Coverage Report

Created: 2025-03-06 07:58

/src/gmp/mpn/toom_eval_pm2.c
Line
Count
Source (jump to first uncovered line)
1
/* mpn_toom_eval_pm2 -- Evaluate a polynomial in +2 and -2
2
3
   Contributed to the GNU project by Niels Möller and Marco Bodrato
4
5
   THE FUNCTION IN THIS FILE IS INTERNAL WITH A MUTABLE INTERFACE.  IT IS ONLY
6
   SAFE TO REACH IT THROUGH DOCUMENTED INTERFACES.  IN FACT, IT IS ALMOST
7
   GUARANTEED THAT IT WILL CHANGE OR DISAPPEAR IN A FUTURE GNU MP RELEASE.
8
9
Copyright 2009 Free Software Foundation, Inc.
10
11
This file is part of the GNU MP Library.
12
13
The GNU MP Library is free software; you can redistribute it and/or modify
14
it under the terms of either:
15
16
  * the GNU Lesser General Public License as published by the Free
17
    Software Foundation; either version 3 of the License, or (at your
18
    option) any later version.
19
20
or
21
22
  * the GNU General Public License as published by the Free Software
23
    Foundation; either version 2 of the License, or (at your option) any
24
    later version.
25
26
or both in parallel, as here.
27
28
The GNU MP Library is distributed in the hope that it will be useful, but
29
WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
30
or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
31
for more details.
32
33
You should have received copies of the GNU General Public License and the
34
GNU Lesser General Public License along with the GNU MP Library.  If not,
35
see https://www.gnu.org/licenses/.  */
36
37
#include "gmp-impl.h"
38
39
/* DO_addlsh2(d,a,b,n,cy) computes cy,{d,n} <- {a,n} + 4*(cy,{b,n}), it
40
   can be used as DO_addlsh2(d,a,d,n,d[n]), for accumulation on {d,n+1}. */
41
#if HAVE_NATIVE_mpn_addlsh2_n
42
0
#define DO_addlsh2(d, a, b, n, cy)  \
43
0
do {         \
44
0
  (cy) <<= 2;       \
45
0
  (cy) += mpn_addlsh2_n(d, a, b, n); \
46
0
} while (0)
47
#else
48
#if HAVE_NATIVE_mpn_addlsh_n
49
#define DO_addlsh2(d, a, b, n, cy)  \
50
do {          \
51
  (cy) <<= 2;       \
52
  (cy) += mpn_addlsh_n(d, a, b, n, 2);  \
53
} while (0)
54
#else
55
/* The following is not a general substitute for addlsh2.
56
   It is correct if d == b, but it is not if d == a.  */
57
#define DO_addlsh2(d, a, b, n, cy)  \
58
do {          \
59
  (cy) <<= 2;       \
60
  (cy) += mpn_lshift(d, b, n, 2); \
61
  (cy) += mpn_add_n(d, d, a, n);  \
62
} while (0)
63
#endif
64
#endif
65
66
/* Evaluates a polynomial of degree 2 < k < GMP_NUMB_BITS, in the
67
   points +2 and -2. */
68
int
69
mpn_toom_eval_pm2 (mp_ptr xp2, mp_ptr xm2, unsigned k,
70
       mp_srcptr xp, mp_size_t n, mp_size_t hn, mp_ptr tp)
71
0
{
72
0
  int i;
73
0
  int neg;
74
0
  mp_limb_t cy;
75
76
0
  ASSERT (k >= 3);
77
0
  ASSERT (k < GMP_NUMB_BITS);
78
79
0
  ASSERT (hn > 0);
80
0
  ASSERT (hn <= n);
81
82
  /* The degree k is also the number of full-size coefficients, so
83
   * that last coefficient, of size hn, starts at xp + k*n. */
84
85
0
  cy = 0;
86
0
  DO_addlsh2 (xp2, xp + (k-2) * n, xp + k * n, hn, cy);
87
0
  if (hn != n)
88
0
    cy = mpn_add_1 (xp2 + hn, xp + (k-2) * n + hn, n - hn, cy);
89
0
  for (i = k - 4; i >= 0; i -= 2)
90
0
    DO_addlsh2 (xp2, xp + i * n, xp2, n, cy);
91
0
  xp2[n] = cy;
92
93
0
  k--;
94
95
0
  cy = 0;
96
0
  DO_addlsh2 (tp, xp + (k-2) * n, xp + k * n, n, cy);
97
0
  for (i = k - 4; i >= 0; i -= 2)
98
0
    DO_addlsh2 (tp, xp + i * n, tp, n, cy);
99
0
  tp[n] = cy;
100
101
0
  if (k & 1)
102
0
    ASSERT_NOCARRY(mpn_lshift (tp , tp , n + 1, 1));
103
0
  else
104
0
    ASSERT_NOCARRY(mpn_lshift (xp2, xp2, n + 1, 1));
105
106
0
  neg = (mpn_cmp (xp2, tp, n + 1) < 0) ? ~0 : 0;
107
108
#if HAVE_NATIVE_mpn_add_n_sub_n
109
  if (neg)
110
    mpn_add_n_sub_n (xp2, xm2, tp, xp2, n + 1);
111
  else
112
    mpn_add_n_sub_n (xp2, xm2, xp2, tp, n + 1);
113
#else /* !HAVE_NATIVE_mpn_add_n_sub_n */
114
0
  if (neg)
115
0
    mpn_sub_n (xm2, tp, xp2, n + 1);
116
0
  else
117
0
    mpn_sub_n (xm2, xp2, tp, n + 1);
118
119
0
  mpn_add_n (xp2, xp2, tp, n + 1);
120
0
#endif /* !HAVE_NATIVE_mpn_add_n_sub_n */
121
122
0
  ASSERT (xp2[n] < (1<<(k+2))-1);
123
0
  ASSERT (xm2[n] < ((1<<(k+3))-1 - (1^k&1))/3);
124
125
0
  neg ^= ((k & 1) - 1);
126
127
0
  return neg;
128
0
}
129
130
#undef DO_addlsh2