/src/gmp/mpn/strongfibo.c
Line | Count | Source (jump to first uncovered line) |
1 | | /* mpn_fib2m -- calculate Fibonacci numbers, modulo m. |
2 | | |
3 | | Contributed to the GNU project by Marco Bodrato. |
4 | | |
5 | | THE FUNCTIONS IN THIS FILE ARE FOR INTERNAL USE ONLY. THEY'RE ALMOST |
6 | | CERTAIN TO BE SUBJECT TO INCOMPATIBLE CHANGES OR DISAPPEAR COMPLETELY IN |
7 | | FUTURE GNU MP RELEASES. |
8 | | |
9 | | Copyright 2001, 2002, 2005, 2009, 2018, 2022 Free Software Foundation, Inc. |
10 | | |
11 | | This file is part of the GNU MP Library. |
12 | | |
13 | | The GNU MP Library is free software; you can redistribute it and/or modify |
14 | | it under the terms of either: |
15 | | |
16 | | * the GNU Lesser General Public License as published by the Free |
17 | | Software Foundation; either version 3 of the License, or (at your |
18 | | option) any later version. |
19 | | |
20 | | or |
21 | | |
22 | | * the GNU General Public License as published by the Free Software |
23 | | Foundation; either version 2 of the License, or (at your option) any |
24 | | later version. |
25 | | |
26 | | or both in parallel, as here. |
27 | | |
28 | | The GNU MP Library is distributed in the hope that it will be useful, but |
29 | | WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY |
30 | | or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License |
31 | | for more details. |
32 | | |
33 | | You should have received copies of the GNU General Public License and the |
34 | | GNU Lesser General Public License along with the GNU MP Library. If not, |
35 | | see https://www.gnu.org/licenses/. */ |
36 | | |
37 | | #include <stdio.h> |
38 | | #include "gmp-impl.h" |
39 | | |
40 | | |
41 | | #if ! HAVE_NATIVE_mpn_rsblsh1_n && ! HAVE_NATIVE_mpn_sublsh1_n |
42 | | /* Stores |{ap,n}-{bp,n}| in {rp,n}, |
43 | | returns the sign of {ap,n}-{bp,n}. */ |
44 | | static int |
45 | | abs_sub_n (mp_ptr rp, mp_srcptr ap, mp_srcptr bp, mp_size_t n) |
46 | | { |
47 | | mp_limb_t x, y; |
48 | | while (--n >= 0) |
49 | | { |
50 | | x = ap[n]; |
51 | | y = bp[n]; |
52 | | if (x != y) |
53 | | { |
54 | | ++n; |
55 | | if (x > y) |
56 | | { |
57 | | ASSERT_NOCARRY (mpn_sub_n (rp, ap, bp, n)); |
58 | | return 1; |
59 | | } |
60 | | else |
61 | | { |
62 | | ASSERT_NOCARRY (mpn_sub_n (rp, bp, ap, n)); |
63 | | return -1; |
64 | | } |
65 | | } |
66 | | rp[n] = 0; |
67 | | } |
68 | | return 0; |
69 | | } |
70 | | #endif |
71 | | |
72 | | /* Computes at most count terms of the sequence needed by the |
73 | | Lucas-Lehmer-Riesel test, indexing backward: |
74 | | L_i = L_{i+1}^2 - 2 |
75 | | |
76 | | The sequence is computed modulo M = {mp, mn}. |
77 | | The starting point is given in L_{count+1} = {lp, mn}. |
78 | | The scratch pointed by sp, needs a space of at least 3 * mn + 1 limbs. |
79 | | |
80 | | Returns the index i>0 if L_i = 0 (mod M) is found within the |
81 | | computed count terms of the sequence. Otherwise it returns zero. |
82 | | |
83 | | Note: (+/-2)^2-2=2, (+/-1)^2-2=-1, 0^2-2=-2 |
84 | | */ |
85 | | |
86 | | static mp_bitcnt_t |
87 | | mpn_llriter (mp_ptr lp, mp_srcptr mp, mp_size_t mn, mp_bitcnt_t count, mp_ptr sp) |
88 | 0 | { |
89 | 0 | do |
90 | 0 | { |
91 | 0 | mpn_sqr (sp, lp, mn); |
92 | 0 | mpn_tdiv_qr (sp + 2 * mn, lp, 0, sp, 2 * mn, mp, mn); |
93 | 0 | if (lp[0] < 5) |
94 | 0 | { |
95 | | /* If L^2 % M < 5, |L^2 % M - 2| <= 2 */ |
96 | 0 | if (mn == 1 || mpn_zero_p (lp + 1, mn - 1)) |
97 | 0 | return (lp[0] == 2) ? count : 0; |
98 | 0 | else |
99 | 0 | MPN_DECR_U (lp, mn, 2); |
100 | 0 | } |
101 | 0 | else |
102 | 0 | lp[0] -= 2; |
103 | 0 | } while (--count != 0); |
104 | 0 | return 0; |
105 | 0 | } |
106 | | |
107 | | /* Store the Lucas' number L[n] at lp (maybe), computed modulo m. lp |
108 | | and scratch should have room for mn*2+1 limbs. |
109 | | |
110 | | Returns the size of L[n] normally. |
111 | | |
112 | | If F[n] is zero modulo m, or L[n] is, returns 0 and lp is |
113 | | undefined. |
114 | | */ |
115 | | |
116 | | static mp_size_t |
117 | | mpn_lucm (mp_ptr lp, mp_srcptr np, mp_size_t nn, mp_srcptr mp, mp_size_t mn, mp_ptr scratch) |
118 | 0 | { |
119 | 0 | int neg; |
120 | 0 | mp_limb_t cy; |
121 | |
|
122 | 0 | ASSERT (! MPN_OVERLAP_P (lp, MAX(2*mn+1,5), scratch, MAX(2*mn+1,5))); |
123 | 0 | ASSERT (nn > 0); |
124 | |
|
125 | 0 | neg = mpn_fib2m (lp, scratch, np, nn, mp, mn); |
126 | | |
127 | | /* F[n] = +/-{lp, mn}, F[n-1] = +/-{scratch, mn} */ |
128 | 0 | if (mpn_zero_p (lp, mn)) |
129 | 0 | return 0; |
130 | | |
131 | 0 | if (neg) /* One sign is opposite, use sub instead of add. */ |
132 | 0 | { |
133 | 0 | #if HAVE_NATIVE_mpn_rsblsh1_n || HAVE_NATIVE_mpn_sublsh1_n |
134 | 0 | #if HAVE_NATIVE_mpn_rsblsh1_n |
135 | 0 | cy = mpn_rsblsh1_n (lp, lp, scratch, mn); /* L[n] = +/-(2F[n-1]-(-F[n])) */ |
136 | | #else |
137 | | cy = mpn_sublsh1_n (lp, lp, scratch, mn); /* L[n] = -/+(F[n]-(-2F[n-1])) */ |
138 | | if (cy != 0) |
139 | | cy = mpn_add_n (lp, lp, mp, mn) - cy; |
140 | | #endif |
141 | 0 | if (cy > 1) |
142 | 0 | cy += mpn_add_n (lp, lp, mp, mn); |
143 | | #else |
144 | | cy = mpn_lshift (scratch, scratch, mn, 1); /* 2F[n-1] */ |
145 | | if (UNLIKELY (cy)) |
146 | | cy -= mpn_sub_n (lp, scratch, lp, mn); /* L[n] = +/-(2F[n-1]-(-F[n])) */ |
147 | | else |
148 | | abs_sub_n (lp, lp, scratch, mn); |
149 | | #endif |
150 | 0 | ASSERT (cy <= 1); |
151 | 0 | } |
152 | 0 | else |
153 | 0 | { |
154 | 0 | #if HAVE_NATIVE_mpn_addlsh1_n |
155 | 0 | cy = mpn_addlsh1_n (lp, lp, scratch, mn); /* L[n] = +/-(2F[n-1]+F[n])) */ |
156 | | #else |
157 | | cy = mpn_lshift (scratch, scratch, mn, 1); |
158 | | cy+= mpn_add_n (lp, lp, scratch, mn); |
159 | | #endif |
160 | 0 | ASSERT (cy <= 2); |
161 | 0 | } |
162 | 0 | while (cy || mpn_cmp (lp, mp, mn) >= 0) |
163 | 0 | cy -= mpn_sub_n (lp, lp, mp, mn); |
164 | 0 | MPN_NORMALIZE (lp, mn); |
165 | 0 | return mn; |
166 | 0 | } |
167 | | |
168 | | int |
169 | | mpn_strongfibo (mp_srcptr mp, mp_size_t mn, mp_ptr scratch) |
170 | 0 | { |
171 | 0 | mp_ptr lp, sp; |
172 | 0 | mp_size_t en; |
173 | 0 | mp_bitcnt_t b0; |
174 | 0 | TMP_DECL; |
175 | |
|
176 | 0 | #if GMP_NUMB_BITS % 4 == 0 |
177 | 0 | b0 = mpn_scan0 (mp, 0); |
178 | | #else |
179 | | { |
180 | | mpz_t m = MPZ_ROINIT_N(mp, mn); |
181 | | b0 = mpz_scan0 (m, 0); |
182 | | } |
183 | | if (UNLIKELY (b0 == mn * GMP_NUMB_BITS)) |
184 | | { |
185 | | en = 1; |
186 | | scratch [0] = 1; |
187 | | } |
188 | | else |
189 | | #endif |
190 | 0 | { |
191 | 0 | int cnt = b0 % GMP_NUMB_BITS; |
192 | 0 | en = b0 / GMP_NUMB_BITS; |
193 | 0 | if (LIKELY (cnt != 0)) |
194 | 0 | mpn_rshift (scratch, mp + en, mn - en, cnt); |
195 | 0 | else |
196 | 0 | MPN_COPY (scratch, mp + en, mn - en); |
197 | 0 | en = mn - en; |
198 | 0 | scratch [0] |= 1; |
199 | 0 | en -= scratch [en - 1] == 0; |
200 | 0 | } |
201 | 0 | TMP_MARK; |
202 | |
|
203 | 0 | lp = TMP_ALLOC_LIMBS (4 * mn + 6); |
204 | 0 | sp = lp + 2 * mn + 3; |
205 | 0 | en = mpn_lucm (sp, scratch, en, mp, mn, lp); |
206 | 0 | if (en != 0 && LIKELY (--b0 != 0)) |
207 | 0 | { |
208 | 0 | mpn_sqr (lp, sp, en); |
209 | 0 | lp [0] |= 2; /* V^2 + 2 */ |
210 | 0 | if (LIKELY (2 * en >= mn)) |
211 | 0 | mpn_tdiv_qr (sp, lp, 0, lp, 2 * en, mp, mn); |
212 | 0 | else |
213 | 0 | MPN_ZERO (lp + 2 * en, mn - 2 * en); |
214 | 0 | if (! mpn_zero_p (lp, mn) && LIKELY (--b0 != 0)) |
215 | 0 | b0 = mpn_llriter (lp, mp, mn, b0, lp + mn + 1); |
216 | 0 | } |
217 | 0 | TMP_FREE; |
218 | 0 | return (b0 != 0); |
219 | 0 | } |