/src/gmp/mpn/toom_interpolate_8pts.c
Line | Count | Source (jump to first uncovered line) |
1 | | /* mpn_toom_interpolate_8pts -- Interpolate for toom54, 63, 72. |
2 | | |
3 | | Contributed to the GNU project by Marco Bodrato. |
4 | | |
5 | | THE FUNCTION IN THIS FILE IS INTERNAL WITH A MUTABLE INTERFACE. IT IS ONLY |
6 | | SAFE TO REACH IT THROUGH DOCUMENTED INTERFACES. IN FACT, IT IS ALMOST |
7 | | GUARANTEED THAT IT WILL CHANGE OR DISAPPEAR IN A FUTURE GNU MP RELEASE. |
8 | | |
9 | | Copyright 2009, 2011, 2012 Free Software Foundation, Inc. |
10 | | |
11 | | This file is part of the GNU MP Library. |
12 | | |
13 | | The GNU MP Library is free software; you can redistribute it and/or modify |
14 | | it under the terms of either: |
15 | | |
16 | | * the GNU Lesser General Public License as published by the Free |
17 | | Software Foundation; either version 3 of the License, or (at your |
18 | | option) any later version. |
19 | | |
20 | | or |
21 | | |
22 | | * the GNU General Public License as published by the Free Software |
23 | | Foundation; either version 2 of the License, or (at your option) any |
24 | | later version. |
25 | | |
26 | | or both in parallel, as here. |
27 | | |
28 | | The GNU MP Library is distributed in the hope that it will be useful, but |
29 | | WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY |
30 | | or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License |
31 | | for more details. |
32 | | |
33 | | You should have received copies of the GNU General Public License and the |
34 | | GNU Lesser General Public License along with the GNU MP Library. If not, |
35 | | see https://www.gnu.org/licenses/. */ |
36 | | |
37 | | #include "gmp-impl.h" |
38 | | |
39 | 0 | #define BINVERT_3 MODLIMB_INVERSE_3 |
40 | | |
41 | | #define BINVERT_15 \ |
42 | 0 | ((((GMP_NUMB_MAX >> (GMP_NUMB_BITS % 4)) / 15) * 14 * 16 & GMP_NUMB_MAX) + 15) |
43 | | |
44 | 0 | #define BINVERT_45 ((BINVERT_15 * BINVERT_3) & GMP_NUMB_MASK) |
45 | | |
46 | | #ifndef mpn_divexact_by3 |
47 | | #if HAVE_NATIVE_mpn_pi1_bdiv_q_1 |
48 | | #define mpn_divexact_by3(dst,src,size) mpn_pi1_bdiv_q_1(dst,src,size,3,BINVERT_3,0) |
49 | | #else |
50 | | #define mpn_divexact_by3(dst,src,size) mpn_divexact_1(dst,src,size,3) |
51 | | #endif |
52 | | #endif |
53 | | |
54 | | #ifndef mpn_divexact_by45 |
55 | | #if GMP_NUMB_BITS % 12 == 0 |
56 | | #define mpn_divexact_by45(dst,src,size) \ |
57 | | (63 & 19 * mpn_bdiv_dbm1 (dst, src, size, __GMP_CAST (mp_limb_t, GMP_NUMB_MASK / 45))) |
58 | | #else |
59 | | #if HAVE_NATIVE_mpn_pi1_bdiv_q_1 |
60 | 0 | #define mpn_divexact_by45(dst,src,size) mpn_pi1_bdiv_q_1(dst,src,size,45,BINVERT_45,0) |
61 | | #else |
62 | | #define mpn_divexact_by45(dst,src,size) mpn_divexact_1(dst,src,size,45) |
63 | | #endif |
64 | | #endif |
65 | | #endif |
66 | | |
67 | | #if HAVE_NATIVE_mpn_sublsh2_n_ip1 |
68 | | #define DO_mpn_sublsh2_n(dst,src,n,ws) mpn_sublsh2_n_ip1(dst,src,n) |
69 | | #else |
70 | | #define DO_mpn_sublsh2_n(dst,src,n,ws) DO_mpn_sublsh_n(dst,src,n,2,ws) |
71 | | #endif |
72 | | |
73 | | #if HAVE_NATIVE_mpn_sublsh_n |
74 | | #define DO_mpn_sublsh_n(dst,src,n,s,ws) mpn_sublsh_n (dst,dst,src,n,s) |
75 | | #else |
76 | | static mp_limb_t |
77 | | DO_mpn_sublsh_n (mp_ptr dst, mp_srcptr src, mp_size_t n, unsigned int s, mp_ptr ws) |
78 | 0 | { |
79 | | #if USE_MUL_1 && 0 |
80 | | return mpn_submul_1(dst,src,n,CNST_LIMB(1) <<(s)); |
81 | | #else |
82 | 0 | mp_limb_t __cy; |
83 | 0 | __cy = mpn_lshift (ws,src,n,s); |
84 | 0 | return __cy + mpn_sub_n (dst,dst,ws,n); |
85 | 0 | #endif |
86 | 0 | } |
87 | | #endif |
88 | | |
89 | | |
90 | | #if HAVE_NATIVE_mpn_subrsh |
91 | | #define DO_mpn_subrsh(dst,nd,src,ns,s,ws) mpn_subrsh (dst,nd,src,ns,s) |
92 | | #else |
93 | | /* This is not a correct definition, it assumes no carry */ |
94 | 0 | #define DO_mpn_subrsh(dst,nd,src,ns,s,ws) \ |
95 | 0 | do { \ |
96 | 0 | mp_limb_t __cy; \ |
97 | 0 | MPN_DECR_U (dst, nd, src[0] >> s); \ |
98 | 0 | __cy = DO_mpn_sublsh_n (dst, src + 1, ns - 1, GMP_NUMB_BITS - s, ws); \ |
99 | 0 | MPN_DECR_U (dst + ns - 1, nd - ns + 1, __cy); \ |
100 | 0 | } while (0) |
101 | | #endif |
102 | | |
103 | | /* Interpolation for Toom-4.5 (or Toom-4), using the evaluation |
104 | | points: infinity(4.5 only), 4, -4, 2, -2, 1, -1, 0. More precisely, |
105 | | we want to compute f(2^(GMP_NUMB_BITS * n)) for a polynomial f of |
106 | | degree 7 (or 6), given the 8 (rsp. 7) values: |
107 | | |
108 | | r1 = limit at infinity of f(x) / x^7, |
109 | | r2 = f(4), |
110 | | r3 = f(-4), |
111 | | r4 = f(2), |
112 | | r5 = f(-2), |
113 | | r6 = f(1), |
114 | | r7 = f(-1), |
115 | | r8 = f(0). |
116 | | |
117 | | All couples of the form f(n),f(-n) must be already mixed with |
118 | | toom_couple_handling(f(n),...,f(-n),...) |
119 | | |
120 | | The result is stored in {pp, spt + 7*n (or 6*n)}. |
121 | | At entry, r8 is stored at {pp, 2n}, |
122 | | r5 is stored at {pp + 3n, 3n + 1}. |
123 | | |
124 | | The other values are 2n+... limbs each (with most significant limbs small). |
125 | | |
126 | | All intermediate results are positive. |
127 | | Inputs are destroyed. |
128 | | */ |
129 | | |
130 | | void |
131 | | mpn_toom_interpolate_8pts (mp_ptr pp, mp_size_t n, |
132 | | mp_ptr r3, mp_ptr r7, |
133 | | mp_size_t spt, mp_ptr ws) |
134 | 0 | { |
135 | 0 | mp_limb_signed_t cy; |
136 | 0 | mp_ptr r5, r1; |
137 | 0 | r5 = (pp + 3 * n); /* 3n+1 */ |
138 | 0 | r1 = (pp + 7 * n); /* spt */ |
139 | | |
140 | | /******************************* interpolation *****************************/ |
141 | |
|
142 | 0 | DO_mpn_subrsh(r3+n, 2 * n + 1, pp, 2 * n, 4, ws); |
143 | 0 | cy = DO_mpn_sublsh_n (r3, r1, spt, 12, ws); |
144 | 0 | MPN_DECR_U (r3 + spt, 3 * n + 1 - spt, cy); |
145 | |
|
146 | 0 | DO_mpn_subrsh(r5+n, 2 * n + 1, pp, 2 * n, 2, ws); |
147 | 0 | cy = DO_mpn_sublsh_n (r5, r1, spt, 6, ws); |
148 | 0 | MPN_DECR_U (r5 + spt, 3 * n + 1 - spt, cy); |
149 | |
|
150 | 0 | r7[3*n] -= mpn_sub_n (r7+n, r7+n, pp, 2 * n); |
151 | 0 | cy = mpn_sub_n (r7, r7, r1, spt); |
152 | 0 | MPN_DECR_U (r7 + spt, 3 * n + 1 - spt, cy); |
153 | |
|
154 | 0 | ASSERT_NOCARRY(mpn_sub_n (r3, r3, r5, 3 * n + 1)); |
155 | 0 | ASSERT_NOCARRY(mpn_rshift(r3, r3, 3 * n + 1, 2)); |
156 | |
|
157 | 0 | ASSERT_NOCARRY(mpn_sub_n (r5, r5, r7, 3 * n + 1)); |
158 | |
|
159 | 0 | ASSERT_NOCARRY(mpn_sub_n (r3, r3, r5, 3 * n + 1)); |
160 | |
|
161 | 0 | mpn_divexact_by45 (r3, r3, 3 * n + 1); |
162 | |
|
163 | 0 | ASSERT_NOCARRY(mpn_divexact_by3 (r5, r5, 3 * n + 1)); |
164 | |
|
165 | 0 | ASSERT_NOCARRY(DO_mpn_sublsh2_n (r5, r3, 3 * n + 1, ws)); |
166 | | |
167 | | /* last interpolation steps... */ |
168 | | /* ... are mixed with recomposition */ |
169 | | |
170 | | /***************************** recomposition *******************************/ |
171 | | /* |
172 | | pp[] prior to operations: |
173 | | |_H r1|_L r1|____||_H r5|_M_r5|_L r5|_____|_H r8|_L r8|pp |
174 | | |
175 | | summation scheme for remaining operations: |
176 | | |____8|n___7|n___6|n___5|n___4|n___3|n___2|n____|n____|pp |
177 | | |_H r1|_L r1|____||_H*r5|_M r5|_L r5|_____|_H_r8|_L r8|pp |
178 | | ||_H r3|_M r3|_L*r3| |
179 | | ||_H_r7|_M_r7|_L_r7| |
180 | | ||-H r3|-M r3|-L*r3| |
181 | | ||-H*r5|-M_r5|-L_r5| |
182 | | */ |
183 | |
|
184 | 0 | cy = mpn_add_n (pp + n, pp + n, r7, n); /* Hr8+Lr7-Lr5 */ |
185 | 0 | cy-= mpn_sub_n (pp + n, pp + n, r5, n); |
186 | 0 | if (cy > 0) { |
187 | 0 | MPN_INCR_U (r7 + n, 2*n + 1, 1); |
188 | 0 | cy = 0; |
189 | 0 | } |
190 | |
|
191 | 0 | cy = mpn_sub_nc (pp + 2*n, r7 + n, r5 + n, n, -cy); /* Mr7-Mr5 */ |
192 | 0 | MPN_DECR_U (r7 + 2*n, n + 1, cy); |
193 | |
|
194 | 0 | cy = mpn_add_n (pp + 3*n, r5, r7+ 2*n, n+1); /* Hr7+Lr5 */ |
195 | 0 | r5[3*n]+= mpn_add_n (r5 + 2*n, r5 + 2*n, r3, n); /* Hr5+Lr3 */ |
196 | 0 | cy-= mpn_sub_n (pp + 3*n, pp + 3*n, r5 + 2*n, n+1); /* Hr7-Hr5+Lr5-Lr3 */ |
197 | 0 | if (UNLIKELY(0 > cy)) |
198 | 0 | MPN_DECR_U (r5 + n + 1, 2*n, 1); |
199 | 0 | else |
200 | 0 | MPN_INCR_U (r5 + n + 1, 2*n, cy); |
201 | |
|
202 | 0 | ASSERT_NOCARRY(mpn_sub_n(pp + 4*n, r5 + n, r3 + n, 2*n +1)); /* Mr5-Mr3,Hr5-Hr3 */ |
203 | |
|
204 | 0 | cy = mpn_add_1 (pp + 6*n, r3 + n, n, pp[6*n]); |
205 | 0 | MPN_INCR_U (r3 + 2*n, n + 1, cy); |
206 | 0 | cy = mpn_add_n (pp + 7*n, pp + 7*n, r3 + 2*n, n); |
207 | 0 | if (LIKELY(spt != n)) |
208 | 0 | MPN_INCR_U (pp + 8*n, spt - n, cy + r3[3*n]); |
209 | 0 | else |
210 | 0 | ASSERT (r3[3*n] + cy == 0); |
211 | 0 | } |