Line | Count | Source (jump to first uncovered line) |
1 | | /* mpn_fib2m -- calculate Fibonacci numbers, modulo m. |
2 | | |
3 | | Contributed to the GNU project by Marco Bodrato, based on the previous |
4 | | fib2_ui.c file. |
5 | | |
6 | | THE FUNCTIONS IN THIS FILE ARE FOR INTERNAL USE ONLY. THEY'RE ALMOST |
7 | | CERTAIN TO BE SUBJECT TO INCOMPATIBLE CHANGES OR DISAPPEAR COMPLETELY IN |
8 | | FUTURE GNU MP RELEASES. |
9 | | |
10 | | Copyright 2001, 2002, 2005, 2009, 2018 Free Software Foundation, Inc. |
11 | | |
12 | | This file is part of the GNU MP Library. |
13 | | |
14 | | The GNU MP Library is free software; you can redistribute it and/or modify |
15 | | it under the terms of either: |
16 | | |
17 | | * the GNU Lesser General Public License as published by the Free |
18 | | Software Foundation; either version 3 of the License, or (at your |
19 | | option) any later version. |
20 | | |
21 | | or |
22 | | |
23 | | * the GNU General Public License as published by the Free Software |
24 | | Foundation; either version 2 of the License, or (at your option) any |
25 | | later version. |
26 | | |
27 | | or both in parallel, as here. |
28 | | |
29 | | The GNU MP Library is distributed in the hope that it will be useful, but |
30 | | WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY |
31 | | or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License |
32 | | for more details. |
33 | | |
34 | | You should have received copies of the GNU General Public License and the |
35 | | GNU Lesser General Public License along with the GNU MP Library. If not, |
36 | | see https://www.gnu.org/licenses/. */ |
37 | | |
38 | | #include <stdio.h> |
39 | | #include "gmp-impl.h" |
40 | | #include "longlong.h" |
41 | | |
42 | | |
43 | | /* Stores |{ap,n}-{bp,n}| in {rp,n}, |
44 | | returns the sign of {ap,n}-{bp,n}. */ |
45 | | static int |
46 | | abs_sub_n (mp_ptr rp, mp_srcptr ap, mp_srcptr bp, mp_size_t n) |
47 | 0 | { |
48 | 0 | mp_limb_t x, y; |
49 | 0 | while (--n >= 0) |
50 | 0 | { |
51 | 0 | x = ap[n]; |
52 | 0 | y = bp[n]; |
53 | 0 | if (x != y) |
54 | 0 | { |
55 | 0 | ++n; |
56 | 0 | if (x > y) |
57 | 0 | { |
58 | 0 | ASSERT_NOCARRY (mpn_sub_n (rp, ap, bp, n)); |
59 | 0 | return 1; |
60 | 0 | } |
61 | 0 | else |
62 | 0 | { |
63 | 0 | ASSERT_NOCARRY (mpn_sub_n (rp, bp, ap, n)); |
64 | 0 | return -1; |
65 | 0 | } |
66 | 0 | } |
67 | 0 | rp[n] = 0; |
68 | 0 | } |
69 | 0 | return 0; |
70 | 0 | } |
71 | | |
72 | | /* Store F[n] at fp and F[n-1] at f1p. Both are computed modulo m. |
73 | | fp and f1p should have room for mn*2+1 limbs. |
74 | | |
75 | | The sign of one or both the values may be flipped (n-F, instead of F), |
76 | | the return value is 0 (zero) if the signs are coherent (both positive |
77 | | or both negative) and 1 (one) otherwise. |
78 | | |
79 | | Notes: |
80 | | |
81 | | In F[2k+1] with k even, +2 is applied to 4*F[k]^2 just by ORing into the |
82 | | low limb. |
83 | | |
84 | | In F[2k+1] with k odd, -2 is applied to F[k-1]^2 just by ORing into the |
85 | | low limb. |
86 | | |
87 | | TODO: Should {tp, 2 * mn} be passed as a scratch pointer? |
88 | | Should the call to mpn_fib2_ui() obtain (up to) 2*mn limbs? |
89 | | */ |
90 | | |
91 | | int |
92 | | mpn_fib2m (mp_ptr fp, mp_ptr f1p, mp_srcptr np, mp_size_t nn, mp_srcptr mp, mp_size_t mn) |
93 | 0 | { |
94 | 0 | unsigned long nfirst; |
95 | 0 | mp_limb_t nh; |
96 | 0 | mp_bitcnt_t nbi; |
97 | 0 | mp_size_t sn, fn; |
98 | 0 | int fcnt, ncnt; |
99 | |
|
100 | 0 | ASSERT (! MPN_OVERLAP_P (fp, MAX(2*mn+1,5), f1p, MAX(2*mn+1,5))); |
101 | 0 | ASSERT (nn > 0 && np[nn - 1] != 0); |
102 | | |
103 | | /* Estimate the maximal n such that fibonacci(n) fits in mn limbs. */ |
104 | 0 | #if GMP_NUMB_BITS % 16 == 0 |
105 | 0 | if (UNLIKELY (ULONG_MAX / (23 * (GMP_NUMB_BITS / 16)) <= mn)) |
106 | 0 | nfirst = ULONG_MAX; |
107 | 0 | else |
108 | 0 | nfirst = mn * (23 * (GMP_NUMB_BITS / 16)); |
109 | | #else |
110 | | { |
111 | | mp_bitcnt_t mbi; |
112 | | mbi = (mp_bitcnt_t) mn * GMP_NUMB_BITS; |
113 | | |
114 | | if (UNLIKELY (ULONG_MAX / 23 < mbi)) |
115 | | { |
116 | | if (UNLIKELY (ULONG_MAX / 23 * 16 <= mbi)) |
117 | | nfirst = ULONG_MAX; |
118 | | else |
119 | | nfirst = mbi / 16 * 23; |
120 | | } |
121 | | else |
122 | | nfirst = mbi * 23 / 16; |
123 | | } |
124 | | #endif |
125 | |
|
126 | 0 | sn = nn - 1; |
127 | 0 | nh = np[sn]; |
128 | 0 | count_leading_zeros (ncnt, nh); |
129 | 0 | count_leading_zeros (fcnt, nfirst); |
130 | |
|
131 | 0 | if (fcnt >= ncnt) |
132 | 0 | { |
133 | 0 | ncnt = fcnt - ncnt; |
134 | 0 | nh >>= ncnt; |
135 | 0 | } |
136 | 0 | else if (sn > 0) |
137 | 0 | { |
138 | 0 | ncnt -= fcnt; |
139 | 0 | nh <<= ncnt; |
140 | 0 | ncnt = GMP_NUMB_BITS - ncnt; |
141 | 0 | --sn; |
142 | 0 | nh |= np[sn] >> ncnt; |
143 | 0 | } |
144 | 0 | else |
145 | 0 | ncnt = 0; |
146 | |
|
147 | 0 | nbi = sn * GMP_NUMB_BITS + ncnt; |
148 | 0 | if (nh > nfirst) |
149 | 0 | { |
150 | 0 | nh >>= 1; |
151 | 0 | ++nbi; |
152 | 0 | } |
153 | |
|
154 | 0 | ASSERT (nh <= nfirst); |
155 | | /* Take a starting pair from mpn_fib2_ui. */ |
156 | 0 | fn = mpn_fib2_ui (fp, f1p, nh); |
157 | 0 | MPN_ZERO (fp + fn, mn - fn); |
158 | 0 | MPN_ZERO (f1p + fn, mn - fn); |
159 | |
|
160 | 0 | if (nbi == 0) |
161 | 0 | { |
162 | 0 | if (fn == mn) |
163 | 0 | { |
164 | 0 | mp_limb_t qp[2]; |
165 | 0 | mpn_tdiv_qr (qp, fp, 0, fp, fn, mp, mn); |
166 | 0 | mpn_tdiv_qr (qp, f1p, 0, f1p, fn, mp, mn); |
167 | 0 | } |
168 | |
|
169 | 0 | return 0; |
170 | 0 | } |
171 | 0 | else |
172 | 0 | { |
173 | 0 | mp_ptr tp; |
174 | 0 | unsigned pb = nh & 1; |
175 | 0 | int neg; |
176 | 0 | TMP_DECL; |
177 | |
|
178 | 0 | TMP_MARK; |
179 | |
|
180 | 0 | tp = TMP_ALLOC_LIMBS (2 * mn + (mn < 2)); |
181 | |
|
182 | 0 | do |
183 | 0 | { |
184 | 0 | mp_ptr rp; |
185 | | /* Here fp==F[k] and f1p==F[k-1], with k being the bits of n from |
186 | | nbi upwards. |
187 | | |
188 | | Based on the next bit of n, we'll double to the pair |
189 | | fp==F[2k],f1p==F[2k-1] or fp==F[2k+1],f1p==F[2k], according as |
190 | | that bit is 0 or 1 respectively. */ |
191 | |
|
192 | 0 | mpn_sqr (tp, fp, mn); |
193 | 0 | mpn_sqr (fp, f1p, mn); |
194 | | |
195 | | /* Calculate F[2k-1] = F[k]^2 + F[k-1]^2. */ |
196 | 0 | f1p[2 * mn] = mpn_add_n (f1p, tp, fp, 2 * mn); |
197 | | |
198 | | /* Calculate F[2k+1] = 4*F[k]^2 - F[k-1]^2 + 2*(-1)^k. |
199 | | pb is the low bit of our implied k. */ |
200 | | |
201 | | /* fp is F[k-1]^2 == 0 or 1 mod 4, like all squares. */ |
202 | 0 | ASSERT ((fp[0] & 2) == 0); |
203 | 0 | ASSERT (pb == (pb & 1)); |
204 | 0 | ASSERT ((fp[0] + (pb ? 2 : 0)) == (fp[0] | (pb << 1))); |
205 | 0 | fp[0] |= pb << 1; /* possible -2 */ |
206 | 0 | #if HAVE_NATIVE_mpn_rsblsh2_n |
207 | 0 | fp[2 * mn] = 1 + mpn_rsblsh2_n (fp, fp, tp, 2 * mn); |
208 | 0 | MPN_INCR_U(fp, 2 * mn + 1, (1 ^ pb) << 1); /* possible +2 */ |
209 | 0 | fp[2 * mn] = (fp[2 * mn] - 1) & GMP_NUMB_MAX; |
210 | | #else |
211 | | { |
212 | | mp_limb_t c; |
213 | | |
214 | | c = mpn_lshift (tp, tp, 2 * mn, 2); |
215 | | tp[0] |= (1 ^ pb) << 1; /* possible +2 */ |
216 | | c -= mpn_sub_n (fp, tp, fp, 2 * mn); |
217 | | fp[2 * mn] = c & GMP_NUMB_MAX; |
218 | | } |
219 | | #endif |
220 | 0 | neg = fp[2 * mn] == GMP_NUMB_MAX; |
221 | | |
222 | | /* Calculate F[2k-1] = F[k]^2 + F[k-1]^2 */ |
223 | | /* Calculate F[2k+1] = 4*F[k]^2 - F[k-1]^2 + 2*(-1)^k */ |
224 | | |
225 | | /* Calculate F[2k] = F[2k+1] - F[2k-1], replacing the unwanted one of |
226 | | F[2k+1] and F[2k-1]. */ |
227 | 0 | --nbi; |
228 | 0 | pb = (np [nbi / GMP_NUMB_BITS] >> (nbi % GMP_NUMB_BITS)) & 1; |
229 | 0 | rp = pb ? f1p : fp; |
230 | 0 | if (neg) |
231 | 0 | { |
232 | | /* Calculate -(F[2k+1] - F[2k-1]) */ |
233 | 0 | rp[2 * mn] = f1p[2 * mn] + 1 - mpn_sub_n (rp, f1p, fp, 2 * mn); |
234 | 0 | neg = ! pb; |
235 | 0 | if (pb) /* fp not overwritten, negate it. */ |
236 | 0 | fp [2 * mn] = 1 ^ mpn_neg (fp, fp, 2 * mn); |
237 | 0 | } |
238 | 0 | else |
239 | 0 | { |
240 | 0 | neg = abs_sub_n (rp, fp, f1p, 2 * mn + 1) < 0; |
241 | 0 | } |
242 | |
|
243 | 0 | mpn_tdiv_qr (tp, fp, 0, fp, 2 * mn + 1, mp, mn); |
244 | 0 | mpn_tdiv_qr (tp, f1p, 0, f1p, 2 * mn + 1, mp, mn); |
245 | 0 | } |
246 | 0 | while (nbi != 0); |
247 | |
|
248 | 0 | TMP_FREE; |
249 | |
|
250 | 0 | return neg; |
251 | 0 | } |
252 | 0 | } |