/src/gnutls/lib/x509/privkey_openssl.c
Line  | Count  | Source (jump to first uncovered line)  | 
1  |  | /*  | 
2  |  |  * Copyright (C) 2012 Free Software Foundation, Inc.  | 
3  |  |  *  | 
4  |  |  * Author: David Woodhouse  | 
5  |  |  *  | 
6  |  |  * This file is part of GnuTLS.  | 
7  |  |  *  | 
8  |  |  * The GnuTLS is free software; you can redistribute it and/or  | 
9  |  |  * modify it under the terms of the GNU Lesser General Public License  | 
10  |  |  * as published by the Free Software Foundation; either version 2.1 of  | 
11  |  |  * the License, or (at your option) any later version.  | 
12  |  |  *  | 
13  |  |  * This library is distributed in the hope that it will be useful, but  | 
14  |  |  * WITHOUT ANY WARRANTY; without even the implied warranty of  | 
15  |  |  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU  | 
16  |  |  * Lesser General Public License for more details.  | 
17  |  |  *  | 
18  |  |  * You should have received a copy of the GNU Lesser General Public License  | 
19  |  |  * along with this program.  If not, see <https://www.gnu.org/licenses/>  | 
20  |  |  *  | 
21  |  |  */  | 
22  |  |  | 
23  |  | #include "gnutls_int.h"  | 
24  |  |  | 
25  |  | #include "datum.h"  | 
26  |  | #include "global.h"  | 
27  |  | #include "errors.h"  | 
28  |  | #include "common.h"  | 
29  |  | #include "x509.h"  | 
30  |  | #include "x509_b64.h"  | 
31  |  | #include "x509_int.h"  | 
32  |  | #include "algorithms.h"  | 
33  |  | #include "num.h"  | 
34  |  | #include "random.h"  | 
35  |  |  | 
36  |  | static int openssl_hash_password(const char *_password, gnutls_datum_t *key,  | 
37  |  |          gnutls_datum_t *salt)  | 
38  | 0  | { | 
39  | 0  |   unsigned char md5[16];  | 
40  | 0  |   digest_hd_st hd;  | 
41  | 0  |   unsigned int count = 0;  | 
42  | 0  |   int ret;  | 
43  | 0  |   char *password = NULL;  | 
44  |  | 
  | 
45  | 0  |   if (_password != NULL) { | 
46  | 0  |     gnutls_datum_t pout;  | 
47  | 0  |     ret = _gnutls_utf8_password_normalize(  | 
48  | 0  |       _password, strlen(_password), &pout, 1);  | 
49  | 0  |     if (ret < 0)  | 
50  | 0  |       return gnutls_assert_val(ret);  | 
51  |  |  | 
52  | 0  |     password = (char *)pout.data;  | 
53  | 0  |   }  | 
54  |  |  | 
55  | 0  |   while (count < key->size) { | 
56  | 0  |     ret = _gnutls_hash_init(&hd, mac_to_entry(GNUTLS_MAC_MD5));  | 
57  | 0  |     if (ret < 0) { | 
58  | 0  |       gnutls_assert();  | 
59  | 0  |       goto cleanup;  | 
60  | 0  |     }  | 
61  |  |  | 
62  | 0  |     if (count) { | 
63  | 0  |       ret = _gnutls_hash(&hd, md5, sizeof(md5));  | 
64  | 0  |       if (ret < 0) { | 
65  | 0  |       hash_err:  | 
66  | 0  |         _gnutls_hash_deinit(&hd, NULL);  | 
67  | 0  |         gnutls_assert();  | 
68  | 0  |         goto cleanup;  | 
69  | 0  |       }  | 
70  | 0  |     }  | 
71  |  |  | 
72  | 0  |     if (password) { | 
73  | 0  |       ret = _gnutls_hash(&hd, password, strlen(password));  | 
74  | 0  |       if (ret < 0) { | 
75  | 0  |         gnutls_assert();  | 
76  | 0  |         goto hash_err;  | 
77  | 0  |       }  | 
78  | 0  |     }  | 
79  | 0  |     ret = _gnutls_hash(&hd, salt->data, 8);  | 
80  | 0  |     if (ret < 0) { | 
81  | 0  |       gnutls_assert();  | 
82  | 0  |       goto hash_err;  | 
83  | 0  |     }  | 
84  |  |  | 
85  | 0  |     _gnutls_hash_deinit(&hd, md5);  | 
86  |  | 
  | 
87  | 0  |     if (key->size - count <= sizeof(md5)) { | 
88  | 0  |       memcpy(&key->data[count], md5, key->size - count);  | 
89  | 0  |       break;  | 
90  | 0  |     }  | 
91  |  |  | 
92  | 0  |     memcpy(&key->data[count], md5, sizeof(md5));  | 
93  | 0  |     count += sizeof(md5);  | 
94  | 0  |   }  | 
95  | 0  |   ret = 0;  | 
96  |  | 
  | 
97  | 0  | cleanup:  | 
98  | 0  |   gnutls_free(password);  | 
99  | 0  |   return ret;  | 
100  | 0  | }  | 
101  |  |  | 
102  |  | struct pem_cipher { | 
103  |  |   const char *name;  | 
104  |  |   gnutls_cipher_algorithm_t cipher;  | 
105  |  | };  | 
106  |  |  | 
107  |  | static const struct pem_cipher pem_ciphers[] = { | 
108  |  |   { "DES-CBC", GNUTLS_CIPHER_DES_CBC }, | 
109  |  |   { "DES-EDE3-CBC", GNUTLS_CIPHER_3DES_CBC }, | 
110  |  |   { "AES-128-CBC", GNUTLS_CIPHER_AES_128_CBC }, | 
111  |  |   { "AES-192-CBC", GNUTLS_CIPHER_AES_192_CBC }, | 
112  |  |   { "AES-256-CBC", GNUTLS_CIPHER_AES_256_CBC }, | 
113  |  |   { "CAMELLIA-128-CBC", GNUTLS_CIPHER_CAMELLIA_128_CBC }, | 
114  |  |   { "CAMELLIA-192-CBC", GNUTLS_CIPHER_CAMELLIA_192_CBC }, | 
115  |  |   { "CAMELLIA-256-CBC", GNUTLS_CIPHER_CAMELLIA_256_CBC }, | 
116  |  | };  | 
117  |  |  | 
118  |  | /**  | 
119  |  |  * gnutls_x509_privkey_import_openssl:  | 
120  |  |  * @key: The data to store the parsed key  | 
121  |  |  * @data: The DER or PEM encoded key.  | 
122  |  |  * @password: the password to decrypt the key (if it is encrypted).  | 
123  |  |  *  | 
124  |  |  * This function will convert the given PEM encrypted to   | 
125  |  |  * the native gnutls_x509_privkey_t format. The  | 
126  |  |  * output will be stored in @key.    | 
127  |  |  *  | 
128  |  |  * The @password should be in ASCII. If the password is not provided  | 
129  |  |  * or wrong then %GNUTLS_E_DECRYPTION_FAILED will be returned.  | 
130  |  |  *  | 
131  |  |  * If the Certificate is PEM encoded it should have a header of  | 
132  |  |  * "PRIVATE KEY" and the "DEK-Info" header.   | 
133  |  |  *  | 
134  |  |  * Returns: On success, %GNUTLS_E_SUCCESS (0) is returned, otherwise a  | 
135  |  |  *   negative error value.  | 
136  |  |  **/  | 
137  |  | int gnutls_x509_privkey_import_openssl(gnutls_x509_privkey_t key,  | 
138  |  |                const gnutls_datum_t *data,  | 
139  |  |                const char *password)  | 
140  | 0  | { | 
141  | 0  |   gnutls_cipher_hd_t handle;  | 
142  | 0  |   gnutls_cipher_algorithm_t cipher = GNUTLS_CIPHER_UNKNOWN;  | 
143  | 0  |   gnutls_datum_t b64_data;  | 
144  | 0  |   gnutls_datum_t salt, enc_key, hex_data;  | 
145  | 0  |   unsigned char *key_data;  | 
146  | 0  |   size_t key_data_size;  | 
147  | 0  |   const char *pem_header = (void *)data->data;  | 
148  | 0  |   const char *pem_header_start = (void *)data->data;  | 
149  | 0  |   ssize_t pem_header_size;  | 
150  | 0  |   int ret;  | 
151  | 0  |   unsigned int i, iv_size, l;  | 
152  | 0  |   size_t salt_size;  | 
153  |  | 
  | 
154  | 0  |   pem_header_size = data->size;  | 
155  |  | 
  | 
156  | 0  |   pem_header = memmem(pem_header, pem_header_size, "PRIVATE KEY---", 14);  | 
157  | 0  |   if (pem_header == NULL) { | 
158  | 0  |     gnutls_assert();  | 
159  | 0  |     return GNUTLS_E_PARSING_ERROR;  | 
160  | 0  |   }  | 
161  |  |  | 
162  | 0  |   pem_header_size -= (ptrdiff_t)(pem_header - pem_header_start);  | 
163  |  | 
  | 
164  | 0  |   pem_header = memmem(pem_header, pem_header_size, "DEK-Info: ", 10);  | 
165  | 0  |   if (pem_header == NULL) { | 
166  | 0  |     gnutls_assert();  | 
167  | 0  |     return GNUTLS_E_PARSING_ERROR;  | 
168  | 0  |   }  | 
169  |  |  | 
170  | 0  |   pem_header_size =  | 
171  | 0  |     data->size - (ptrdiff_t)(pem_header - pem_header_start) - 10;  | 
172  | 0  |   pem_header += 10;  | 
173  |  | 
  | 
174  | 0  |   for (i = 0; i < sizeof(pem_ciphers) / sizeof(pem_ciphers[0]); i++) { | 
175  | 0  |     l = strlen(pem_ciphers[i].name);  | 
176  | 0  |     if (!strncmp(pem_header, pem_ciphers[i].name, l) &&  | 
177  | 0  |         pem_header[l] == ',') { | 
178  | 0  |       pem_header += l + 1;  | 
179  | 0  |       cipher = pem_ciphers[i].cipher;  | 
180  | 0  |       break;  | 
181  | 0  |     }  | 
182  | 0  |   }  | 
183  |  | 
  | 
184  | 0  |   if (cipher == GNUTLS_CIPHER_UNKNOWN) { | 
185  | 0  |     _gnutls_debug_log("Unsupported PEM encryption type: %.10s\n", | 
186  | 0  |           pem_header);  | 
187  | 0  |     gnutls_assert();  | 
188  | 0  |     return GNUTLS_E_INVALID_REQUEST;  | 
189  | 0  |   }  | 
190  |  |  | 
191  | 0  |   iv_size = gnutls_cipher_get_iv_size(cipher);  | 
192  | 0  |   salt.size = iv_size;  | 
193  | 0  |   salt.data = gnutls_malloc(salt.size);  | 
194  | 0  |   if (!salt.data)  | 
195  | 0  |     return gnutls_assert_val(GNUTLS_E_MEMORY_ERROR);  | 
196  |  |  | 
197  | 0  |   hex_data.data = (unsigned char *)pem_header;  | 
198  | 0  |   hex_data.size = salt.size * 2;  | 
199  | 0  |   salt_size = salt.size;  | 
200  |  | 
  | 
201  | 0  |   ret = gnutls_hex_decode(&hex_data, salt.data, &salt_size);  | 
202  | 0  |   if (ret < 0) { | 
203  | 0  |     gnutls_assert();  | 
204  | 0  |     if (ret == GNUTLS_E_PARSING_ERROR) { | 
205  |  |       /* Invalid salt in encrypted PEM file */  | 
206  | 0  |       ret = GNUTLS_E_INVALID_REQUEST;  | 
207  | 0  |     }  | 
208  | 0  |     goto out_salt;  | 
209  | 0  |   }  | 
210  |  |  | 
211  | 0  |   pem_header += hex_data.size;  | 
212  | 0  |   if (*pem_header != '\r' && *pem_header != '\n') { | 
213  | 0  |     gnutls_assert();  | 
214  | 0  |     ret = GNUTLS_E_INVALID_REQUEST;  | 
215  | 0  |     goto out_salt;  | 
216  | 0  |   }  | 
217  | 0  |   while (*pem_header == '\n' || *pem_header == '\r')  | 
218  | 0  |     pem_header++;  | 
219  |  | 
  | 
220  | 0  |   ret = _gnutls_base64_decode((const void *)pem_header, pem_header_size,  | 
221  | 0  |             &b64_data);  | 
222  | 0  |   if (ret < 0) { | 
223  | 0  |     gnutls_assert();  | 
224  | 0  |     goto out_salt;  | 
225  | 0  |   }  | 
226  |  |  | 
227  | 0  |   if (b64_data.size < 16) { | 
228  |  |     /* Just to be sure our parsing is OK */  | 
229  | 0  |     gnutls_assert();  | 
230  | 0  |     ret = GNUTLS_E_PARSING_ERROR;  | 
231  | 0  |     goto out_b64;  | 
232  | 0  |   }  | 
233  |  |  | 
234  | 0  |   enc_key.size = gnutls_cipher_get_key_size(cipher);  | 
235  | 0  |   enc_key.data = gnutls_malloc(enc_key.size);  | 
236  | 0  |   if (!enc_key.data) { | 
237  | 0  |     ret = gnutls_assert_val(GNUTLS_E_MEMORY_ERROR);  | 
238  | 0  |     goto out_b64;  | 
239  | 0  |   }  | 
240  |  |  | 
241  | 0  |   key_data_size = b64_data.size;  | 
242  | 0  |   key_data = gnutls_malloc(key_data_size);  | 
243  | 0  |   if (!key_data) { | 
244  | 0  |     ret = gnutls_assert_val(GNUTLS_E_MEMORY_ERROR);  | 
245  | 0  |     goto out_enc_key;  | 
246  | 0  |   }  | 
247  |  |  | 
248  | 0  |   while (1) { | 
249  | 0  |     memcpy(key_data, b64_data.data, key_data_size);  | 
250  |  | 
  | 
251  | 0  |     ret = openssl_hash_password(password, &enc_key, &salt);  | 
252  | 0  |     if (ret < 0) { | 
253  | 0  |       gnutls_assert();  | 
254  | 0  |       goto out;  | 
255  | 0  |     }  | 
256  |  |  | 
257  | 0  |     ret = gnutls_cipher_init(&handle, cipher, &enc_key, &salt);  | 
258  | 0  |     if (ret < 0) { | 
259  | 0  |       gnutls_assert();  | 
260  | 0  |       goto out;  | 
261  | 0  |     }  | 
262  |  |  | 
263  | 0  |     ret = gnutls_cipher_decrypt(handle, key_data, key_data_size);  | 
264  | 0  |     gnutls_cipher_deinit(handle);  | 
265  |  | 
  | 
266  | 0  |     if (ret < 0) { | 
267  | 0  |       gnutls_assert();  | 
268  | 0  |       goto out;  | 
269  | 0  |     }  | 
270  |  |  | 
271  |  |     /* We have to strip any padding to accept it.  | 
272  |  |        So a bit more ASN.1 parsing for us. */  | 
273  | 0  |     if (key_data[0] == 0x30) { | 
274  | 0  |       gnutls_datum_t key_datum;  | 
275  | 0  |       unsigned int blocksize =  | 
276  | 0  |         gnutls_cipher_get_block_size(cipher);  | 
277  | 0  |       unsigned int keylen = key_data[1];  | 
278  | 0  |       unsigned int ofs = 2;  | 
279  |  | 
  | 
280  | 0  |       if (keylen & 0x80) { | 
281  | 0  |         int lenlen = keylen & 0x7f;  | 
282  | 0  |         keylen = 0;  | 
283  |  | 
  | 
284  | 0  |         if (lenlen > 3) { | 
285  | 0  |           gnutls_assert();  | 
286  | 0  |           goto fail;  | 
287  | 0  |         }  | 
288  |  |  | 
289  | 0  |         while (lenlen) { | 
290  | 0  |           keylen <<= 8;  | 
291  | 0  |           keylen |= key_data[ofs++];  | 
292  | 0  |           lenlen--;  | 
293  | 0  |         }  | 
294  | 0  |       }  | 
295  | 0  |       keylen += ofs;  | 
296  |  |  | 
297  |  |       /* If there appears to be more or less padding than required, fail */  | 
298  | 0  |       if (key_data_size - keylen > blocksize ||  | 
299  | 0  |           key_data_size < keylen + 1) { | 
300  | 0  |         gnutls_assert();  | 
301  | 0  |         goto fail;  | 
302  | 0  |       }  | 
303  |  |  | 
304  |  |       /* If the padding bytes aren't all equal to the amount of padding, fail */  | 
305  | 0  |       ofs = keylen;  | 
306  | 0  |       while (ofs < key_data_size) { | 
307  | 0  |         if (key_data[ofs] != key_data_size - keylen) { | 
308  | 0  |           gnutls_assert();  | 
309  | 0  |           goto fail;  | 
310  | 0  |         }  | 
311  | 0  |         ofs++;  | 
312  | 0  |       }  | 
313  |  |  | 
314  | 0  |       key_datum.data = key_data;  | 
315  | 0  |       key_datum.size = keylen;  | 
316  | 0  |       ret = gnutls_x509_privkey_import(key, &key_datum,  | 
317  | 0  |                GNUTLS_X509_FMT_DER);  | 
318  | 0  |       if (ret == 0)  | 
319  | 0  |         goto out;  | 
320  | 0  |     }  | 
321  | 0  |   fail:  | 
322  | 0  |     ret = GNUTLS_E_DECRYPTION_FAILED;  | 
323  | 0  |     goto out;  | 
324  | 0  |   }  | 
325  | 0  | out:  | 
326  | 0  |   zeroize_key(key_data, key_data_size);  | 
327  | 0  |   gnutls_free(key_data);  | 
328  | 0  | out_enc_key:  | 
329  | 0  |   _gnutls_free_key_datum(&enc_key);  | 
330  | 0  | out_b64:  | 
331  | 0  |   gnutls_free(b64_data.data);  | 
332  | 0  | out_salt:  | 
333  | 0  |   gnutls_free(salt.data);  | 
334  | 0  |   return ret;  | 
335  | 0  | }  |