Coverage Report

Created: 2025-03-18 06:55

/src/gmp/mpn/hgcd_matrix.c
Line
Count
Source (jump to first uncovered line)
1
/* hgcd_matrix.c.
2
3
   THE FUNCTIONS IN THIS FILE ARE INTERNAL WITH MUTABLE INTERFACES.  IT IS ONLY
4
   SAFE TO REACH THEM THROUGH DOCUMENTED INTERFACES.  IN FACT, IT IS ALMOST
5
   GUARANTEED THAT THEY'LL CHANGE OR DISAPPEAR IN A FUTURE GNU MP RELEASE.
6
7
Copyright 2003-2005, 2008, 2012 Free Software Foundation, Inc.
8
9
This file is part of the GNU MP Library.
10
11
The GNU MP Library is free software; you can redistribute it and/or modify
12
it under the terms of either:
13
14
  * the GNU Lesser General Public License as published by the Free
15
    Software Foundation; either version 3 of the License, or (at your
16
    option) any later version.
17
18
or
19
20
  * the GNU General Public License as published by the Free Software
21
    Foundation; either version 2 of the License, or (at your option) any
22
    later version.
23
24
or both in parallel, as here.
25
26
The GNU MP Library is distributed in the hope that it will be useful, but
27
WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
28
or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
29
for more details.
30
31
You should have received copies of the GNU General Public License and the
32
GNU Lesser General Public License along with the GNU MP Library.  If not,
33
see https://www.gnu.org/licenses/.  */
34
35
#include "gmp-impl.h"
36
#include "longlong.h"
37
38
/* For input of size n, matrix elements are of size at most ceil(n/2)
39
   - 1, but we need two limbs extra. */
40
void
41
mpn_hgcd_matrix_init (struct hgcd_matrix *M, mp_size_t n, mp_ptr p)
42
0
{
43
0
  mp_size_t s = (n+1)/2 + 1;
44
0
  M->alloc = s;
45
0
  M->n = 1;
46
0
  MPN_ZERO (p, 4 * s);
47
0
  M->p[0][0] = p;
48
0
  M->p[0][1] = p + s;
49
0
  M->p[1][0] = p + 2 * s;
50
0
  M->p[1][1] = p + 3 * s;
51
52
0
  M->p[0][0][0] = M->p[1][1][0] = 1;
53
0
}
54
55
/* Update column COL, adding in Q * column (1-COL). Temporary storage:
56
 * qn + n <= M->alloc, where n is the size of the largest element in
57
 * column 1 - COL. */
58
void
59
mpn_hgcd_matrix_update_q (struct hgcd_matrix *M, mp_srcptr qp, mp_size_t qn,
60
        unsigned col, mp_ptr tp)
61
0
{
62
0
  ASSERT (col < 2);
63
64
0
  if (qn == 1)
65
0
    {
66
0
      mp_limb_t q = qp[0];
67
0
      mp_limb_t c0, c1;
68
69
0
      c0 = mpn_addmul_1 (M->p[0][col], M->p[0][1-col], M->n, q);
70
0
      c1 = mpn_addmul_1 (M->p[1][col], M->p[1][1-col], M->n, q);
71
72
0
      M->p[0][col][M->n] = c0;
73
0
      M->p[1][col][M->n] = c1;
74
75
0
      M->n += (c0 | c1) != 0;
76
0
    }
77
0
  else
78
0
    {
79
0
      unsigned row;
80
81
      /* Carries for the unlikely case that we get both high words
82
   from the multiplication and carries from the addition. */
83
0
      mp_limb_t c[2];
84
0
      mp_size_t n;
85
86
      /* The matrix will not necessarily grow in size by qn, so we
87
   need normalization in order not to overflow M. */
88
89
0
      for (n = M->n; n + qn > M->n; n--)
90
0
  {
91
0
    ASSERT (n > 0);
92
0
    if (M->p[0][1-col][n-1] > 0 || M->p[1][1-col][n-1] > 0)
93
0
      break;
94
0
  }
95
96
0
      ASSERT (qn + n <= M->alloc);
97
98
0
      for (row = 0; row < 2; row++)
99
0
  {
100
0
    if (qn <= n)
101
0
      mpn_mul (tp, M->p[row][1-col], n, qp, qn);
102
0
    else
103
0
      mpn_mul (tp, qp, qn, M->p[row][1-col], n);
104
105
0
    ASSERT (n + qn >= M->n);
106
0
    c[row] = mpn_add (M->p[row][col], tp, n + qn, M->p[row][col], M->n);
107
0
  }
108
109
0
      n += qn;
110
111
0
      if (c[0] | c[1])
112
0
  {
113
0
    M->p[0][col][n] = c[0];
114
0
    M->p[1][col][n] = c[1];
115
0
    n++;
116
0
  }
117
0
      else
118
0
  {
119
0
    n -= (M->p[0][col][n-1] | M->p[1][col][n-1]) == 0;
120
0
    ASSERT (n >= M->n);
121
0
  }
122
0
      M->n = n;
123
0
    }
124
125
0
  ASSERT (M->n < M->alloc);
126
0
}
127
128
/* Multiply M by M1 from the right. Since the M1 elements fit in
129
   GMP_NUMB_BITS - 1 bits, M grows by at most one limb. Needs
130
   temporary space M->n */
131
void
132
mpn_hgcd_matrix_mul_1 (struct hgcd_matrix *M, const struct hgcd_matrix1 *M1,
133
           mp_ptr tp)
134
0
{
135
0
  mp_size_t n0, n1;
136
137
  /* Could avoid copy by some swapping of pointers. */
138
0
  MPN_COPY (tp, M->p[0][0], M->n);
139
0
  n0 = mpn_hgcd_mul_matrix1_vector (M1, M->p[0][0], tp, M->p[0][1], M->n);
140
0
  MPN_COPY (tp, M->p[1][0], M->n);
141
0
  n1 = mpn_hgcd_mul_matrix1_vector (M1, M->p[1][0], tp, M->p[1][1], M->n);
142
143
  /* Depends on zero initialization */
144
0
  M->n = MAX(n0, n1);
145
0
  ASSERT (M->n < M->alloc);
146
0
}
147
148
/* Multiply M by M1 from the right. Needs 3*(M->n + M1->n) + 5 limbs
149
   of temporary storage (see mpn_matrix22_mul_itch). */
150
void
151
mpn_hgcd_matrix_mul (struct hgcd_matrix *M, const struct hgcd_matrix *M1,
152
         mp_ptr tp)
153
0
{
154
0
  mp_size_t n;
155
156
  /* About the new size of M:s elements. Since M1's diagonal elements
157
     are > 0, no element can decrease. The new elements are of size
158
     M->n + M1->n, one limb more or less. The computation of the
159
     matrix product produces elements of size M->n + M1->n + 1. But
160
     the true size, after normalization, may be three limbs smaller.
161
162
     The reason that the product has normalized size >= M->n + M1->n -
163
     2 is subtle. It depends on the fact that M and M1 can be factored
164
     as products of (1,1; 0,1) and (1,0; 1,1), and that we can't have
165
     M ending with a large power and M1 starting with a large power of
166
     the same matrix. */
167
168
  /* FIXME: Strassen multiplication gives only a small speedup. In FFT
169
     multiplication range, this function could be sped up quite a lot
170
     using invariance. */
171
0
  ASSERT (M->n + M1->n < M->alloc);
172
173
0
  ASSERT ((M->p[0][0][M->n-1] | M->p[0][1][M->n-1]
174
0
     | M->p[1][0][M->n-1] | M->p[1][1][M->n-1]) > 0);
175
176
0
  ASSERT ((M1->p[0][0][M1->n-1] | M1->p[0][1][M1->n-1]
177
0
     | M1->p[1][0][M1->n-1] | M1->p[1][1][M1->n-1]) > 0);
178
179
0
  mpn_matrix22_mul (M->p[0][0], M->p[0][1],
180
0
        M->p[1][0], M->p[1][1], M->n,
181
0
        M1->p[0][0], M1->p[0][1],
182
0
        M1->p[1][0], M1->p[1][1], M1->n, tp);
183
184
  /* Index of last potentially non-zero limb, size is one greater. */
185
0
  n = M->n + M1->n;
186
187
0
  n -= ((M->p[0][0][n] | M->p[0][1][n] | M->p[1][0][n] | M->p[1][1][n]) == 0);
188
0
  n -= ((M->p[0][0][n] | M->p[0][1][n] | M->p[1][0][n] | M->p[1][1][n]) == 0);
189
0
  n -= ((M->p[0][0][n] | M->p[0][1][n] | M->p[1][0][n] | M->p[1][1][n]) == 0);
190
191
0
  ASSERT ((M->p[0][0][n] | M->p[0][1][n] | M->p[1][0][n] | M->p[1][1][n]) > 0);
192
193
0
  M->n = n + 1;
194
0
}
195
196
/* Multiplies the least significant p limbs of (a;b) by M^-1.
197
   Temporary space needed: 2 * (p + M->n)*/
198
mp_size_t
199
mpn_hgcd_matrix_adjust (const struct hgcd_matrix *M,
200
      mp_size_t n, mp_ptr ap, mp_ptr bp,
201
      mp_size_t p, mp_ptr tp)
202
0
{
203
  /* M^-1 (a;b) = (r11, -r01; -r10, r00) (a ; b)
204
     = (r11 a - r01 b; - r10 a + r00 b */
205
206
0
  mp_ptr t0 = tp;
207
0
  mp_ptr t1 = tp + p + M->n;
208
0
  mp_limb_t ah, bh;
209
0
  mp_limb_t cy;
210
211
0
  ASSERT (p + M->n  < n);
212
213
  /* First compute the two values depending on a, before overwriting a */
214
215
0
  if (M->n >= p)
216
0
    {
217
0
      mpn_mul (t0, M->p[1][1], M->n, ap, p);
218
0
      mpn_mul (t1, M->p[1][0], M->n, ap, p);
219
0
    }
220
0
  else
221
0
    {
222
0
      mpn_mul (t0, ap, p, M->p[1][1], M->n);
223
0
      mpn_mul (t1, ap, p, M->p[1][0], M->n);
224
0
    }
225
226
  /* Update a */
227
0
  MPN_COPY (ap, t0, p);
228
0
  ah = mpn_add (ap + p, ap + p, n - p, t0 + p, M->n);
229
230
0
  if (M->n >= p)
231
0
    mpn_mul (t0, M->p[0][1], M->n, bp, p);
232
0
  else
233
0
    mpn_mul (t0, bp, p, M->p[0][1], M->n);
234
235
0
  cy = mpn_sub (ap, ap, n, t0, p + M->n);
236
0
  ASSERT (cy <= ah);
237
0
  ah -= cy;
238
239
  /* Update b */
240
0
  if (M->n >= p)
241
0
    mpn_mul (t0, M->p[0][0], M->n, bp, p);
242
0
  else
243
0
    mpn_mul (t0, bp, p, M->p[0][0], M->n);
244
245
0
  MPN_COPY (bp, t0, p);
246
0
  bh = mpn_add (bp + p, bp + p, n - p, t0 + p, M->n);
247
0
  cy = mpn_sub (bp, bp, n, t1, p + M->n);
248
0
  ASSERT (cy <= bh);
249
0
  bh -= cy;
250
251
0
  if (ah > 0 || bh > 0)
252
0
    {
253
0
      ap[n] = ah;
254
0
      bp[n] = bh;
255
0
      n++;
256
0
    }
257
0
  else
258
0
    {
259
      /* The subtraction can reduce the size by at most one limb. */
260
0
      if (ap[n-1] == 0 && bp[n-1] == 0)
261
0
  n--;
262
0
    }
263
0
  ASSERT (ap[n-1] > 0 || bp[n-1] > 0);
264
0
  return n;
265
0
}