Line | Count | Source |
1 | | /* sha1.c - Functions to compute SHA1 message digest of files or |
2 | | memory blocks according to the NIST specification FIPS-180-1. |
3 | | |
4 | | Copyright (C) 2000-2001, 2003-2006, 2008-2025 Free Software Foundation, Inc. |
5 | | |
6 | | This file is free software: you can redistribute it and/or modify |
7 | | it under the terms of the GNU Lesser General Public License as |
8 | | published by the Free Software Foundation; either version 2.1 of the |
9 | | License, or (at your option) any later version. |
10 | | |
11 | | This file is distributed in the hope that it will be useful, |
12 | | but WITHOUT ANY WARRANTY; without even the implied warranty of |
13 | | MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
14 | | GNU Lesser General Public License for more details. |
15 | | |
16 | | You should have received a copy of the GNU Lesser General Public License |
17 | | along with this program. If not, see <https://www.gnu.org/licenses/>. */ |
18 | | |
19 | | /* Written by Scott G. Miller |
20 | | Credits: |
21 | | Robert Klep <robert@ilse.nl> -- Expansion function fix |
22 | | */ |
23 | | |
24 | | #include <config.h> |
25 | | |
26 | | /* Specification. */ |
27 | | #if HAVE_OPENSSL_SHA1 |
28 | | # define GL_OPENSSL_INLINE _GL_EXTERN_INLINE |
29 | | #endif |
30 | | #include "sha1.h" |
31 | | |
32 | | #include <stdint.h> |
33 | | #include <string.h> |
34 | | |
35 | | #include <byteswap.h> |
36 | | #ifdef WORDS_BIGENDIAN |
37 | | # define SWAP(n) (n) |
38 | | #else |
39 | 0 | # define SWAP(n) bswap_32 (n) |
40 | | #endif |
41 | | |
42 | | #if ! HAVE_OPENSSL_SHA1 |
43 | | |
44 | | /* This array contains the bytes used to pad the buffer to the next |
45 | | 64-byte boundary. (RFC 1321, 3.1: Step 1) */ |
46 | | static const unsigned char fillbuf[64] = { 0x80, 0 /* , 0, 0, ... */ }; |
47 | | |
48 | | |
49 | | /* Take a pointer to a 160 bit block of data (five 32 bit ints) and |
50 | | initialize it to the start constants of the SHA1 algorithm. This |
51 | | must be called before using hash in the call to sha1_hash. */ |
52 | | void |
53 | | sha1_init_ctx (struct sha1_ctx *ctx) |
54 | 0 | { |
55 | 0 | ctx->A = 0x67452301; |
56 | 0 | ctx->B = 0xefcdab89; |
57 | 0 | ctx->C = 0x98badcfe; |
58 | 0 | ctx->D = 0x10325476; |
59 | 0 | ctx->E = 0xc3d2e1f0; |
60 | |
|
61 | 0 | ctx->total[0] = ctx->total[1] = 0; |
62 | 0 | ctx->buflen = 0; |
63 | 0 | } |
64 | | |
65 | | /* Copy the 4 byte value from v into the memory location pointed to by *cp, |
66 | | If your architecture allows unaligned access this is equivalent to |
67 | | * (uint32_t *) cp = v */ |
68 | | static void |
69 | | set_uint32 (char *cp, uint32_t v) |
70 | 0 | { |
71 | 0 | memcpy (cp, &v, sizeof v); |
72 | 0 | } |
73 | | |
74 | | /* Put result from CTX in first 20 bytes following RESBUF. The result |
75 | | must be in little endian byte order. */ |
76 | | void * |
77 | | sha1_read_ctx (const struct sha1_ctx *ctx, void *resbuf) |
78 | 0 | { |
79 | 0 | char *r = resbuf; |
80 | 0 | set_uint32 (r + 0 * sizeof ctx->A, SWAP (ctx->A)); |
81 | 0 | set_uint32 (r + 1 * sizeof ctx->B, SWAP (ctx->B)); |
82 | 0 | set_uint32 (r + 2 * sizeof ctx->C, SWAP (ctx->C)); |
83 | 0 | set_uint32 (r + 3 * sizeof ctx->D, SWAP (ctx->D)); |
84 | 0 | set_uint32 (r + 4 * sizeof ctx->E, SWAP (ctx->E)); |
85 | |
|
86 | 0 | return resbuf; |
87 | 0 | } |
88 | | |
89 | | /* Process the remaining bytes in the internal buffer and the usual |
90 | | prolog according to the standard and write the result to RESBUF. */ |
91 | | void * |
92 | | sha1_finish_ctx (struct sha1_ctx *ctx, void *resbuf) |
93 | 0 | { |
94 | | /* Take yet unprocessed bytes into account. */ |
95 | 0 | uint32_t bytes = ctx->buflen; |
96 | 0 | size_t size = (bytes < 56) ? 64 / 4 : 64 * 2 / 4; |
97 | | |
98 | | /* Now count remaining bytes. */ |
99 | 0 | ctx->total[0] += bytes; |
100 | 0 | if (ctx->total[0] < bytes) |
101 | 0 | ++ctx->total[1]; |
102 | | |
103 | | /* Put the 64-bit file length in *bits* at the end of the buffer. */ |
104 | 0 | ctx->buffer[size - 2] = SWAP ((ctx->total[1] << 3) | (ctx->total[0] >> 29)); |
105 | 0 | ctx->buffer[size - 1] = SWAP (ctx->total[0] << 3); |
106 | |
|
107 | 0 | memcpy (&((char *) ctx->buffer)[bytes], fillbuf, (size - 2) * 4 - bytes); |
108 | | |
109 | | /* Process last bytes. */ |
110 | 0 | sha1_process_block (ctx->buffer, size * 4, ctx); |
111 | |
|
112 | 0 | return sha1_read_ctx (ctx, resbuf); |
113 | 0 | } |
114 | | |
115 | | /* Compute SHA1 message digest for LEN bytes beginning at BUFFER. The |
116 | | result is always in little endian byte order, so that a byte-wise |
117 | | output yields to the wanted ASCII representation of the message |
118 | | digest. */ |
119 | | void * |
120 | | sha1_buffer (const char *buffer, size_t len, void *resblock) |
121 | 0 | { |
122 | 0 | struct sha1_ctx ctx; |
123 | | |
124 | | /* Initialize the computation context. */ |
125 | 0 | sha1_init_ctx (&ctx); |
126 | | |
127 | | /* Process whole buffer but last len % 64 bytes. */ |
128 | 0 | sha1_process_bytes (buffer, len, &ctx); |
129 | | |
130 | | /* Put result in desired memory area. */ |
131 | 0 | return sha1_finish_ctx (&ctx, resblock); |
132 | 0 | } |
133 | | |
134 | | void |
135 | | sha1_process_bytes (const void *buffer, size_t len, struct sha1_ctx *ctx) |
136 | 0 | { |
137 | | /* When we already have some bits in our internal buffer concatenate |
138 | | both inputs first. */ |
139 | 0 | if (ctx->buflen != 0) |
140 | 0 | { |
141 | 0 | size_t left_over = ctx->buflen; |
142 | 0 | size_t add = 128 - left_over > len ? len : 128 - left_over; |
143 | |
|
144 | 0 | memcpy (&((char *) ctx->buffer)[left_over], buffer, add); |
145 | 0 | ctx->buflen += add; |
146 | |
|
147 | 0 | if (ctx->buflen > 64) |
148 | 0 | { |
149 | 0 | sha1_process_block (ctx->buffer, ctx->buflen & ~63, ctx); |
150 | |
|
151 | 0 | ctx->buflen &= 63; |
152 | | /* The regions in the following copy operation cannot overlap, |
153 | | because ctx->buflen < 64 ≤ (left_over + add) & ~63. */ |
154 | 0 | memcpy (ctx->buffer, |
155 | 0 | &((char *) ctx->buffer)[(left_over + add) & ~63], |
156 | 0 | ctx->buflen); |
157 | 0 | } |
158 | |
|
159 | 0 | buffer = (const char *) buffer + add; |
160 | 0 | len -= add; |
161 | 0 | } |
162 | | |
163 | | /* Process available complete blocks. */ |
164 | 0 | if (len >= 64) |
165 | 0 | { |
166 | 0 | #if !(_STRING_ARCH_unaligned || _STRING_INLINE_unaligned) |
167 | 0 | # define UNALIGNED_P(p) ((uintptr_t) (p) % alignof (uint32_t) != 0) |
168 | 0 | if (UNALIGNED_P (buffer)) |
169 | 0 | while (len > 64) |
170 | 0 | { |
171 | 0 | sha1_process_block (memcpy (ctx->buffer, buffer, 64), 64, ctx); |
172 | 0 | buffer = (const char *) buffer + 64; |
173 | 0 | len -= 64; |
174 | 0 | } |
175 | 0 | else |
176 | 0 | #endif |
177 | 0 | { |
178 | 0 | sha1_process_block (buffer, len & ~63, ctx); |
179 | 0 | buffer = (const char *) buffer + (len & ~63); |
180 | 0 | len &= 63; |
181 | 0 | } |
182 | 0 | } |
183 | | |
184 | | /* Move remaining bytes in internal buffer. */ |
185 | 0 | if (len > 0) |
186 | 0 | { |
187 | 0 | size_t left_over = ctx->buflen; |
188 | |
|
189 | 0 | memcpy (&((char *) ctx->buffer)[left_over], buffer, len); |
190 | 0 | left_over += len; |
191 | 0 | if (left_over >= 64) |
192 | 0 | { |
193 | 0 | sha1_process_block (ctx->buffer, 64, ctx); |
194 | 0 | left_over -= 64; |
195 | | /* The regions in the following copy operation cannot overlap, |
196 | | because left_over ≤ 64. */ |
197 | 0 | memcpy (ctx->buffer, &ctx->buffer[16], left_over); |
198 | 0 | } |
199 | 0 | ctx->buflen = left_over; |
200 | 0 | } |
201 | 0 | } |
202 | | |
203 | | /* --- Code below is the primary difference between md5.c and sha1.c --- */ |
204 | | |
205 | | /* SHA1 round constants */ |
206 | | #define K1 0x5a827999 |
207 | | #define K2 0x6ed9eba1 |
208 | | #define K3 0x8f1bbcdc |
209 | | #define K4 0xca62c1d6 |
210 | | |
211 | | /* Round functions. Note that F2 is the same as F4. */ |
212 | 0 | #define F1(B,C,D) ( D ^ ( B & ( C ^ D ) ) ) |
213 | 0 | #define F2(B,C,D) (B ^ C ^ D) |
214 | 0 | #define F3(B,C,D) ( ( B & C ) | ( D & ( B | C ) ) ) |
215 | 0 | #define F4(B,C,D) (B ^ C ^ D) |
216 | | |
217 | | /* Process LEN bytes of BUFFER, accumulating context into CTX. |
218 | | It is assumed that LEN % 64 == 0. |
219 | | Most of this code comes from GnuPG's cipher/sha1.c. */ |
220 | | |
221 | | void |
222 | | sha1_process_block (const void *buffer, size_t len, struct sha1_ctx *ctx) |
223 | 0 | { |
224 | 0 | const uint32_t *words = buffer; |
225 | 0 | size_t nwords = len / sizeof (uint32_t); |
226 | 0 | const uint32_t *endp = words + nwords; |
227 | 0 | uint32_t x[16]; |
228 | 0 | uint32_t a = ctx->A; |
229 | 0 | uint32_t b = ctx->B; |
230 | 0 | uint32_t c = ctx->C; |
231 | 0 | uint32_t d = ctx->D; |
232 | 0 | uint32_t e = ctx->E; |
233 | 0 | uint32_t lolen = len; |
234 | | |
235 | | /* First increment the byte count. RFC 1321 specifies the possible |
236 | | length of the file up to 2^64 bits. Here we only compute the |
237 | | number of bytes. Do a double word increment. */ |
238 | 0 | ctx->total[0] += lolen; |
239 | 0 | ctx->total[1] += (len >> 31 >> 1) + (ctx->total[0] < lolen); |
240 | |
|
241 | 0 | #define rol(x, n) (((x) << (n)) | ((uint32_t) (x) >> (32 - (n)))) |
242 | |
|
243 | 0 | #define M(I) ( tm = x[I&0x0f] ^ x[(I-14)&0x0f] \ |
244 | 0 | ^ x[(I-8)&0x0f] ^ x[(I-3)&0x0f] \ |
245 | 0 | , (x[I&0x0f] = rol(tm, 1)) ) |
246 | |
|
247 | 0 | #define R(A,B,C,D,E,F,K,M) do { E += rol( A, 5 ) \ |
248 | 0 | + F( B, C, D ) \ |
249 | 0 | + K \ |
250 | 0 | + M; \ |
251 | 0 | B = rol( B, 30 ); \ |
252 | 0 | } while(0) |
253 | |
|
254 | 0 | while (words < endp) |
255 | 0 | { |
256 | 0 | for (int t = 0; t < 16; t++) |
257 | 0 | { |
258 | 0 | x[t] = SWAP (*words); |
259 | 0 | words++; |
260 | 0 | } |
261 | |
|
262 | 0 | uint32_t tm; |
263 | |
|
264 | 0 | R( a, b, c, d, e, F1, K1, x[ 0] ); |
265 | 0 | R( e, a, b, c, d, F1, K1, x[ 1] ); |
266 | 0 | R( d, e, a, b, c, F1, K1, x[ 2] ); |
267 | 0 | R( c, d, e, a, b, F1, K1, x[ 3] ); |
268 | 0 | R( b, c, d, e, a, F1, K1, x[ 4] ); |
269 | 0 | R( a, b, c, d, e, F1, K1, x[ 5] ); |
270 | 0 | R( e, a, b, c, d, F1, K1, x[ 6] ); |
271 | 0 | R( d, e, a, b, c, F1, K1, x[ 7] ); |
272 | 0 | R( c, d, e, a, b, F1, K1, x[ 8] ); |
273 | 0 | R( b, c, d, e, a, F1, K1, x[ 9] ); |
274 | 0 | R( a, b, c, d, e, F1, K1, x[10] ); |
275 | 0 | R( e, a, b, c, d, F1, K1, x[11] ); |
276 | 0 | R( d, e, a, b, c, F1, K1, x[12] ); |
277 | 0 | R( c, d, e, a, b, F1, K1, x[13] ); |
278 | 0 | R( b, c, d, e, a, F1, K1, x[14] ); |
279 | 0 | R( a, b, c, d, e, F1, K1, x[15] ); |
280 | 0 | R( e, a, b, c, d, F1, K1, M(16) ); |
281 | 0 | R( d, e, a, b, c, F1, K1, M(17) ); |
282 | 0 | R( c, d, e, a, b, F1, K1, M(18) ); |
283 | 0 | R( b, c, d, e, a, F1, K1, M(19) ); |
284 | 0 | R( a, b, c, d, e, F2, K2, M(20) ); |
285 | 0 | R( e, a, b, c, d, F2, K2, M(21) ); |
286 | 0 | R( d, e, a, b, c, F2, K2, M(22) ); |
287 | 0 | R( c, d, e, a, b, F2, K2, M(23) ); |
288 | 0 | R( b, c, d, e, a, F2, K2, M(24) ); |
289 | 0 | R( a, b, c, d, e, F2, K2, M(25) ); |
290 | 0 | R( e, a, b, c, d, F2, K2, M(26) ); |
291 | 0 | R( d, e, a, b, c, F2, K2, M(27) ); |
292 | 0 | R( c, d, e, a, b, F2, K2, M(28) ); |
293 | 0 | R( b, c, d, e, a, F2, K2, M(29) ); |
294 | 0 | R( a, b, c, d, e, F2, K2, M(30) ); |
295 | 0 | R( e, a, b, c, d, F2, K2, M(31) ); |
296 | 0 | R( d, e, a, b, c, F2, K2, M(32) ); |
297 | 0 | R( c, d, e, a, b, F2, K2, M(33) ); |
298 | 0 | R( b, c, d, e, a, F2, K2, M(34) ); |
299 | 0 | R( a, b, c, d, e, F2, K2, M(35) ); |
300 | 0 | R( e, a, b, c, d, F2, K2, M(36) ); |
301 | 0 | R( d, e, a, b, c, F2, K2, M(37) ); |
302 | 0 | R( c, d, e, a, b, F2, K2, M(38) ); |
303 | 0 | R( b, c, d, e, a, F2, K2, M(39) ); |
304 | 0 | R( a, b, c, d, e, F3, K3, M(40) ); |
305 | 0 | R( e, a, b, c, d, F3, K3, M(41) ); |
306 | 0 | R( d, e, a, b, c, F3, K3, M(42) ); |
307 | 0 | R( c, d, e, a, b, F3, K3, M(43) ); |
308 | 0 | R( b, c, d, e, a, F3, K3, M(44) ); |
309 | 0 | R( a, b, c, d, e, F3, K3, M(45) ); |
310 | 0 | R( e, a, b, c, d, F3, K3, M(46) ); |
311 | 0 | R( d, e, a, b, c, F3, K3, M(47) ); |
312 | 0 | R( c, d, e, a, b, F3, K3, M(48) ); |
313 | 0 | R( b, c, d, e, a, F3, K3, M(49) ); |
314 | 0 | R( a, b, c, d, e, F3, K3, M(50) ); |
315 | 0 | R( e, a, b, c, d, F3, K3, M(51) ); |
316 | 0 | R( d, e, a, b, c, F3, K3, M(52) ); |
317 | 0 | R( c, d, e, a, b, F3, K3, M(53) ); |
318 | 0 | R( b, c, d, e, a, F3, K3, M(54) ); |
319 | 0 | R( a, b, c, d, e, F3, K3, M(55) ); |
320 | 0 | R( e, a, b, c, d, F3, K3, M(56) ); |
321 | 0 | R( d, e, a, b, c, F3, K3, M(57) ); |
322 | 0 | R( c, d, e, a, b, F3, K3, M(58) ); |
323 | 0 | R( b, c, d, e, a, F3, K3, M(59) ); |
324 | 0 | R( a, b, c, d, e, F4, K4, M(60) ); |
325 | 0 | R( e, a, b, c, d, F4, K4, M(61) ); |
326 | 0 | R( d, e, a, b, c, F4, K4, M(62) ); |
327 | 0 | R( c, d, e, a, b, F4, K4, M(63) ); |
328 | 0 | R( b, c, d, e, a, F4, K4, M(64) ); |
329 | 0 | R( a, b, c, d, e, F4, K4, M(65) ); |
330 | 0 | R( e, a, b, c, d, F4, K4, M(66) ); |
331 | 0 | R( d, e, a, b, c, F4, K4, M(67) ); |
332 | 0 | R( c, d, e, a, b, F4, K4, M(68) ); |
333 | 0 | R( b, c, d, e, a, F4, K4, M(69) ); |
334 | 0 | R( a, b, c, d, e, F4, K4, M(70) ); |
335 | 0 | R( e, a, b, c, d, F4, K4, M(71) ); |
336 | 0 | R( d, e, a, b, c, F4, K4, M(72) ); |
337 | 0 | R( c, d, e, a, b, F4, K4, M(73) ); |
338 | 0 | R( b, c, d, e, a, F4, K4, M(74) ); |
339 | 0 | R( a, b, c, d, e, F4, K4, M(75) ); |
340 | 0 | R( e, a, b, c, d, F4, K4, M(76) ); |
341 | 0 | R( d, e, a, b, c, F4, K4, M(77) ); |
342 | 0 | R( c, d, e, a, b, F4, K4, M(78) ); |
343 | 0 | R( b, c, d, e, a, F4, K4, M(79) ); |
344 | |
|
345 | 0 | a = ctx->A += a; |
346 | 0 | b = ctx->B += b; |
347 | 0 | c = ctx->C += c; |
348 | 0 | d = ctx->D += d; |
349 | 0 | e = ctx->E += e; |
350 | 0 | } |
351 | 0 | } |
352 | | |
353 | | #endif |
354 | | |
355 | | /* |
356 | | * Hey Emacs! |
357 | | * Local Variables: |
358 | | * coding: utf-8 |
359 | | * End: |
360 | | */ |