/src/gmp/mpn/toom_interpolate_12pts.c
Line  | Count  | Source (jump to first uncovered line)  | 
1  |  | /* Interpolation for the algorithm Toom-Cook 6.5-way.  | 
2  |  |  | 
3  |  |    Contributed to the GNU project by Marco Bodrato.  | 
4  |  |  | 
5  |  |    THE FUNCTION IN THIS FILE IS INTERNAL WITH A MUTABLE INTERFACE.  IT IS ONLY  | 
6  |  |    SAFE TO REACH IT THROUGH DOCUMENTED INTERFACES.  IN FACT, IT IS ALMOST  | 
7  |  |    GUARANTEED THAT IT WILL CHANGE OR DISAPPEAR IN A FUTURE GNU MP RELEASE.  | 
8  |  |  | 
9  |  | Copyright 2009, 2010, 2012, 2015, 2020 Free Software Foundation, Inc.  | 
10  |  |  | 
11  |  | This file is part of the GNU MP Library.  | 
12  |  |  | 
13  |  | The GNU MP Library is free software; you can redistribute it and/or modify  | 
14  |  | it under the terms of either:  | 
15  |  |  | 
16  |  |   * the GNU Lesser General Public License as published by the Free  | 
17  |  |     Software Foundation; either version 3 of the License, or (at your  | 
18  |  |     option) any later version.  | 
19  |  |  | 
20  |  | or  | 
21  |  |  | 
22  |  |   * the GNU General Public License as published by the Free Software  | 
23  |  |     Foundation; either version 2 of the License, or (at your option) any  | 
24  |  |     later version.  | 
25  |  |  | 
26  |  | or both in parallel, as here.  | 
27  |  |  | 
28  |  | The GNU MP Library is distributed in the hope that it will be useful, but  | 
29  |  | WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY  | 
30  |  | or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License  | 
31  |  | for more details.  | 
32  |  |  | 
33  |  | You should have received copies of the GNU General Public License and the  | 
34  |  | GNU Lesser General Public License along with the GNU MP Library.  If not,  | 
35  |  | see https://www.gnu.org/licenses/.  */  | 
36  |  |  | 
37  |  |  | 
38  |  | #include "gmp-impl.h"  | 
39  |  |  | 
40  |  |  | 
41  |  | #if GMP_NUMB_BITS < 21  | 
42  |  | #error Not implemented: Both sublsh_n(,,,20) should be corrected.  | 
43  |  | #endif  | 
44  |  |  | 
45  |  | #if GMP_NUMB_BITS < 16  | 
46  |  | #error Not implemented: divexact_by42525 needs splitting.  | 
47  |  | #endif  | 
48  |  |  | 
49  |  | #if GMP_NUMB_BITS < 12  | 
50  |  | #error Not implemented: Hard to adapt...  | 
51  |  | #endif  | 
52  |  |  | 
53  |  |  | 
54  |  | /* FIXME: tuneup should decide the best variant */  | 
55  |  | #ifndef AORSMUL_FASTER_AORS_AORSLSH  | 
56  |  | #define AORSMUL_FASTER_AORS_AORSLSH 1  | 
57  |  | #endif  | 
58  |  | #ifndef AORSMUL_FASTER_AORS_2AORSLSH  | 
59  |  | #define AORSMUL_FASTER_AORS_2AORSLSH 1  | 
60  |  | #endif  | 
61  |  | #ifndef AORSMUL_FASTER_2AORSLSH  | 
62  |  | #define AORSMUL_FASTER_2AORSLSH 1  | 
63  |  | #endif  | 
64  |  | #ifndef AORSMUL_FASTER_3AORSLSH  | 
65  |  | #define AORSMUL_FASTER_3AORSLSH 1  | 
66  |  | #endif  | 
67  |  |  | 
68  |  |  | 
69  |  | #if HAVE_NATIVE_mpn_sublsh_n  | 
70  |  | #define DO_mpn_sublsh_n(dst,src,n,s,ws) mpn_sublsh_n(dst,dst,src,n,s)  | 
71  |  | #else  | 
72  |  | static mp_limb_t  | 
73  |  | DO_mpn_sublsh_n(mp_ptr dst, mp_srcptr src, mp_size_t n, unsigned int s, mp_ptr ws)  | 
74  | 0  | { | 
75  |  | #if USE_MUL_1 && 0  | 
76  |  |   return mpn_submul_1(dst,src,n,CNST_LIMB(1) <<(s));  | 
77  |  | #else  | 
78  | 0  |   mp_limb_t __cy;  | 
79  | 0  |   __cy = mpn_lshift(ws,src,n,s);  | 
80  | 0  |   return    __cy + mpn_sub_n(dst,dst,ws,n);  | 
81  | 0  | #endif  | 
82  | 0  | }  | 
83  |  | #endif  | 
84  |  |  | 
85  |  | #if HAVE_NATIVE_mpn_addlsh_n  | 
86  |  | #define DO_mpn_addlsh_n(dst,src,n,s,ws) mpn_addlsh_n(dst,dst,src,n,s)  | 
87  |  | #else  | 
88  |  | #if !defined (AORSMUL_FASTER_2AORSLSH) && !defined (AORSMUL_FASTER_AORS_2AORSLSH)  | 
89  |  | static mp_limb_t  | 
90  |  | DO_mpn_addlsh_n(mp_ptr dst, mp_srcptr src, mp_size_t n, unsigned int s, mp_ptr ws)  | 
91  |  | { | 
92  |  | #if USE_MUL_1 && 0  | 
93  |  |   return mpn_addmul_1(dst,src,n,CNST_LIMB(1) <<(s));  | 
94  |  | #else  | 
95  |  |   mp_limb_t __cy;  | 
96  |  |   __cy = mpn_lshift(ws,src,n,s);  | 
97  |  |   return    __cy + mpn_add_n(dst,dst,ws,n);  | 
98  |  | #endif  | 
99  |  | }  | 
100  |  | #endif  | 
101  |  | #endif  | 
102  |  |  | 
103  |  | #if HAVE_NATIVE_mpn_subrsh  | 
104  |  | #define DO_mpn_subrsh(dst,nd,src,ns,s,ws) mpn_subrsh(dst,nd,src,ns,s)  | 
105  |  | #else  | 
106  |  | /* FIXME: This is not a correct definition, it assumes no carry */  | 
107  | 0  | #define DO_mpn_subrsh(dst,nd,src,ns,s,ws)       \  | 
108  | 0  | do {                 \ | 
109  | 0  |   mp_limb_t __cy;             \  | 
110  | 0  |   MPN_DECR_U (dst, nd, src[0] >> s);          \  | 
111  | 0  |   __cy = DO_mpn_sublsh_n (dst, src + 1, ns - 1, GMP_NUMB_BITS - s, ws);  \  | 
112  | 0  |   MPN_DECR_U (dst + ns - 1, nd - ns + 1, __cy);       \  | 
113  | 0  | } while (0)  | 
114  |  | #endif  | 
115  |  |  | 
116  |  |  | 
117  |  | #define BINVERT_9 \  | 
118  | 0  |   ((((GMP_NUMB_MAX / 9) << (6 - GMP_NUMB_BITS % 6)) * 8 & GMP_NUMB_MAX) | 0x39)  | 
119  |  |  | 
120  |  | #define BINVERT_255 \  | 
121  |  |   (GMP_NUMB_MAX - ((GMP_NUMB_MAX / 255) << (8 - GMP_NUMB_BITS % 8)))  | 
122  |  |  | 
123  |  |   /* FIXME: find some more general expressions for 2835^-1, 42525^-1 */  | 
124  |  | #if GMP_LIMB_BITS == 32  | 
125  |  | #define BINVERT_2835  (GMP_NUMB_MASK &    CNST_LIMB(0x53E3771B))  | 
126  |  | #define BINVERT_42525 (GMP_NUMB_MASK &    CNST_LIMB(0x9F314C35))  | 
127  |  | #else  | 
128  |  | #if GMP_LIMB_BITS == 64  | 
129  | 0  | #define BINVERT_2835  (GMP_NUMB_MASK &  CNST_LIMB(0x938CC70553E3771B))  | 
130  | 0  | #define BINVERT_42525 (GMP_NUMB_MASK &  CNST_LIMB(0xE7B40D449F314C35))  | 
131  |  | #endif  | 
132  |  | #endif  | 
133  |  |  | 
134  |  | #ifndef mpn_divexact_by255  | 
135  |  | #if GMP_NUMB_BITS % 8 == 0  | 
136  |  | #define mpn_divexact_by255(dst,src,size) \  | 
137  | 0  |   (255 & 1 * mpn_bdiv_dbm1 (dst, src, size, __GMP_CAST (mp_limb_t, GMP_NUMB_MASK / 255)))  | 
138  |  | #else  | 
139  |  | #if HAVE_NATIVE_mpn_pi1_bdiv_q_1  | 
140  |  | #define mpn_divexact_by255(dst,src,size) mpn_pi1_bdiv_q_1(dst,src,size,CNST_LIMB(255),BINVERT_255,0)  | 
141  |  | #else  | 
142  |  | #define mpn_divexact_by255(dst,src,size) mpn_divexact_1(dst,src,size,CNST_LIMB(255))  | 
143  |  | #endif  | 
144  |  | #endif  | 
145  |  | #endif  | 
146  |  |  | 
147  |  | #ifndef mpn_divexact_by9x4  | 
148  |  | #if HAVE_NATIVE_mpn_pi1_bdiv_q_1  | 
149  | 0  | #define mpn_divexact_by9x4(dst,src,size) mpn_pi1_bdiv_q_1(dst,src,size,CNST_LIMB(9),BINVERT_9,2)  | 
150  |  | #else  | 
151  |  | #define mpn_divexact_by9x4(dst,src,size) mpn_divexact_1(dst,src,size,CNST_LIMB(9)<<2)  | 
152  |  | #endif  | 
153  |  | #endif  | 
154  |  |  | 
155  |  | #ifndef mpn_divexact_by42525  | 
156  |  | #if HAVE_NATIVE_mpn_pi1_bdiv_q_1 && defined(BINVERT_42525)  | 
157  | 0  | #define mpn_divexact_by42525(dst,src,size) mpn_pi1_bdiv_q_1(dst,src,size,CNST_LIMB(42525),BINVERT_42525,0)  | 
158  |  | #else  | 
159  |  | #define mpn_divexact_by42525(dst,src,size) mpn_divexact_1(dst,src,size,CNST_LIMB(42525))  | 
160  |  | #endif  | 
161  |  | #endif  | 
162  |  |  | 
163  |  | #ifndef mpn_divexact_by2835x4  | 
164  |  | #if HAVE_NATIVE_mpn_pi1_bdiv_q_1 && defined(BINVERT_2835)  | 
165  | 0  | #define mpn_divexact_by2835x4(dst,src,size) mpn_pi1_bdiv_q_1(dst,src,size,CNST_LIMB(2835),BINVERT_2835,2)  | 
166  |  | #else  | 
167  |  | #define mpn_divexact_by2835x4(dst,src,size) mpn_divexact_1(dst,src,size,CNST_LIMB(2835)<<2)  | 
168  |  | #endif  | 
169  |  | #endif  | 
170  |  |  | 
171  |  | /* Interpolation for Toom-6.5 (or Toom-6), using the evaluation  | 
172  |  |    points: infinity(6.5 only), +-4, +-2, +-1, +-1/4, +-1/2, 0. More precisely,  | 
173  |  |    we want to compute f(2^(GMP_NUMB_BITS * n)) for a polynomial f of  | 
174  |  |    degree 11 (or 10), given the 12 (rsp. 11) values:  | 
175  |  |  | 
176  |  |      r0 = limit at infinity of f(x) / x^11,  | 
177  |  |      r1 = f(4),f(-4),  | 
178  |  |      r2 = f(2),f(-2),  | 
179  |  |      r3 = f(1),f(-1),  | 
180  |  |      r4 = f(1/4),f(-1/4),  | 
181  |  |      r5 = f(1/2),f(-1/2),  | 
182  |  |      r6 = f(0).  | 
183  |  |  | 
184  |  |    All couples of the form f(n),f(-n) must be already mixed with  | 
185  |  |    toom_couple_handling(f(n),...,f(-n),...)  | 
186  |  |  | 
187  |  |    The result is stored in {pp, spt + 7*n (or 6*n)}. | 
188  |  |    At entry, r6 is stored at {pp, 2n}, | 
189  |  |    r4 is stored at {pp + 3n, 3n + 1}. | 
190  |  |    r2 is stored at {pp + 7n, 3n + 1}. | 
191  |  |    r0 is stored at {pp +11n, spt}. | 
192  |  |  | 
193  |  |    The other values are 3n+1 limbs each (with most significant limbs small).  | 
194  |  |  | 
195  |  |    Negative intermediate results are stored two-complemented.  | 
196  |  |    Inputs are destroyed.  | 
197  |  | */  | 
198  |  |  | 
199  |  | void  | 
200  |  | mpn_toom_interpolate_12pts (mp_ptr pp, mp_ptr r1, mp_ptr r3, mp_ptr r5,  | 
201  |  |       mp_size_t n, mp_size_t spt, int half, mp_ptr wsi)  | 
202  | 0  | { | 
203  | 0  |   mp_limb_t cy;  | 
204  | 0  |   mp_size_t n3;  | 
205  | 0  |   mp_size_t n3p1;  | 
206  | 0  |   n3 = 3 * n;  | 
207  | 0  |   n3p1 = n3 + 1;  | 
208  |  | 
  | 
209  | 0  | #define   r4    (pp + n3)      /* 3n+1 */  | 
210  | 0  | #define   r2    (pp + 7 * n)      /* 3n+1 */  | 
211  | 0  | #define   r0    (pp +11 * n)      /* s+t <= 2*n */  | 
212  |  |  | 
213  |  |   /******************************* interpolation *****************************/  | 
214  | 0  |   if (half != 0) { | 
215  | 0  |     cy = mpn_sub_n (r3, r3, r0, spt);  | 
216  | 0  |     MPN_DECR_U (r3 + spt, n3p1 - spt, cy);  | 
217  |  | 
  | 
218  | 0  |     cy = DO_mpn_sublsh_n (r2, r0, spt, 10, wsi);  | 
219  | 0  |     MPN_DECR_U (r2 + spt, n3p1 - spt, cy);  | 
220  | 0  |     DO_mpn_subrsh(r5, n3p1, r0, spt, 2, wsi);  | 
221  |  | 
  | 
222  | 0  |     cy = DO_mpn_sublsh_n (r1, r0, spt, 20, wsi);  | 
223  | 0  |     MPN_DECR_U (r1 + spt, n3p1 - spt, cy);  | 
224  | 0  |     DO_mpn_subrsh(r4, n3p1, r0, spt, 4, wsi);  | 
225  | 0  |   };  | 
226  |  | 
  | 
227  | 0  |   r4[n3] -= DO_mpn_sublsh_n (r4 + n, pp, 2 * n, 20, wsi);  | 
228  | 0  |   DO_mpn_subrsh(r1 + n, 2 * n + 1, pp, 2 * n, 4, wsi);  | 
229  |  | 
  | 
230  |  | #if HAVE_NATIVE_mpn_add_n_sub_n  | 
231  |  |   mpn_add_n_sub_n (r1, r4, r4, r1, n3p1);  | 
232  |  | #else  | 
233  | 0  |   ASSERT_NOCARRY(mpn_add_n (wsi, r1, r4, n3p1));  | 
234  | 0  |   mpn_sub_n (r4, r4, r1, n3p1); /* can be negative */  | 
235  | 0  |   MP_PTR_SWAP(r1, wsi);  | 
236  | 0  | #endif  | 
237  |  | 
  | 
238  | 0  |   r5[n3] -= DO_mpn_sublsh_n (r5 + n, pp, 2 * n, 10, wsi);  | 
239  | 0  |   DO_mpn_subrsh(r2 + n, 2 * n + 1, pp, 2 * n, 2, wsi);  | 
240  |  | 
  | 
241  |  | #if HAVE_NATIVE_mpn_add_n_sub_n  | 
242  |  |   mpn_add_n_sub_n (r2, r5, r5, r2, n3p1);  | 
243  |  | #else  | 
244  | 0  |   mpn_sub_n (wsi, r5, r2, n3p1); /* can be negative */  | 
245  | 0  |   ASSERT_NOCARRY(mpn_add_n (r2, r2, r5, n3p1));  | 
246  | 0  |   MP_PTR_SWAP(r5, wsi);  | 
247  | 0  | #endif  | 
248  |  | 
  | 
249  | 0  |   r3[n3] -= mpn_sub_n (r3+n, r3+n, pp, 2 * n);  | 
250  |  | 
  | 
251  | 0  | #if AORSMUL_FASTER_AORS_AORSLSH  | 
252  | 0  |   mpn_submul_1 (r4, r5, n3p1, 257); /* can be negative */  | 
253  |  | #else  | 
254  |  |   mpn_sub_n (r4, r4, r5, n3p1); /* can be negative */  | 
255  |  |   DO_mpn_sublsh_n (r4, r5, n3p1, 8, wsi); /* can be negative */  | 
256  |  | #endif  | 
257  |  |   /* A division by 2835x4 follows. Warning: the operand can be negative! */  | 
258  | 0  |   mpn_divexact_by2835x4(r4, r4, n3p1);  | 
259  | 0  |   if ((r4[n3] & (GMP_NUMB_MAX << (GMP_NUMB_BITS-3))) != 0)  | 
260  | 0  |     r4[n3] |= (GMP_NUMB_MAX << (GMP_NUMB_BITS-2));  | 
261  |  | 
  | 
262  | 0  | #if AORSMUL_FASTER_2AORSLSH  | 
263  | 0  |   mpn_addmul_1 (r5, r4, n3p1, 60); /* can be negative */  | 
264  |  | #else  | 
265  |  |   DO_mpn_sublsh_n (r5, r4, n3p1, 2, wsi); /* can be negative */  | 
266  |  |   DO_mpn_addlsh_n (r5, r4, n3p1, 6, wsi); /* can give a carry */  | 
267  |  | #endif  | 
268  | 0  |   mpn_divexact_by255(r5, r5, n3p1);  | 
269  |  | 
  | 
270  | 0  |   ASSERT_NOCARRY(DO_mpn_sublsh_n (r2, r3, n3p1, 5, wsi));  | 
271  |  | 
  | 
272  | 0  | #if AORSMUL_FASTER_3AORSLSH  | 
273  | 0  |   ASSERT_NOCARRY(mpn_submul_1 (r1, r2, n3p1, 100));  | 
274  |  | #else  | 
275  |  |   ASSERT_NOCARRY(DO_mpn_sublsh_n (r1, r2, n3p1, 6, wsi));  | 
276  |  |   ASSERT_NOCARRY(DO_mpn_sublsh_n (r1, r2, n3p1, 5, wsi));  | 
277  |  |   ASSERT_NOCARRY(DO_mpn_sublsh_n (r1, r2, n3p1, 2, wsi));  | 
278  |  | #endif  | 
279  | 0  |   ASSERT_NOCARRY(DO_mpn_sublsh_n (r1, r3, n3p1, 9, wsi));  | 
280  | 0  |   mpn_divexact_by42525(r1, r1, n3p1);  | 
281  |  | 
  | 
282  | 0  | #if AORSMUL_FASTER_AORS_2AORSLSH  | 
283  | 0  |   ASSERT_NOCARRY(mpn_submul_1 (r2, r1, n3p1, 225));  | 
284  |  | #else  | 
285  |  |   ASSERT_NOCARRY(mpn_sub_n (r2, r2, r1, n3p1));  | 
286  |  |   ASSERT_NOCARRY(DO_mpn_addlsh_n (r2, r1, n3p1, 5, wsi));  | 
287  |  |   ASSERT_NOCARRY(DO_mpn_sublsh_n (r2, r1, n3p1, 8, wsi));  | 
288  |  | #endif  | 
289  | 0  |   mpn_divexact_by9x4(r2, r2, n3p1);  | 
290  |  | 
  | 
291  | 0  |   ASSERT_NOCARRY(mpn_sub_n (r3, r3, r2, n3p1));  | 
292  |  | 
  | 
293  | 0  | #ifdef HAVE_NATIVE_mpn_rsh1sub_n  | 
294  | 0  |   mpn_rsh1sub_n (r4, r2, r4, n3p1);  | 
295  | 0  |   r4 [n3p1 - 1] &= GMP_NUMB_MASK >> 1;  | 
296  |  | #else  | 
297  |  |   mpn_sub_n (r4, r2, r4, n3p1);  | 
298  |  |   ASSERT_NOCARRY(mpn_rshift(r4, r4, n3p1, 1));  | 
299  |  | #endif  | 
300  | 0  |   ASSERT_NOCARRY(mpn_sub_n (r2, r2, r4, n3p1));  | 
301  |  | 
  | 
302  | 0  | #ifdef HAVE_NATIVE_mpn_rsh1add_n  | 
303  | 0  |   mpn_rsh1add_n (r5, r5, r1, n3p1);  | 
304  | 0  |   r5 [n3p1 - 1] &= GMP_NUMB_MASK >> 1;  | 
305  |  | #else  | 
306  |  |   mpn_add_n (r5, r5, r1, n3p1);  | 
307  |  |   ASSERT_NOCARRY(mpn_rshift(r5, r5, n3p1, 1));  | 
308  |  | #endif  | 
309  |  |  | 
310  |  |   /* last interpolation steps... */  | 
311  | 0  |   ASSERT_NOCARRY(mpn_sub_n (r3, r3, r1, n3p1));  | 
312  | 0  |   ASSERT_NOCARRY(mpn_sub_n (r1, r1, r5, n3p1));  | 
313  |  |   /* ... could be mixed with recomposition  | 
314  |  |   ||H-r5|M-r5|L-r5|   ||H-r1|M-r1|L-r1|  | 
315  |  |   */  | 
316  |  |  | 
317  |  |   /***************************** recomposition *******************************/  | 
318  |  |   /*  | 
319  |  |     pp[] prior to operations:  | 
320  |  |     |M r0|L r0|___||H r2|M r2|L r2|___||H r4|M r4|L r4|____|H_r6|L r6|pp  | 
321  |  |  | 
322  |  |     summation scheme for remaining operations:  | 
323  |  |     |__12|n_11|n_10|n__9|n__8|n__7|n__6|n__5|n__4|n__3|n__2|n___|n___|pp  | 
324  |  |     |M r0|L r0|___||H r2|M r2|L r2|___||H r4|M r4|L r4|____|H_r6|L r6|pp  | 
325  |  |   ||H r1|M r1|L r1|   ||H r3|M r3|L r3|   ||H_r5|M_r5|L_r5|  | 
326  |  |   */  | 
327  |  | 
  | 
328  | 0  |   cy = mpn_add_n (pp + n, pp + n, r5, n);  | 
329  | 0  |   cy = mpn_add_1 (pp + 2 * n, r5 + n, n, cy);  | 
330  | 0  | #if HAVE_NATIVE_mpn_add_nc  | 
331  | 0  |   cy = r5[n3] + mpn_add_nc(pp + n3, pp + n3, r5 + 2 * n, n, cy);  | 
332  |  | #else  | 
333  |  |   MPN_INCR_U (r5 + 2 * n, n + 1, cy);  | 
334  |  |   cy = r5[n3] + mpn_add_n (pp + n3, pp + n3, r5 + 2 * n, n);  | 
335  |  | #endif  | 
336  | 0  |   MPN_INCR_U (pp + n3 + n, 2 * n + 1, cy);  | 
337  |  | 
  | 
338  | 0  |   pp[2 * n3]+= mpn_add_n (pp + 5 * n, pp + 5 * n, r3, n);  | 
339  | 0  |   cy = mpn_add_1 (pp + 2 * n3, r3 + n, n, pp[2 * n3]);  | 
340  | 0  | #if HAVE_NATIVE_mpn_add_nc  | 
341  | 0  |   cy = r3[n3] + mpn_add_nc(pp + 7 * n, pp + 7 * n, r3 + 2 * n, n, cy);  | 
342  |  | #else  | 
343  |  |   MPN_INCR_U (r3 + 2 * n, n + 1, cy);  | 
344  |  |   cy = r3[n3] + mpn_add_n (pp + 7 * n, pp + 7 * n, r3 + 2 * n, n);  | 
345  |  | #endif  | 
346  | 0  |   MPN_INCR_U (pp + 8 * n, 2 * n + 1, cy);  | 
347  |  | 
  | 
348  | 0  |   pp[10*n]+=mpn_add_n (pp + 9 * n, pp + 9 * n, r1, n);  | 
349  | 0  |   if (half) { | 
350  | 0  |     cy = mpn_add_1 (pp + 10 * n, r1 + n, n, pp[10 * n]);  | 
351  | 0  | #if HAVE_NATIVE_mpn_add_nc  | 
352  | 0  |     if (LIKELY (spt > n)) { | 
353  | 0  |       cy = r1[n3] + mpn_add_nc(pp + 11 * n, pp + 11 * n, r1 + 2 * n, n, cy);  | 
354  | 0  |       MPN_INCR_U (pp + 4 * n3, spt - n, cy);  | 
355  | 0  |     } else { | 
356  | 0  |       ASSERT_NOCARRY(mpn_add_nc(pp + 11 * n, pp + 11 * n, r1 + 2 * n, spt, cy));  | 
357  | 0  |     }  | 
358  |  | #else  | 
359  |  |     MPN_INCR_U (r1 + 2 * n, n + 1, cy);  | 
360  |  |     if (LIKELY (spt > n)) { | 
361  |  |       cy = r1[n3] + mpn_add_n (pp + 11 * n, pp + 11 * n, r1 + 2 * n, n);  | 
362  |  |       MPN_INCR_U (pp + 4 * n3, spt - n, cy);  | 
363  |  |     } else { | 
364  |  |       ASSERT_NOCARRY(mpn_add_n (pp + 11 * n, pp + 11 * n, r1 + 2 * n, spt));  | 
365  |  |     }  | 
366  |  | #endif  | 
367  | 0  |   } else { | 
368  | 0  |     ASSERT_NOCARRY(mpn_add_1 (pp + 10 * n, r1 + n, spt, pp[10 * n]));  | 
369  | 0  |   }  | 
370  |  | 
  | 
371  | 0  | #undef   r0  | 
372  | 0  | #undef   r2  | 
373  | 0  | #undef   r4  | 
374  | 0  | }  |