Coverage Report

Created: 2025-03-18 06:55

/src/gmp/mpn/gcd.c
Line
Count
Source (jump to first uncovered line)
1
/* mpn/gcd.c: mpn_gcd for gcd of two odd integers.
2
3
Copyright 1991, 1993-1998, 2000-2005, 2008, 2010, 2012, 2019 Free Software
4
Foundation, Inc.
5
6
This file is part of the GNU MP Library.
7
8
The GNU MP Library is free software; you can redistribute it and/or modify
9
it under the terms of either:
10
11
  * the GNU Lesser General Public License as published by the Free
12
    Software Foundation; either version 3 of the License, or (at your
13
    option) any later version.
14
15
or
16
17
  * the GNU General Public License as published by the Free Software
18
    Foundation; either version 2 of the License, or (at your option) any
19
    later version.
20
21
or both in parallel, as here.
22
23
The GNU MP Library is distributed in the hope that it will be useful, but
24
WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
25
or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
26
for more details.
27
28
You should have received copies of the GNU General Public License and the
29
GNU Lesser General Public License along with the GNU MP Library.  If not,
30
see https://www.gnu.org/licenses/.  */
31
32
#include "gmp-impl.h"
33
#include "longlong.h"
34
35
/* Uses the HGCD operation described in
36
37
     N. Möller, On Schönhage's algorithm and subquadratic integer gcd
38
     computation, Math. Comp. 77 (2008), 589-607.
39
40
  to reduce inputs until they are of size below GCD_DC_THRESHOLD, and
41
  then uses Lehmer's algorithm.
42
*/
43
44
/* Some reasonable choices are n / 2 (same as in hgcd), and p = (n +
45
 * 2)/3, which gives a balanced multiplication in
46
 * mpn_hgcd_matrix_adjust. However, p = 2 n/3 gives slightly better
47
 * performance. The matrix-vector multiplication is then
48
 * 4:1-unbalanced, with matrix elements of size n/6, and vector
49
 * elements of size p = 2n/3. */
50
51
/* From analysis of the theoretical running time, it appears that when
52
 * multiplication takes time O(n^alpha), p should be chosen so that
53
 * the ratio of the time for the mpn_hgcd call, and the time for the
54
 * multiplication in mpn_hgcd_matrix_adjust, is roughly 1/(alpha -
55
 * 1). */
56
#ifdef TUNE_GCD_P
57
#define P_TABLE_SIZE 10000
58
mp_size_t p_table[P_TABLE_SIZE];
59
#define CHOOSE_P(n) ( (n) < P_TABLE_SIZE ? p_table[n] : 2*(n)/3)
60
#else
61
0
#define CHOOSE_P(n) (2*(n) / 3)
62
#endif
63
64
struct gcd_ctx
65
{
66
  mp_ptr gp;
67
  mp_size_t gn;
68
};
69
70
static void
71
gcd_hook (void *p, mp_srcptr gp, mp_size_t gn,
72
    mp_srcptr qp, mp_size_t qn, int d)
73
0
{
74
0
  struct gcd_ctx *ctx = (struct gcd_ctx *) p;
75
0
  MPN_COPY (ctx->gp, gp, gn);
76
0
  ctx->gn = gn;
77
0
}
78
79
mp_size_t
80
mpn_gcd (mp_ptr gp, mp_ptr up, mp_size_t usize, mp_ptr vp, mp_size_t n)
81
0
{
82
0
  mp_size_t talloc;
83
0
  mp_size_t scratch;
84
0
  mp_size_t matrix_scratch;
85
86
0
  struct gcd_ctx ctx;
87
0
  mp_ptr tp;
88
0
  TMP_DECL;
89
90
0
  ASSERT (usize >= n);
91
0
  ASSERT (n > 0);
92
0
  ASSERT (vp[n-1] > 0);
93
94
  /* FIXME: Check for small sizes first, before setting up temporary
95
     storage etc. */
96
0
  talloc = MPN_GCD_SUBDIV_STEP_ITCH(n);
97
98
  /* For initial division */
99
0
  scratch = usize - n + 1;
100
0
  if (scratch > talloc)
101
0
    talloc = scratch;
102
103
#if TUNE_GCD_P
104
  if (CHOOSE_P (n) > 0)
105
#else
106
0
  if (ABOVE_THRESHOLD (n, GCD_DC_THRESHOLD))
107
0
#endif
108
0
    {
109
0
      mp_size_t hgcd_scratch;
110
0
      mp_size_t update_scratch;
111
0
      mp_size_t p = CHOOSE_P (n);
112
0
      mp_size_t scratch;
113
#if TUNE_GCD_P
114
      /* Worst case, since we don't guarantee that n - CHOOSE_P(n)
115
   is increasing */
116
      matrix_scratch = MPN_HGCD_MATRIX_INIT_ITCH (n);
117
      hgcd_scratch = mpn_hgcd_itch (n);
118
      update_scratch = 2*(n - 1);
119
#else
120
0
      matrix_scratch = MPN_HGCD_MATRIX_INIT_ITCH (n - p);
121
0
      hgcd_scratch = mpn_hgcd_itch (n - p);
122
0
      update_scratch = p + n - 1;
123
0
#endif
124
0
      scratch = matrix_scratch + MAX(hgcd_scratch, update_scratch);
125
0
      if (scratch > talloc)
126
0
  talloc = scratch;
127
0
    }
128
129
0
  TMP_MARK;
130
0
  tp = TMP_ALLOC_LIMBS(talloc);
131
132
0
  if (usize > n)
133
0
    {
134
0
      mpn_tdiv_qr (tp, up, 0, up, usize, vp, n);
135
136
0
      if (mpn_zero_p (up, n))
137
0
  {
138
0
    MPN_COPY (gp, vp, n);
139
0
    ctx.gn = n;
140
0
    goto done;
141
0
  }
142
0
    }
143
144
0
  ctx.gp = gp;
145
146
#if TUNE_GCD_P
147
  while (CHOOSE_P (n) > 0)
148
#else
149
0
  while (ABOVE_THRESHOLD (n, GCD_DC_THRESHOLD))
150
0
#endif
151
0
    {
152
0
      struct hgcd_matrix M;
153
0
      mp_size_t p = CHOOSE_P (n);
154
0
      mp_size_t matrix_scratch = MPN_HGCD_MATRIX_INIT_ITCH (n - p);
155
0
      mp_size_t nn;
156
0
      mpn_hgcd_matrix_init (&M, n - p, tp);
157
0
      nn = mpn_hgcd (up + p, vp + p, n - p, &M, tp + matrix_scratch);
158
0
      if (nn > 0)
159
0
  {
160
0
    ASSERT (M.n <= (n - p - 1)/2);
161
0
    ASSERT (M.n + p <= (p + n - 1) / 2);
162
    /* Temporary storage 2 (p + M->n) <= p + n - 1. */
163
0
    n = mpn_hgcd_matrix_adjust (&M, p + nn, up, vp, p, tp + matrix_scratch);
164
0
  }
165
0
      else
166
0
  {
167
    /* Temporary storage n */
168
0
    n = mpn_gcd_subdiv_step (up, vp, n, 0, gcd_hook, &ctx, tp);
169
0
    if (n == 0)
170
0
      goto done;
171
0
  }
172
0
    }
173
174
0
  while (n > 2)
175
0
    {
176
0
      struct hgcd_matrix1 M;
177
0
      mp_limb_t uh, ul, vh, vl;
178
0
      mp_limb_t mask;
179
180
0
      mask = up[n-1] | vp[n-1];
181
0
      ASSERT (mask > 0);
182
183
0
      if (mask & GMP_NUMB_HIGHBIT)
184
0
  {
185
0
    uh = up[n-1]; ul = up[n-2];
186
0
    vh = vp[n-1]; vl = vp[n-2];
187
0
  }
188
0
      else
189
0
  {
190
0
    int shift;
191
192
0
    count_leading_zeros (shift, mask);
193
0
    uh = MPN_EXTRACT_NUMB (shift, up[n-1], up[n-2]);
194
0
    ul = MPN_EXTRACT_NUMB (shift, up[n-2], up[n-3]);
195
0
    vh = MPN_EXTRACT_NUMB (shift, vp[n-1], vp[n-2]);
196
0
    vl = MPN_EXTRACT_NUMB (shift, vp[n-2], vp[n-3]);
197
0
  }
198
199
      /* Try an mpn_hgcd2 step */
200
0
      if (mpn_hgcd2 (uh, ul, vh, vl, &M))
201
0
  {
202
0
    n = mpn_matrix22_mul1_inverse_vector (&M, tp, up, vp, n);
203
0
    MP_PTR_SWAP (up, tp);
204
0
  }
205
0
      else
206
0
  {
207
    /* mpn_hgcd2 has failed. Then either one of a or b is very
208
       small, or the difference is very small. Perform one
209
       subtraction followed by one division. */
210
211
    /* Temporary storage n */
212
0
    n = mpn_gcd_subdiv_step (up, vp, n, 0, &gcd_hook, &ctx, tp);
213
0
    if (n == 0)
214
0
      goto done;
215
0
  }
216
0
    }
217
218
0
  ASSERT(up[n-1] | vp[n-1]);
219
220
  /* Due to the calling convention for mpn_gcd, at most one can be even. */
221
0
  if ((up[0] & 1) == 0)
222
0
    MP_PTR_SWAP (up, vp);
223
0
  ASSERT ((up[0] & 1) != 0);
224
225
0
  {
226
0
    mp_limb_t u0, u1, v0, v1;
227
0
    mp_double_limb_t g;
228
229
0
    u0 = up[0];
230
0
    v0 = vp[0];
231
232
0
    if (n == 1)
233
0
      {
234
0
  int cnt;
235
0
  count_trailing_zeros (cnt, v0);
236
0
  *gp = mpn_gcd_11 (u0, v0 >> cnt);
237
0
  ctx.gn = 1;
238
0
  goto done;
239
0
      }
240
241
0
    v1 = vp[1];
242
0
    if (UNLIKELY (v0 == 0))
243
0
      {
244
0
  v0 = v1;
245
0
  v1 = 0;
246
  /* FIXME: We could invoke a mpn_gcd_21 here, just like mpn_gcd_22 could
247
     when this situation occurs internally.  */
248
0
      }
249
0
    if ((v0 & 1) == 0)
250
0
      {
251
0
  int cnt;
252
0
  count_trailing_zeros (cnt, v0);
253
0
  v0 = ((v1 << (GMP_NUMB_BITS - cnt)) & GMP_NUMB_MASK) | (v0 >> cnt);
254
0
  v1 >>= cnt;
255
0
      }
256
257
0
    u1 = up[1];
258
0
    g = mpn_gcd_22 (u1, u0, v1, v0);
259
0
    gp[0] = g.d0;
260
0
    gp[1] = g.d1;
261
0
    ctx.gn = 1 + (g.d1 > 0);
262
0
  }
263
0
done:
264
0
  TMP_FREE;
265
0
  return ctx.gn;
266
0
}