/src/gmp/mpn/generic/hgcd2-div.h
Line | Count | Source (jump to first uncovered line) |
1 | | /* hgcd2-div.h |
2 | | |
3 | | THE FUNCTIONS IN THIS FILE ARE INTERNAL WITH MUTABLE INTERFACES. IT IS ONLY |
4 | | SAFE TO REACH THEM THROUGH DOCUMENTED INTERFACES. IN FACT, IT IS ALMOST |
5 | | GUARANTEED THAT THEY'LL CHANGE OR DISAPPEAR IN A FUTURE GNU MP RELEASE. |
6 | | |
7 | | Copyright 1996, 1998, 2000-2004, 2008, 2012, 2019, 2020 Free Software |
8 | | Foundation, Inc. |
9 | | |
10 | | This file is part of the GNU MP Library. |
11 | | |
12 | | The GNU MP Library is free software; you can redistribute it and/or modify |
13 | | it under the terms of either: |
14 | | |
15 | | * the GNU Lesser General Public License as published by the Free |
16 | | Software Foundation; either version 3 of the License, or (at your |
17 | | option) any later version. |
18 | | |
19 | | or |
20 | | |
21 | | * the GNU General Public License as published by the Free Software |
22 | | Foundation; either version 2 of the License, or (at your option) any |
23 | | later version. |
24 | | |
25 | | or both in parallel, as here. |
26 | | |
27 | | The GNU MP Library is distributed in the hope that it will be useful, but |
28 | | WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY |
29 | | or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License |
30 | | for more details. |
31 | | |
32 | | You should have received copies of the GNU General Public License and the |
33 | | GNU Lesser General Public License along with the GNU MP Library. If not, |
34 | | see https://www.gnu.org/licenses/. */ |
35 | | |
36 | | #include "gmp-impl.h" |
37 | | #include "longlong.h" |
38 | | |
39 | | #ifndef HGCD2_DIV1_METHOD |
40 | | #define HGCD2_DIV1_METHOD 3 |
41 | | #endif |
42 | | |
43 | | #ifndef HGCD2_DIV2_METHOD |
44 | | #define HGCD2_DIV2_METHOD 2 |
45 | | #endif |
46 | | |
47 | | #if HAVE_NATIVE_mpn_div_11 |
48 | | |
49 | | #define div1 mpn_div_11 |
50 | | /* Single-limb division optimized for small quotients. |
51 | | Returned value holds d0 = r, d1 = q. */ |
52 | | mp_double_limb_t div1 (mp_limb_t, mp_limb_t); |
53 | | |
54 | | #elif HGCD2_DIV1_METHOD == 1 |
55 | | |
56 | | static inline mp_double_limb_t |
57 | | div1 (mp_limb_t n0, mp_limb_t d0) |
58 | 0 | { |
59 | 0 | mp_double_limb_t res; |
60 | 0 | res.d1 = n0 / d0; |
61 | 0 | res.d0 = n0 - res.d1 * d0; |
62 | |
|
63 | 0 | return res; |
64 | 0 | } |
65 | | |
66 | | #elif HGCD2_DIV1_METHOD == 2 |
67 | | |
68 | | static mp_double_limb_t |
69 | | div1 (mp_limb_t n0, mp_limb_t d0) |
70 | | { |
71 | | mp_double_limb_t res; |
72 | | int ncnt, dcnt, cnt; |
73 | | mp_limb_t q; |
74 | | mp_limb_t mask; |
75 | | |
76 | | ASSERT (n0 >= d0); |
77 | | |
78 | | count_leading_zeros (ncnt, n0); |
79 | | count_leading_zeros (dcnt, d0); |
80 | | cnt = dcnt - ncnt; |
81 | | |
82 | | d0 <<= cnt; |
83 | | |
84 | | q = -(mp_limb_t) (n0 >= d0); |
85 | | n0 -= d0 & q; |
86 | | d0 >>= 1; |
87 | | q = -q; |
88 | | |
89 | | while (--cnt >= 0) |
90 | | { |
91 | | mask = -(mp_limb_t) (n0 >= d0); |
92 | | n0 -= d0 & mask; |
93 | | d0 >>= 1; |
94 | | q = (q << 1) - mask; |
95 | | } |
96 | | |
97 | | res.d0 = n0; |
98 | | res.d1 = q; |
99 | | return res; |
100 | | } |
101 | | |
102 | | #elif HGCD2_DIV1_METHOD == 3 |
103 | | |
104 | | static inline mp_double_limb_t |
105 | | div1 (mp_limb_t n0, mp_limb_t d0) |
106 | | { |
107 | | mp_double_limb_t res; |
108 | | if (UNLIKELY ((d0 >> (GMP_LIMB_BITS - 3)) != 0) |
109 | | || UNLIKELY (n0 >= (d0 << 3))) |
110 | | { |
111 | | res.d1 = n0 / d0; |
112 | | res.d0 = n0 - res.d1 * d0; |
113 | | } |
114 | | else |
115 | | { |
116 | | mp_limb_t q, mask; |
117 | | |
118 | | d0 <<= 2; |
119 | | |
120 | | mask = -(mp_limb_t) (n0 >= d0); |
121 | | n0 -= d0 & mask; |
122 | | q = 4 & mask; |
123 | | |
124 | | d0 >>= 1; |
125 | | mask = -(mp_limb_t) (n0 >= d0); |
126 | | n0 -= d0 & mask; |
127 | | q += 2 & mask; |
128 | | |
129 | | d0 >>= 1; |
130 | | mask = -(mp_limb_t) (n0 >= d0); |
131 | | n0 -= d0 & mask; |
132 | | q -= mask; |
133 | | |
134 | | res.d0 = n0; |
135 | | res.d1 = q; |
136 | | } |
137 | | return res; |
138 | | } |
139 | | |
140 | | #elif HGCD2_DIV1_METHOD == 4 |
141 | | |
142 | | /* Table quotients. We extract the NBITS most significant bits of the |
143 | | numerator limb, and the corresponding bits from the divisor limb, and use |
144 | | these to form an index into the table. This method is probably only useful |
145 | | for short pipelines with slow multiplication. |
146 | | |
147 | | Possible improvements: |
148 | | |
149 | | * Perhaps extract the highest NBITS of the divisor instead of the same bits |
150 | | as from the numerator. That would require another count_leading_zeros, |
151 | | and a post-multiply shift of the quotient. |
152 | | |
153 | | * Compress tables? Their values are tiny, and there are lots of zero |
154 | | entries (which are never used). |
155 | | |
156 | | * Round the table entries more cleverly? |
157 | | */ |
158 | | |
159 | | #ifndef NBITS |
160 | | #define NBITS 5 |
161 | | #endif |
162 | | |
163 | | #if NBITS == 5 |
164 | | /* This needs full division about 13.2% of the time. */ |
165 | | static const unsigned char tab[512] = { |
166 | | 17, 9, 5,4,3,2,2,2,1,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, |
167 | | 18, 9, 6,4,3,2,2,2,1,1,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0, |
168 | | 19,10, 6,4,3,3,2,2,2,1,1,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0, |
169 | | 20,10, 6,5,3,3,2,2,2,1,1,1,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,0,0,0,0, |
170 | | 21,11, 7,5,4,3,2,2,2,2,1,1,1,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,0,0,0, |
171 | | 22,11, 7,5,4,3,3,2,2,2,1,1,1,1,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,0,0, |
172 | | 23,12, 7,5,4,3,3,2,2,2,2,1,1,1,1,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,0, |
173 | | 24,12, 8,6,4,3,3,2,2,2,2,1,1,1,1,1,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0, |
174 | | 25,13, 8,6,5,4,3,3,2,2,2,2,1,1,1,1,1,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0, |
175 | | 26,13, 8,6,5,4,3,3,2,2,2,2,1,1,1,1,1,1,1,1,1,1,1,1,1,1,0,0,0,0,0,0, |
176 | | 27,14, 9,6,5,4,3,3,2,2,2,2,2,1,1,1,1,1,1,1,1,1,1,1,1,1,1,0,0,0,0,0, |
177 | | 28,14, 9,7,5,4,3,3,3,2,2,2,2,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,0,0,0,0, |
178 | | 29,15,10,7,5,4,4,3,3,2,2,2,2,2,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,0,0,0, |
179 | | 30,15,10,7,6,5,4,3,3,2,2,2,2,2,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,0,0, |
180 | | 31,16,10,7,6,5,4,3,3,3,2,2,2,2,2,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,0, |
181 | | 32,16,11,8,6,5,4,3,3,3,2,2,2,2,2,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1 |
182 | | }; |
183 | | #elif NBITS == 6 |
184 | | /* This needs full division about 9.8% of the time. */ |
185 | | static const unsigned char tab[2048] = { |
186 | | 33,17,11, 8, 6, 5,4,4,3,3,2,2,2,2,2,2,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1, |
187 | | 1, 0, 0, 0, 0, 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, |
188 | | 34,17,11, 8, 6, 5,4,4,3,3,3,2,2,2,2,2,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1, |
189 | | 1, 1, 0, 0, 0, 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, |
190 | | 35,18,12, 9, 7, 5,5,4,3,3,3,2,2,2,2,2,2,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1, |
191 | | 1, 1, 1, 0, 0, 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, |
192 | | 36,18,12, 9, 7, 6,5,4,3,3,3,2,2,2,2,2,2,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1, |
193 | | 1, 1, 1, 1, 0, 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, |
194 | | 37,19,13, 9, 7, 6,5,4,4,3,3,3,2,2,2,2,2,2,1,1,1,1,1,1,1,1,1,1,1,1,1,1, |
195 | | 1, 1, 1, 1, 1, 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, |
196 | | 38,19,13, 9, 7, 6,5,4,4,3,3,3,2,2,2,2,2,2,1,1,1,1,1,1,1,1,1,1,1,1,1,1, |
197 | | 1, 1, 1, 1, 1, 1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, |
198 | | 39,20,13,10, 7, 6,5,4,4,3,3,3,2,2,2,2,2,2,2,1,1,1,1,1,1,1,1,1,1,1,1,1, |
199 | | 1, 1, 1, 1, 1, 1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, |
200 | | 40,20,14,10, 8, 6,5,5,4,3,3,3,3,2,2,2,2,2,2,1,1,1,1,1,1,1,1,1,1,1,1,1, |
201 | | 1, 1, 1, 1, 1, 1,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, |
202 | | 41,21,14,10, 8, 6,5,5,4,4,3,3,3,2,2,2,2,2,2,2,1,1,1,1,1,1,1,1,1,1,1,1, |
203 | | 1, 1, 1, 1, 1, 1,1,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, |
204 | | 42,21,14,10, 8, 7,6,5,4,4,3,3,3,2,2,2,2,2,2,2,1,1,1,1,1,1,1,1,1,1,1,1, |
205 | | 1, 1, 1, 1, 1, 1,1,1,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, |
206 | | 43,22,15,11, 8, 7,6,5,4,4,3,3,3,3,2,2,2,2,2,2,2,1,1,1,1,1,1,1,1,1,1,1, |
207 | | 1, 1, 1, 1, 1, 1,1,1,1,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, |
208 | | 44,22,15,11, 9, 7,6,5,4,4,3,3,3,3,2,2,2,2,2,2,2,1,1,1,1,1,1,1,1,1,1,1, |
209 | | 1, 1, 1, 1, 1, 1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, |
210 | | 45,23,15,11, 9, 7,6,5,5,4,4,3,3,3,2,2,2,2,2,2,2,2,1,1,1,1,1,1,1,1,1,1, |
211 | | 1, 1, 1, 1, 1, 1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, |
212 | | 46,23,16,11, 9, 7,6,5,5,4,4,3,3,3,3,2,2,2,2,2,2,2,1,1,1,1,1,1,1,1,1,1, |
213 | | 1, 1, 1, 1, 1, 1,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, |
214 | | 47,24,16,12, 9, 7,6,5,5,4,4,3,3,3,3,2,2,2,2,2,2,2,2,1,1,1,1,1,1,1,1,1, |
215 | | 1, 1, 1, 1, 1, 1,1,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, |
216 | | 48,24,16,12, 9, 8,6,6,5,4,4,3,3,3,3,2,2,2,2,2,2,2,2,1,1,1,1,1,1,1,1,1, |
217 | | 1, 1, 1, 1, 1, 1,1,1,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, |
218 | | 49,25,17,12,10, 8,7,6,5,4,4,4,3,3,3,3,2,2,2,2,2,2,2,2,1,1,1,1,1,1,1,1, |
219 | | 1, 1, 1, 1, 1, 1,1,1,1,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, |
220 | | 50,25,17,13,10, 8,7,6,5,5,4,4,3,3,3,3,2,2,2,2,2,2,2,2,1,1,1,1,1,1,1,1, |
221 | | 1, 1, 1, 1, 1, 1,1,1,1,1,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0, |
222 | | 51,26,18,13,10, 8,7,6,5,5,4,4,3,3,3,3,2,2,2,2,2,2,2,2,2,1,1,1,1,1,1,1, |
223 | | 1, 1, 1, 1, 1, 1,1,1,1,1,1,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0, |
224 | | 52,26,18,13,10, 8,7,6,5,5,4,4,3,3,3,3,3,2,2,2,2,2,2,2,2,1,1,1,1,1,1,1, |
225 | | 1, 1, 1, 1, 1, 1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,0,0,0,0, |
226 | | 53,27,18,13,10, 9,7,6,5,5,4,4,4,3,3,3,3,2,2,2,2,2,2,2,2,2,1,1,1,1,1,1, |
227 | | 1, 1, 1, 1, 1, 1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,0,0,0, |
228 | | 54,27,19,14,11, 9,7,6,6,5,4,4,4,3,3,3,3,2,2,2,2,2,2,2,2,2,1,1,1,1,1,1, |
229 | | 1, 1, 1, 1, 1, 1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,0,0, |
230 | | 55,28,19,14,11, 9,7,6,6,5,5,4,4,3,3,3,3,3,2,2,2,2,2,2,2,2,2,1,1,1,1,1, |
231 | | 1, 1, 1, 1, 1, 1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,0, |
232 | | 56,28,19,14,11, 9,8,7,6,5,5,4,4,3,3,3,3,3,2,2,2,2,2,2,2,2,2,1,1,1,1,1, |
233 | | 1, 1, 1, 1, 1, 1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0, |
234 | | 57,29,20,14,11, 9,8,7,6,5,5,4,4,4,3,3,3,3,2,2,2,2,2,2,2,2,2,2,1,1,1,1, |
235 | | 1, 1, 1, 1, 1, 1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0, |
236 | | 58,29,20,15,11, 9,8,7,6,5,5,4,4,4,3,3,3,3,3,2,2,2,2,2,2,2,2,2,1,1,1,1, |
237 | | 1, 1, 1, 1, 1, 1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,0,0,0,0,0,0, |
238 | | 59,30,20,15,12,10,8,7,6,5,5,4,4,4,3,3,3,3,3,2,2,2,2,2,2,2,2,2,2,1,1,1, |
239 | | 1, 1, 1, 1, 1, 1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,0,0,0,0,0, |
240 | | 60,30,21,15,12,10,8,7,6,6,5,5,4,4,3,3,3,3,3,2,2,2,2,2,2,2,2,2,2,1,1,1, |
241 | | 1, 1, 1, 1, 1, 1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,0,0,0,0, |
242 | | 61,31,21,15,12,10,8,7,6,6,5,5,4,4,4,3,3,3,3,3,2,2,2,2,2,2,2,2,2,2,1,1, |
243 | | 1, 1, 1, 1, 1, 1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,0,0,0, |
244 | | 62,31,22,16,12,10,9,7,6,6,5,5,4,4,4,3,3,3,3,3,2,2,2,2,2,2,2,2,2,2,1,1, |
245 | | 1, 1, 1, 1, 1, 1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,0,0, |
246 | | 63,32,22,16,13,10,9,7,7,6,5,5,4,4,4,3,3,3,3,3,2,2,2,2,2,2,2,2,2,2,2,1, |
247 | | 1, 1, 1, 1, 1, 1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,0, |
248 | | 64,32,22,16,13,10,9,8,7,6,5,5,4,4,4,3,3,3,3,3,3,2,2,2,2,2,2,2,2,2,2,1, |
249 | | 1, 1, 1, 1, 1, 1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1 |
250 | | }; |
251 | | #else |
252 | | #error No table for provided NBITS |
253 | | #endif |
254 | | |
255 | | /* Doing tabp with a #define makes compiler warnings about pointing outside an |
256 | | object go away. We used to define this as a variable. It is not clear if |
257 | | e.g. (vector[100] - 10) + 10 is well- defined as per the C standard; |
258 | | (vector[100] + 10) - 10 surely is and there is no sequence point so the |
259 | | expressions should be equivalent. To make this safe, we might want to |
260 | | define tabp as a macro with the index as an argument. Depending on the |
261 | | platform, relocs might allow for assembly-time or linker-time resolution to |
262 | | take place. */ |
263 | | #define tabp (tab - (1 << (NBITS - 1) << NBITS)) |
264 | | |
265 | | static inline mp_double_limb_t |
266 | | div1 (mp_limb_t n0, mp_limb_t d0) |
267 | | { |
268 | | int ncnt; |
269 | | size_t nbi, dbi; |
270 | | mp_limb_t q0; |
271 | | mp_limb_t r0; |
272 | | mp_limb_t mask; |
273 | | mp_double_limb_t res; |
274 | | |
275 | | ASSERT (n0 >= d0); /* Actually only msb position is critical. */ |
276 | | |
277 | | count_leading_zeros (ncnt, n0); |
278 | | nbi = n0 << ncnt >> (GMP_LIMB_BITS - NBITS); |
279 | | dbi = d0 << ncnt >> (GMP_LIMB_BITS - NBITS); |
280 | | |
281 | | q0 = tabp[(nbi << NBITS) + dbi]; |
282 | | r0 = n0 - q0 * d0; |
283 | | mask = -(mp_limb_t) (r0 >= d0); |
284 | | q0 -= mask; |
285 | | r0 -= d0 & mask; |
286 | | |
287 | | if (UNLIKELY (r0 >= d0)) |
288 | | { |
289 | | q0 = n0 / d0; |
290 | | r0 = n0 - q0 * d0; |
291 | | } |
292 | | |
293 | | res.d1 = q0; |
294 | | res.d0 = r0; |
295 | | return res; |
296 | | } |
297 | | |
298 | | #elif HGCD2_DIV1_METHOD == 5 |
299 | | |
300 | | /* Table inverses of divisors. We don't bother with suppressing the msb from |
301 | | the tables. We index with the NBITS most significant divisor bits, |
302 | | including the always-set highest bit, but use addressing trickery via tabp |
303 | | to suppress it. |
304 | | |
305 | | Possible improvements: |
306 | | |
307 | | * Do first multiply using 32-bit operations on 64-bit computers. At least |
308 | | on most Arm64 cores, that uses 3 times less resources. It also saves on |
309 | | many x86-64 processors. |
310 | | */ |
311 | | |
312 | | #ifndef NBITS |
313 | | #define NBITS 7 |
314 | | #endif |
315 | | |
316 | | #if NBITS == 5 |
317 | | /* This needs full division about 1.63% of the time. */ |
318 | | static const unsigned char tab[16] = { |
319 | | 63, 59, 55, 52, 50, 47, 45, 43, 41, 39, 38, 36, 35, 34, 33, 32 |
320 | | }; |
321 | | #elif NBITS == 6 |
322 | | /* This needs full division about 0.93% of the time. */ |
323 | | static const unsigned char tab[32] = { |
324 | | 127,123,119,116,112,109,106,104,101, 98, 96, 94, 92, 90, 88, 86, |
325 | | 84, 82, 80, 79, 77, 76, 74, 73, 72, 70, 69, 68, 67, 66, 65, 64 |
326 | | }; |
327 | | #elif NBITS == 7 |
328 | | /* This needs full division about 0.49% of the time. */ |
329 | | static const unsigned char tab[64] = { |
330 | | 255,251,247,243,239,236,233,229,226,223,220,217,214,211,209,206, |
331 | | 203,201,198,196,194,191,189,187,185,183,181,179,177,175,173,171, |
332 | | 169,167,166,164,162,161,159,158,156,155,153,152,150,149,147,146, |
333 | | 145,143,142,141,140,139,137,136,135,134,133,132,131,130,129,128 |
334 | | }; |
335 | | #elif NBITS == 8 |
336 | | /* This needs full division about 0.26% of the time. */ |
337 | | static const unsigned short tab[128] = { |
338 | | 511,507,503,499,495,491,488,484,480,477,473,470,467,463,460,457, |
339 | | 454,450,447,444,441,438,435,433,430,427,424,421,419,416,413,411, |
340 | | 408,406,403,401,398,396,393,391,389,386,384,382,380,377,375,373, |
341 | | 371,369,367,365,363,361,359,357,355,353,351,349,347,345,343,342, |
342 | | 340,338,336,335,333,331,329,328,326,325,323,321,320,318,317,315, |
343 | | 314,312,311,309,308,306,305,303,302,301,299,298,296,295,294,292, |
344 | | 291,290,288,287,286,285,283,282,281,280,279,277,276,275,274,273, |
345 | | 272,270,269,268,267,266,265,264,263,262,261,260,259,258,257,256 |
346 | | }; |
347 | | #else |
348 | | #error No table for provided NBITS |
349 | | #endif |
350 | | |
351 | | /* Doing tabp with a #define makes compiler warnings about pointing outside an |
352 | | object go away. We used to define this as a variable. It is not clear if |
353 | | e.g. (vector[100] - 10) + 10 is well- defined as per the C standard; |
354 | | (vector[100] + 10) - 10 surely is and there is no sequence point so the |
355 | | expressions should be equivalent. To make this safe, we might want to |
356 | | define tabp as a macro with the index as an argument. Depending on the |
357 | | platform, relocs might allow for assembly-time or linker-time resolution to |
358 | | take place. */ |
359 | | #define tabp (tab - (1 << (NBITS - 1))) |
360 | | |
361 | | static inline mp_double_limb_t |
362 | | div1 (mp_limb_t n0, mp_limb_t d0) |
363 | | { |
364 | | int ncnt, dcnt; |
365 | | size_t dbi; |
366 | | mp_limb_t inv; |
367 | | mp_limb_t q0; |
368 | | mp_limb_t r0; |
369 | | mp_limb_t mask; |
370 | | mp_double_limb_t res; |
371 | | |
372 | | count_leading_zeros (ncnt, n0); |
373 | | count_leading_zeros (dcnt, d0); |
374 | | |
375 | | dbi = d0 << dcnt >> (GMP_LIMB_BITS - NBITS); |
376 | | inv = tabp[dbi]; |
377 | | q0 = ((n0 << ncnt) >> (NBITS + 1)) * inv >> (GMP_LIMB_BITS - 1 + ncnt - dcnt); |
378 | | r0 = n0 - q0 * d0; |
379 | | mask = -(mp_limb_t) (r0 >= d0); |
380 | | q0 -= mask; |
381 | | r0 -= d0 & mask; |
382 | | |
383 | | if (UNLIKELY (r0 >= d0)) |
384 | | { |
385 | | q0 = n0 / d0; |
386 | | r0 = n0 - q0 * d0; |
387 | | } |
388 | | |
389 | | res.d1 = q0; |
390 | | res.d0 = r0; |
391 | | return res; |
392 | | } |
393 | | |
394 | | #else |
395 | | #error Unknown HGCD2_DIV1_METHOD |
396 | | #endif |
397 | | |
398 | | #if HAVE_NATIVE_mpn_div_22 |
399 | | |
400 | | #define div2 mpn_div_22 |
401 | | /* Two-limb division optimized for small quotients. */ |
402 | | mp_limb_t div2 (mp_ptr, mp_limb_t, mp_limb_t, mp_limb_t, mp_limb_t); |
403 | | |
404 | | #elif HGCD2_DIV2_METHOD == 1 |
405 | | |
406 | | static mp_limb_t |
407 | | div2 (mp_ptr rp, |
408 | | mp_limb_t n1, mp_limb_t n0, |
409 | | mp_limb_t d1, mp_limb_t d0) |
410 | | { |
411 | | mp_double_limb_t rq = div1 (n1, d1); |
412 | | if (UNLIKELY (rq.d1 > d1)) |
413 | | { |
414 | | mp_limb_t n2, q, t1, t0; |
415 | | int c; |
416 | | |
417 | | /* Normalize */ |
418 | | count_leading_zeros (c, d1); |
419 | | ASSERT (c > 0); |
420 | | |
421 | | n2 = n1 >> (GMP_LIMB_BITS - c); |
422 | | n1 = (n1 << c) | (n0 >> (GMP_LIMB_BITS - c)); |
423 | | n0 <<= c; |
424 | | d1 = (d1 << c) | (d0 >> (GMP_LIMB_BITS - c)); |
425 | | d0 <<= c; |
426 | | |
427 | | udiv_qrnnd (q, n1, n2, n1, d1); |
428 | | umul_ppmm (t1, t0, q, d0); |
429 | | if (t1 > n1 || (t1 == n1 && t0 > n0)) |
430 | | { |
431 | | ASSERT (q > 0); |
432 | | q--; |
433 | | sub_ddmmss (t1, t0, t1, t0, d1, d0); |
434 | | } |
435 | | sub_ddmmss (n1, n0, n1, n0, t1, t0); |
436 | | |
437 | | /* Undo normalization */ |
438 | | rp[0] = (n0 >> c) | (n1 << (GMP_LIMB_BITS - c)); |
439 | | rp[1] = n1 >> c; |
440 | | |
441 | | return q; |
442 | | } |
443 | | else |
444 | | { |
445 | | mp_limb_t q, t1, t0; |
446 | | n1 = rq.d0; |
447 | | q = rq.d1; |
448 | | umul_ppmm (t1, t0, q, d0); |
449 | | if (UNLIKELY (t1 >= n1) && (t1 > n1 || t0 > n0)) |
450 | | { |
451 | | ASSERT (q > 0); |
452 | | q--; |
453 | | sub_ddmmss (t1, t0, t1, t0, d1, d0); |
454 | | } |
455 | | sub_ddmmss (rp[1], rp[0], n1, n0, t1, t0); |
456 | | return q; |
457 | | } |
458 | | } |
459 | | |
460 | | #elif HGCD2_DIV2_METHOD == 2 |
461 | | |
462 | | /* Bit-wise div2. Relies on fast count_leading_zeros. */ |
463 | | static mp_limb_t |
464 | | div2 (mp_ptr rp, |
465 | | mp_limb_t n1, mp_limb_t n0, |
466 | | mp_limb_t d1, mp_limb_t d0) |
467 | 0 | { |
468 | 0 | mp_limb_t q = 0; |
469 | 0 | int ncnt; |
470 | 0 | int dcnt; |
471 | |
|
472 | 0 | count_leading_zeros (ncnt, n1); |
473 | 0 | count_leading_zeros (dcnt, d1); |
474 | 0 | dcnt -= ncnt; |
475 | |
|
476 | 0 | d1 = (d1 << dcnt) + (d0 >> 1 >> (GMP_LIMB_BITS - 1 - dcnt)); |
477 | 0 | d0 <<= dcnt; |
478 | |
|
479 | 0 | do |
480 | 0 | { |
481 | 0 | mp_limb_t mask; |
482 | 0 | q <<= 1; |
483 | 0 | if (UNLIKELY (n1 == d1)) |
484 | 0 | mask = -(n0 >= d0); |
485 | 0 | else |
486 | 0 | mask = -(n1 > d1); |
487 | |
|
488 | 0 | q -= mask; |
489 | |
|
490 | 0 | sub_ddmmss (n1, n0, n1, n0, mask & d1, mask & d0); |
491 | |
|
492 | 0 | d0 = (d1 << (GMP_LIMB_BITS - 1)) | (d0 >> 1); |
493 | 0 | d1 = d1 >> 1; |
494 | 0 | } |
495 | 0 | while (dcnt--); |
496 | |
|
497 | 0 | rp[0] = n0; |
498 | 0 | rp[1] = n1; |
499 | |
|
500 | 0 | return q; |
501 | 0 | } |
502 | | #else |
503 | | #error Unknown HGCD2_DIV2_METHOD |
504 | | #endif |