Coverage Report

Created: 2025-03-18 06:55

/src/gmp/mpn/tdiv_qr.c
Line
Count
Source (jump to first uncovered line)
1
/* mpn_tdiv_qr -- Divide the numerator (np,nn) by the denominator (dp,dn) and
2
   write the nn-dn+1 quotient limbs at qp and the dn remainder limbs at rp.  If
3
   qxn is non-zero, generate that many fraction limbs and append them after the
4
   other quotient limbs, and update the remainder accordingly.  The input
5
   operands are unaffected.
6
7
   Preconditions:
8
   1. The most significant limb of the divisor must be non-zero.
9
   2. nn >= dn, even if qxn is non-zero.  (??? relax this ???)
10
11
   The time complexity of this is O(qn*qn+M(dn,qn)), where M(m,n) is the time
12
   complexity of multiplication.
13
14
Copyright 1997, 2000-2002, 2005, 2009, 2015 Free Software Foundation, Inc.
15
16
This file is part of the GNU MP Library.
17
18
The GNU MP Library is free software; you can redistribute it and/or modify
19
it under the terms of either:
20
21
  * the GNU Lesser General Public License as published by the Free
22
    Software Foundation; either version 3 of the License, or (at your
23
    option) any later version.
24
25
or
26
27
  * the GNU General Public License as published by the Free Software
28
    Foundation; either version 2 of the License, or (at your option) any
29
    later version.
30
31
or both in parallel, as here.
32
33
The GNU MP Library is distributed in the hope that it will be useful, but
34
WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
35
or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
36
for more details.
37
38
You should have received copies of the GNU General Public License and the
39
GNU Lesser General Public License along with the GNU MP Library.  If not,
40
see https://www.gnu.org/licenses/.  */
41
42
#include "gmp-impl.h"
43
#include "longlong.h"
44
45
46
void
47
mpn_tdiv_qr (mp_ptr qp, mp_ptr rp, mp_size_t qxn,
48
       mp_srcptr np, mp_size_t nn, mp_srcptr dp, mp_size_t dn)
49
0
{
50
0
  ASSERT_ALWAYS (qxn == 0);
51
52
0
  ASSERT (nn >= 0);
53
0
  ASSERT (dn >= 0);
54
0
  ASSERT (dn == 0 || dp[dn - 1] != 0);
55
0
  ASSERT (! MPN_OVERLAP_P (qp, nn - dn + 1 + qxn, np, nn));
56
0
  ASSERT (! MPN_OVERLAP_P (qp, nn - dn + 1 + qxn, dp, dn));
57
58
0
  switch (dn)
59
0
    {
60
0
    case 0:
61
0
      DIVIDE_BY_ZERO;
62
63
0
    case 1:
64
0
      {
65
0
  rp[0] = mpn_divrem_1 (qp, (mp_size_t) 0, np, nn, dp[0]);
66
0
  return;
67
0
      }
68
69
0
    case 2:
70
0
      {
71
0
  mp_ptr n2p;
72
0
  mp_limb_t qhl, cy;
73
0
  TMP_DECL;
74
0
  TMP_MARK;
75
0
  if ((dp[1] & GMP_NUMB_HIGHBIT) == 0)
76
0
    {
77
0
      int cnt;
78
0
      mp_limb_t d2p[2];
79
0
      count_leading_zeros (cnt, dp[1]);
80
0
      cnt -= GMP_NAIL_BITS;
81
0
      d2p[1] = (dp[1] << cnt) | (dp[0] >> (GMP_NUMB_BITS - cnt));
82
0
      d2p[0] = (dp[0] << cnt) & GMP_NUMB_MASK;
83
0
      n2p = TMP_ALLOC_LIMBS (nn + 1);
84
0
      cy = mpn_lshift (n2p, np, nn, cnt);
85
0
      n2p[nn] = cy;
86
0
      qhl = mpn_divrem_2 (qp, 0L, n2p, nn + (cy != 0), d2p);
87
0
      if (cy == 0)
88
0
        qp[nn - 2] = qhl; /* always store nn-2+1 quotient limbs */
89
0
      rp[0] = (n2p[0] >> cnt)
90
0
        | ((n2p[1] << (GMP_NUMB_BITS - cnt)) & GMP_NUMB_MASK);
91
0
      rp[1] = (n2p[1] >> cnt);
92
0
    }
93
0
  else
94
0
    {
95
0
      n2p = TMP_ALLOC_LIMBS (nn);
96
0
      MPN_COPY (n2p, np, nn);
97
0
      qhl = mpn_divrem_2 (qp, 0L, n2p, nn, dp);
98
0
      qp[nn - 2] = qhl; /* always store nn-2+1 quotient limbs */
99
0
      rp[0] = n2p[0];
100
0
      rp[1] = n2p[1];
101
0
    }
102
0
  TMP_FREE;
103
0
  return;
104
0
      }
105
106
0
    default:
107
0
      {
108
0
  int adjust;
109
0
  gmp_pi1_t dinv;
110
0
  TMP_DECL;
111
0
  TMP_MARK;
112
0
  adjust = np[nn - 1] >= dp[dn - 1];  /* conservative tests for quotient size */
113
0
  if (nn + adjust >= 2 * dn)
114
0
    {
115
0
      mp_ptr n2p, d2p;
116
0
      mp_limb_t cy;
117
0
      int cnt;
118
119
0
      qp[nn - dn] = 0;        /* zero high quotient limb */
120
0
      if ((dp[dn - 1] & GMP_NUMB_HIGHBIT) == 0) /* normalize divisor */
121
0
        {
122
0
    count_leading_zeros (cnt, dp[dn - 1]);
123
0
    cnt -= GMP_NAIL_BITS;
124
0
    d2p = TMP_ALLOC_LIMBS (dn);
125
0
    mpn_lshift (d2p, dp, dn, cnt);
126
0
    n2p = TMP_ALLOC_LIMBS (nn + 1);
127
0
    cy = mpn_lshift (n2p, np, nn, cnt);
128
0
    n2p[nn] = cy;
129
0
    nn += adjust;
130
0
        }
131
0
      else
132
0
        {
133
0
    cnt = 0;
134
0
    d2p = (mp_ptr) dp;
135
0
    n2p = TMP_ALLOC_LIMBS (nn + 1);
136
0
    MPN_COPY (n2p, np, nn);
137
0
    n2p[nn] = 0;
138
0
    nn += adjust;
139
0
        }
140
141
0
      invert_pi1 (dinv, d2p[dn - 1], d2p[dn - 2]);
142
0
      if (BELOW_THRESHOLD (dn, DC_DIV_QR_THRESHOLD))
143
0
        mpn_sbpi1_div_qr (qp, n2p, nn, d2p, dn, dinv.inv32);
144
0
      else if (BELOW_THRESHOLD (dn, MUPI_DIV_QR_THRESHOLD) ||   /* fast condition */
145
0
         BELOW_THRESHOLD (nn, 2 * MU_DIV_QR_THRESHOLD) || /* fast condition */
146
0
         (double) (2 * (MU_DIV_QR_THRESHOLD - MUPI_DIV_QR_THRESHOLD)) * dn /* slow... */
147
0
         + (double) MUPI_DIV_QR_THRESHOLD * nn > (double) dn * nn)    /* ...condition */
148
0
        mpn_dcpi1_div_qr (qp, n2p, nn, d2p, dn, &dinv);
149
0
      else
150
0
        {
151
0
    mp_size_t itch = mpn_mu_div_qr_itch (nn, dn, 0);
152
0
    mp_ptr scratch = TMP_ALLOC_LIMBS (itch);
153
0
    mpn_mu_div_qr (qp, rp, n2p, nn, d2p, dn, scratch);
154
0
    n2p = rp;
155
0
        }
156
157
0
      if (cnt != 0)
158
0
        mpn_rshift (rp, n2p, dn, cnt);
159
0
      else
160
0
        MPN_COPY (rp, n2p, dn);
161
0
      TMP_FREE;
162
0
      return;
163
0
    }
164
165
  /* When we come here, the numerator/partial remainder is less
166
     than twice the size of the denominator.  */
167
168
0
    {
169
      /* Problem:
170
171
         Divide a numerator N with nn limbs by a denominator D with dn
172
         limbs forming a quotient of qn=nn-dn+1 limbs.  When qn is small
173
         compared to dn, conventional division algorithms perform poorly.
174
         We want an algorithm that has an expected running time that is
175
         dependent only on qn.
176
177
         Algorithm (very informally stated):
178
179
         1) Divide the 2 x qn most significant limbs from the numerator
180
      by the qn most significant limbs from the denominator.  Call
181
      the result qest.  This is either the correct quotient, but
182
      might be 1 or 2 too large.  Compute the remainder from the
183
      division.  (This step is implemented by an mpn_divrem call.)
184
185
         2) Is the most significant limb from the remainder < p, where p
186
      is the product of the most significant limb from the quotient
187
      and the next(d)?  (Next(d) denotes the next ignored limb from
188
      the denominator.)  If it is, decrement qest, and adjust the
189
      remainder accordingly.
190
191
         3) Is the remainder >= qest?  If it is, qest is the desired
192
      quotient.  The algorithm terminates.
193
194
         4) Subtract qest x next(d) from the remainder.  If there is
195
      borrow out, decrement qest, and adjust the remainder
196
      accordingly.
197
198
         5) Skip one word from the denominator (i.e., let next(d) denote
199
      the next less significant limb.  */
200
201
0
      mp_size_t qn;
202
0
      mp_ptr n2p, d2p;
203
0
      mp_ptr tp;
204
0
      mp_limb_t cy;
205
0
      mp_size_t in, rn;
206
0
      mp_limb_t quotient_too_large;
207
0
      unsigned int cnt;
208
209
0
      qn = nn - dn;
210
0
      qp[qn] = 0;       /* zero high quotient limb */
211
0
      qn += adjust;     /* qn cannot become bigger */
212
213
0
      if (qn == 0)
214
0
        {
215
0
    MPN_COPY (rp, np, dn);
216
0
    TMP_FREE;
217
0
    return;
218
0
        }
219
220
0
      in = dn - qn;   /* (at least partially) ignored # of limbs in ops */
221
      /* Normalize denominator by shifting it to the left such that its
222
         most significant bit is set.  Then shift the numerator the same
223
         amount, to mathematically preserve quotient.  */
224
0
      if ((dp[dn - 1] & GMP_NUMB_HIGHBIT) == 0)
225
0
        {
226
0
    count_leading_zeros (cnt, dp[dn - 1]);
227
0
    cnt -= GMP_NAIL_BITS;
228
229
0
    d2p = TMP_ALLOC_LIMBS (qn);
230
0
    mpn_lshift (d2p, dp + in, qn, cnt);
231
0
    d2p[0] |= dp[in - 1] >> (GMP_NUMB_BITS - cnt);
232
233
0
    n2p = TMP_ALLOC_LIMBS (2 * qn + 1);
234
0
    cy = mpn_lshift (n2p, np + nn - 2 * qn, 2 * qn, cnt);
235
0
    if (adjust)
236
0
      {
237
0
        n2p[2 * qn] = cy;
238
0
        n2p++;
239
0
      }
240
0
    else
241
0
      {
242
0
        n2p[0] |= np[nn - 2 * qn - 1] >> (GMP_NUMB_BITS - cnt);
243
0
      }
244
0
        }
245
0
      else
246
0
        {
247
0
    cnt = 0;
248
0
    d2p = (mp_ptr) dp + in;
249
250
0
    n2p = TMP_ALLOC_LIMBS (2 * qn + 1);
251
0
    MPN_COPY (n2p, np + nn - 2 * qn, 2 * qn);
252
0
    if (adjust)
253
0
      {
254
0
        n2p[2 * qn] = 0;
255
0
        n2p++;
256
0
      }
257
0
        }
258
259
      /* Get an approximate quotient using the extracted operands.  */
260
0
      if (qn == 1)
261
0
        {
262
0
    mp_limb_t q0, r0;
263
0
    udiv_qrnnd (q0, r0, n2p[1], n2p[0] << GMP_NAIL_BITS, d2p[0] << GMP_NAIL_BITS);
264
0
    n2p[0] = r0 >> GMP_NAIL_BITS;
265
0
    qp[0] = q0;
266
0
        }
267
0
      else if (qn == 2)
268
0
        mpn_divrem_2 (qp, 0L, n2p, 4L, d2p); /* FIXME: obsolete function */
269
0
      else
270
0
        {
271
0
    invert_pi1 (dinv, d2p[qn - 1], d2p[qn - 2]);
272
0
    if (BELOW_THRESHOLD (qn, DC_DIV_QR_THRESHOLD))
273
0
      mpn_sbpi1_div_qr (qp, n2p, 2 * qn, d2p, qn, dinv.inv32);
274
0
    else if (BELOW_THRESHOLD (qn, MU_DIV_QR_THRESHOLD))
275
0
      mpn_dcpi1_div_qr (qp, n2p, 2 * qn, d2p, qn, &dinv);
276
0
    else
277
0
      {
278
0
        mp_size_t itch = mpn_mu_div_qr_itch (2 * qn, qn, 0);
279
0
        mp_ptr scratch = TMP_ALLOC_LIMBS (itch);
280
0
        mp_ptr r2p = rp;
281
0
        if (np == r2p) /* If N and R share space, put ... */
282
0
          r2p += nn - qn; /* intermediate remainder at N's upper end. */
283
0
        mpn_mu_div_qr (qp, r2p, n2p, 2 * qn, d2p, qn, scratch);
284
0
        MPN_COPY (n2p, r2p, qn);
285
0
      }
286
0
        }
287
288
0
      rn = qn;
289
      /* Multiply the first ignored divisor limb by the most significant
290
         quotient limb.  If that product is > the partial remainder's
291
         most significant limb, we know the quotient is too large.  This
292
         test quickly catches most cases where the quotient is too large;
293
         it catches all cases where the quotient is 2 too large.  */
294
0
      {
295
0
        mp_limb_t dl, x;
296
0
        mp_limb_t h, dummy;
297
298
0
        if (in - 2 < 0)
299
0
    dl = 0;
300
0
        else
301
0
    dl = dp[in - 2];
302
303
0
#if GMP_NAIL_BITS == 0
304
0
        x = (dp[in - 1] << cnt) | ((dl >> 1) >> ((~cnt) % GMP_LIMB_BITS));
305
#else
306
        x = (dp[in - 1] << cnt) & GMP_NUMB_MASK;
307
        if (cnt != 0)
308
    x |= dl >> (GMP_NUMB_BITS - cnt);
309
#endif
310
0
        umul_ppmm (h, dummy, x, qp[qn - 1] << GMP_NAIL_BITS);
311
312
0
        if (n2p[qn - 1] < h)
313
0
    {
314
0
      mp_limb_t cy;
315
316
0
      mpn_decr_u (qp, (mp_limb_t) 1);
317
0
      cy = mpn_add_n (n2p, n2p, d2p, qn);
318
0
      if (cy)
319
0
        {
320
          /* The partial remainder is safely large.  */
321
0
          n2p[qn] = cy;
322
0
          ++rn;
323
0
        }
324
0
    }
325
0
      }
326
327
0
      quotient_too_large = 0;
328
0
      if (cnt != 0)
329
0
        {
330
0
    mp_limb_t cy1, cy2;
331
332
    /* Append partially used numerator limb to partial remainder.  */
333
0
    cy1 = mpn_lshift (n2p, n2p, rn, GMP_NUMB_BITS - cnt);
334
0
    n2p[0] |= np[in - 1] & (GMP_NUMB_MASK >> cnt);
335
336
    /* Update partial remainder with partially used divisor limb.  */
337
0
    cy2 = mpn_submul_1 (n2p, qp, qn, dp[in - 1] & (GMP_NUMB_MASK >> cnt));
338
0
    if (qn != rn)
339
0
      {
340
0
        ASSERT_ALWAYS (n2p[qn] >= cy2);
341
0
        n2p[qn] -= cy2;
342
0
      }
343
0
    else
344
0
      {
345
0
        n2p[qn] = cy1 - cy2; /* & GMP_NUMB_MASK; */
346
347
0
        quotient_too_large = (cy1 < cy2);
348
0
        ++rn;
349
0
      }
350
0
    --in;
351
0
        }
352
      /* True: partial remainder now is neutral, i.e., it is not shifted up.  */
353
354
0
      tp = TMP_ALLOC_LIMBS (dn);
355
356
0
      if (in < qn)
357
0
        {
358
0
    if (in == 0)
359
0
      {
360
0
        MPN_COPY (rp, n2p, rn);
361
0
        ASSERT_ALWAYS (rn == dn);
362
0
        goto foo;
363
0
      }
364
0
    mpn_mul (tp, qp, qn, dp, in);
365
0
        }
366
0
      else
367
0
        mpn_mul (tp, dp, in, qp, qn);
368
369
0
      cy = mpn_sub (n2p, n2p, rn, tp + in, qn);
370
0
      MPN_COPY (rp + in, n2p, dn - in);
371
0
      quotient_too_large |= cy;
372
0
      cy = mpn_sub_n (rp, np, tp, in);
373
0
      cy = mpn_sub_1 (rp + in, rp + in, rn, cy);
374
0
      quotient_too_large |= cy;
375
0
    foo:
376
0
      if (quotient_too_large)
377
0
        {
378
0
    mpn_decr_u (qp, (mp_limb_t) 1);
379
0
    mpn_add_n (rp, rp, dp, dn);
380
0
        }
381
0
    }
382
0
  TMP_FREE;
383
0
  return;
384
0
      }
385
0
    }
386
0
}