != 0; todo >>= 1)  | 
245  | 0  |       inv = 2 * inv - inv * inv * n;  | 
246  | 0  | #endif /* GMP_NUMB_BITS <= 60 */  | 
247  | 0  |   }  | 
248  | 0  |     }  | 
249  |  | 
  | 
250  | 0  |   ASSERT ((inv * n & GMP_NUMB_MASK) == 1);  | 
251  | 0  |   return inv & GMP_NUMB_MASK;  | 
252  | 0  | }  | 
253  |  |  | 
254  |  | /* {rp, n} <-- {bp, bn} ^ {ep, en} mod {mp, n}, | 
255  |  |    where en = ceil (enb / GMP_NUMB_BITS)  | 
256  |  |    Requires that {mp, n} is odd (and hence also mp[0] odd). | 
257  |  |    Uses scratch space at tp as defined by mpn_sec_powm_itch.  */  | 
258  |  | void  | 
259  |  | mpn_sec_powm (mp_ptr rp, mp_srcptr bp, mp_size_t bn,  | 
260  |  |         mp_srcptr ep, mp_bitcnt_t enb,  | 
261  |  |         mp_srcptr mp, mp_size_t n, mp_ptr tp)  | 
262  | 0  | { | 
263  | 0  |   mp_limb_t ip[2], *mip;  | 
264  | 0  |   int windowsize, this_windowsize;  | 
265  | 0  |   mp_limb_t expbits;  | 
266  | 0  |   mp_ptr pp, this_pp, ps;  | 
267  | 0  |   long i;  | 
268  | 0  |   int cnd;  | 
269  |  | 
  | 
270  | 0  |   ASSERT (enb > 0);  | 
271  | 0  |   ASSERT (n > 0);  | 
272  |  |   /* The code works for bn = 0, but the defined scratch space is 2 limbs  | 
273  |  |      greater than we supply, when converting 1 to redc form .  */  | 
274  | 0  |   ASSERT (bn > 0);  | 
275  | 0  |   ASSERT ((mp[0] & 1) != 0);  | 
276  |  | 
  | 
277  | 0  |   windowsize = win_size (enb);  | 
278  |  | 
  | 
279  | 0  |   mip = ip;  | 
280  | 0  |   mip[0] = sec_binvert_limb (mp[0]);  | 
281  | 0  |   if (ABOVE_THRESHOLD (n, REDC_1_TO_REDC_2_THRESHOLD))  | 
282  | 0  |     { | 
283  | 0  |       mp_limb_t t, dummy, mip0 = mip[0];  | 
284  |  | 
  | 
285  | 0  |       umul_ppmm (t, dummy, mip0, mp[0]);  | 
286  | 0  |       ASSERT (dummy == 1);  | 
287  | 0  |       t += mip0 * mp[1]; /* t = (mp * mip0)[1] */  | 
288  |  | 
  | 
289  | 0  |       mip[1] = t * mip0 - 1; /* ~( - t * mip0) */  | 
290  | 0  |     }  | 
291  | 0  |   mip[0] = -mip[0];  | 
292  |  | 
  | 
293  | 0  |   pp = tp;  | 
294  | 0  |   tp += (n << windowsize);  /* put tp after power table */  | 
295  |  |  | 
296  |  |   /* Compute pp[0] table entry */  | 
297  |  |   /* scratch: |   n   | 1 |   n+2    |  */  | 
298  |  |   /*          | pp[0] | 1 | redcify  |  */  | 
299  | 0  |   this_pp = pp;  | 
300  | 0  |   this_pp[n] = 1;  | 
301  | 0  |   redcify (this_pp, this_pp + n, 1, mp, n, this_pp + n + 1);  | 
302  | 0  |   this_pp += n;  | 
303  |  |  | 
304  |  |   /* Compute pp[1] table entry.  To avoid excessive scratch usage in the  | 
305  |  |      degenerate situation where B >> M, we let redcify use scratch space which  | 
306  |  |      will later be used by the pp table (element 2 and up).  */  | 
307  |  |   /* scratch: |   n   |   n   |  bn + n + 1  |  */  | 
308  |  |   /*          | pp[0] | pp[1] |   redcify    |  */  | 
309  | 0  |   redcify (this_pp, bp, bn, mp, n, this_pp + n);  | 
310  |  |  | 
311  |  |   /* Precompute powers of b and put them in the temporary area at pp.  */  | 
312  |  |   /* scratch: |   n   |   n   | ...  |                    |   2n      |  */  | 
313  |  |   /*          | pp[0] | pp[1] | ...  | pp[2^windowsize-1] |  product  |  */  | 
314  | 0  |   ps = pp + n;    /* initially B^1 */  | 
315  | 0  |   if (BELOW_THRESHOLD (n, REDC_1_TO_REDC_2_THRESHOLD))  | 
316  | 0  |     { | 
317  | 0  |       for (i = (1 << windowsize) - 2; i > 0; i -= 2)  | 
318  | 0  |   { | 
319  | 0  |     mpn_local_sqr (tp, ps, n);  | 
320  | 0  |     ps += n;  | 
321  | 0  |     this_pp += n;  | 
322  | 0  |     MPN_REDC_1_SEC (this_pp, tp, mp, n, mip[0]);  | 
323  |  | 
  | 
324  | 0  |     mpn_mul_basecase (tp, this_pp, n, pp + n, n);  | 
325  | 0  |     this_pp += n;  | 
326  | 0  |     MPN_REDC_1_SEC (this_pp, tp, mp, n, mip[0]);  | 
327  | 0  |   }  | 
328  | 0  |     }  | 
329  | 0  |   else  | 
330  | 0  |     { | 
331  | 0  |       for (i = (1 << windowsize) - 2; i > 0; i -= 2)  | 
332  | 0  |   { | 
333  | 0  |     mpn_local_sqr (tp, ps, n);  | 
334  | 0  |     ps += n;  | 
335  | 0  |     this_pp += n;  | 
336  | 0  |     MPN_REDC_2_SEC (this_pp, tp, mp, n, mip);  | 
337  |  | 
  | 
338  | 0  |     mpn_mul_basecase (tp, this_pp, n, pp + n, n);  | 
339  | 0  |     this_pp += n;  | 
340  | 0  |     MPN_REDC_2_SEC (this_pp, tp, mp, n, mip);  | 
341  | 0  |   }  | 
342  | 0  |     }  | 
343  |  | 
  | 
344  | 0  |   expbits = getbits (ep, enb, windowsize);  | 
345  | 0  |   ASSERT_ALWAYS (enb >= windowsize);  | 
346  | 0  |   enb -= windowsize;  | 
347  |  | 
  | 
348  | 0  |   mpn_sec_tabselect (rp, pp, n, 1 << windowsize, expbits);  | 
349  |  |  | 
350  |  |   /* Main exponentiation loop.  */  | 
351  |  |   /* scratch: |   n   |   n   | ...  |                    |     3n-4n     |  */  | 
352  |  |   /*          | pp[0] | pp[1] | ...  | pp[2^windowsize-1] |  loop scratch |  */  | 
353  |  | 
  | 
354  | 0  | #define INNERLOOP             \  | 
355  | 0  |   while (enb != 0)             \  | 
356  | 0  |     {                 \ | 
357  | 0  |       expbits = getbits (ep, enb, windowsize);        \  | 
358  | 0  |       this_windowsize = windowsize;         \  | 
359  | 0  |       if (enb < windowsize)           \  | 
360  | 0  |   {               \ | 
361  | 0  |     this_windowsize -= windowsize - enb;        \  | 
362  | 0  |     enb = 0;              \  | 
363  | 0  |   }                \  | 
364  | 0  |       else                \  | 
365  | 0  |   enb -= windowsize;           \  | 
366  | 0  |                   \  | 
367  | 0  |       do                \  | 
368  | 0  |   {               \ | 
369  | 0  |     mpn_local_sqr (tp, rp, n);         \  | 
370  | 0  |     MPN_REDUCE (rp, tp, mp, n, mip);        \  | 
371  | 0  |     this_windowsize--;            \  | 
372  | 0  |   }               \  | 
373  | 0  |       while (this_windowsize != 0);          \  | 
374  | 0  |                   \  | 
375  | 0  |       mpn_sec_tabselect (tp + 2*n, pp, n, 1 << windowsize, expbits); \  | 
376  | 0  |       mpn_mul_basecase (tp, rp, n, tp + 2*n, n);      \  | 
377  | 0  |                   \  | 
378  | 0  |       MPN_REDUCE (rp, tp, mp, n, mip);          \  | 
379  | 0  |     }  | 
380  |  | 
  | 
381  | 0  |   if (BELOW_THRESHOLD (n, REDC_1_TO_REDC_2_THRESHOLD))  | 
382  | 0  |     { | 
383  | 0  | #undef MPN_REDUCE  | 
384  | 0  | #define MPN_REDUCE(rp,tp,mp,n,mip)  MPN_REDC_1_SEC (rp, tp, mp, n, mip[0])  | 
385  | 0  |       INNERLOOP;  | 
386  | 0  |     }  | 
387  | 0  |   else  | 
388  | 0  |     { | 
389  | 0  | #undef MPN_REDUCE  | 
390  | 0  | #define MPN_REDUCE(rp,tp,mp,n,mip)  MPN_REDC_2_SEC (rp, tp, mp, n, mip)  | 
391  | 0  |       INNERLOOP;  | 
392  | 0  |     }  | 
393  |  | 
  | 
394  | 0  |   MPN_COPY (tp, rp, n);  | 
395  | 0  |   MPN_ZERO (tp + n, n);  | 
396  |  | 
  | 
397  | 0  |   if (BELOW_THRESHOLD (n, REDC_1_TO_REDC_2_THRESHOLD))  | 
398  | 0  |     MPN_REDC_1_SEC (rp, tp, mp, n, mip[0]);  | 
399  | 0  |   else  | 
400  | 0  |     MPN_REDC_2_SEC (rp, tp, mp, n, mip);  | 
401  |  | 
  | 
402  | 0  |   cnd = mpn_sub_n (tp, rp, mp, n); /* we need just retval */  | 
403  | 0  |   mpn_cnd_sub_n (!cnd, rp, rp, mp, n);  | 
404  | 0  | }  | 
405  |  |  | 
406  |  | mp_size_t  | 
407  |  | mpn_sec_powm_itch (mp_size_t bn, mp_bitcnt_t enb, mp_size_t n)  | 
408  | 0  | { | 
409  | 0  |   int windowsize;  | 
410  | 0  |   mp_size_t redcify_itch, itch;  | 
411  |  |  | 
412  |  |   /* FIXME: no more _local/_basecase difference. */  | 
413  |  |   /* The top scratch usage will either be when reducing B in the 2nd redcify  | 
414  |  |      call, or more typically n*2^windowsize + 3n or 4n, in the main loop.  (It  | 
415  |  |      is 3n or 4n depending on if we use mpn_local_sqr or a native  | 
416  |  |      mpn_sqr_basecase.  We assume 4n always for now.) */  | 
417  |  | 
  | 
418  | 0  |   windowsize = win_size (enb);  | 
419  |  |  | 
420  |  |   /* The 2n term is due to pp[0] and pp[1] at the time of the 2nd redcify call,  | 
421  |  |      the (bn + n) term is due to redcify's own usage, and the rest is due to  | 
422  |  |      mpn_sec_div_r's usage when called from redcify.  */  | 
423  | 0  |   redcify_itch = (2 * n) + (bn + n) + ((bn + n) + 2 * n + 2);  | 
424  |  |  | 
425  |  |   /* The n * 2^windowsize term is due to the power table, the 4n term is due to  | 
426  |  |      scratch needs of squaring/multiplication in the exponentiation loop.  */  | 
427  | 0  |   itch = (n << windowsize) + (4 * n);  | 
428  |  | 
  | 
429  | 0  |   return MAX (itch, redcify_itch);  | 
430  | 0  | }  |