Line | Count | Source (jump to first uncovered line) |
1 | | /* mpz_lucas_mod -- Helper function for the strong Lucas |
2 | | primality test. |
3 | | |
4 | | THE FUNCTIONS IN THIS FILE ARE FOR INTERNAL USE ONLY. THEY'RE ALMOST |
5 | | CERTAIN TO BE SUBJECT TO INCOMPATIBLE CHANGES OR DISAPPEAR COMPLETELY IN |
6 | | FUTURE GNU MP RELEASES. |
7 | | |
8 | | Copyright 2018 Free Software Foundation, Inc. |
9 | | |
10 | | Contributed by Marco Bodrato. |
11 | | |
12 | | This file is part of the GNU MP Library. |
13 | | |
14 | | The GNU MP Library is free software; you can redistribute it and/or modify |
15 | | it under the terms of either: |
16 | | |
17 | | * the GNU Lesser General Public License as published by the Free |
18 | | Software Foundation; either version 3 of the License, or (at your |
19 | | option) any later version. |
20 | | |
21 | | or |
22 | | |
23 | | * the GNU General Public License as published by the Free Software |
24 | | Foundation; either version 2 of the License, or (at your option) any |
25 | | later version. |
26 | | |
27 | | or both in parallel, as here. |
28 | | |
29 | | The GNU MP Library is distributed in the hope that it will be useful, but |
30 | | WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY |
31 | | or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License |
32 | | for more details. |
33 | | |
34 | | You should have received copies of the GNU General Public License and the |
35 | | GNU Lesser General Public License along with the GNU MP Library. If not, |
36 | | see https://www.gnu.org/licenses/. */ |
37 | | |
38 | | #include "gmp-impl.h" |
39 | | |
40 | | /* Computes V_{k+1}, Q^{k+1} (mod n) for the Lucas' sequence */ |
41 | | /* with P=1, Q=Q; k = n>>b0. */ |
42 | | /* Requires n > 4; b0 > 0; -2*Q must not overflow a long. */ |
43 | | /* If U_{k+1}==0 (mod n) or V_{k+1}==0 (mod n), it returns 1, */ |
44 | | /* otherwise it returns 0 and sets V=V_{k+1} and Qk=Q^{k+1}. */ |
45 | | /* V will never grow beyond SIZ(n), Qk not beyond 2*SIZ(n). */ |
46 | | int |
47 | | mpz_lucas_mod (mpz_ptr V, mpz_ptr Qk, long Q, |
48 | | mp_bitcnt_t b0, mpz_srcptr n, mpz_ptr T1, mpz_ptr T2) |
49 | 0 | { |
50 | 0 | mp_bitcnt_t bs; |
51 | 0 | int res; |
52 | |
|
53 | 0 | ASSERT (b0 > 0); |
54 | 0 | ASSERT (SIZ (n) > 1 || SIZ (n) > 0 && PTR (n) [0] > 4); |
55 | |
|
56 | 0 | mpz_set_ui (V, 1); /* U1 = 1 */ |
57 | 0 | bs = mpz_sizeinbase (n, 2) - 2; |
58 | 0 | if (UNLIKELY (bs < b0)) |
59 | 0 | { |
60 | | /* n = 2^b0 - 1, should we use Lucas-Lehmer instead? */ |
61 | 0 | ASSERT (bs == b0 - 2); |
62 | 0 | mpz_set_si (Qk, Q); |
63 | 0 | return 0; |
64 | 0 | } |
65 | 0 | mpz_set_ui (Qk, 1); /* U2 = 1 */ |
66 | |
|
67 | 0 | do |
68 | 0 | { |
69 | | /* We use the iteration suggested in "Elementary Number Theory" */ |
70 | | /* by Peter Hackman (November 1, 2009), section "L.XVII Scalar */ |
71 | | /* Formulas", from http://hackmat.se/kurser/TATM54/booktot.pdf */ |
72 | | /* U_{2k} = 2*U_{k+1}*U_k - P*U_k^2 */ |
73 | | /* U_{2k+1} = U_{k+1}^2 - Q*U_k^2 */ |
74 | | /* U_{2k+2} = P*U_{k+1}^2 - 2*Q*U_{k+1}*U_k */ |
75 | | /* We note that U_{2k+2} = P*U_{2k+1} - Q*U_{2k} */ |
76 | | /* The formulas are specialized for P=1, and only squares: */ |
77 | | /* U_{2k} = U_{k+1}^2 - |U_{k+1} - U_k|^2 */ |
78 | | /* U_{2k+1} = U_{k+1}^2 - Q*U_k^2 */ |
79 | | /* U_{2k+2} = U_{2k+1} - Q*U_{2k} */ |
80 | 0 | mpz_mul (T1, Qk, Qk); /* U_{k+1}^2 */ |
81 | 0 | mpz_sub (Qk, V, Qk); /* |U_{k+1} - U_k| */ |
82 | 0 | mpz_mul (T2, Qk, Qk); /* |U_{k+1} - U_k|^2 */ |
83 | 0 | mpz_mul (Qk, V, V); /* U_k^2 */ |
84 | 0 | mpz_sub (T2, T1, T2); /* U_{k+1}^2 - (U_{k+1} - U_k)^2 */ |
85 | 0 | if (Q > 0) /* U_{k+1}^2 - Q U_k^2 = U_{2k+1} */ |
86 | 0 | mpz_submul_ui (T1, Qk, Q); |
87 | 0 | else |
88 | 0 | mpz_addmul_ui (T1, Qk, NEG_CAST (unsigned long, Q)); |
89 | | |
90 | | /* A step k->k+1 is performed if the bit in $n$ is 1 */ |
91 | 0 | if (mpz_tstbit (n, bs)) |
92 | 0 | { |
93 | | /* U_{2k+2} = U_{2k+1} - Q*U_{2k} */ |
94 | 0 | mpz_mul_si (T2, T2, Q); |
95 | 0 | mpz_sub (T2, T1, T2); |
96 | 0 | mpz_swap (T1, T2); |
97 | 0 | } |
98 | 0 | mpz_tdiv_r (Qk, T1, n); |
99 | 0 | mpz_tdiv_r (V, T2, n); |
100 | 0 | } while (--bs >= b0); |
101 | |
|
102 | 0 | res = SIZ (Qk) == 0; |
103 | 0 | if (!res) { |
104 | 0 | mpz_mul_si (T1, V, -2*Q); |
105 | 0 | mpz_add (T1, Qk, T1); /* V_k = U_k - 2Q*U_{k-1} */ |
106 | 0 | mpz_tdiv_r (V, T1, n); |
107 | 0 | res = SIZ (V) == 0; |
108 | 0 | if (!res && b0 > 1) { |
109 | | /* V_k and Q^k will be needed for further check, compute them. */ |
110 | | /* FIXME: Here we compute V_k^2 and store V_k, but the former */ |
111 | | /* will be recomputed by the calling function, shoul we store */ |
112 | | /* that instead? */ |
113 | 0 | mpz_mul (T2, T1, T1); /* V_k^2 */ |
114 | 0 | mpz_mul (T1, Qk, Qk); /* P^2 U_k^2 = U_k^2 */ |
115 | 0 | mpz_sub (T2, T2, T1); |
116 | 0 | ASSERT (SIZ (T2) == 0 || PTR (T2) [0] % 4 == 0); |
117 | 0 | mpz_tdiv_q_2exp (T2, T2, 2); /* (V_k^2 - P^2 U_k^2) / 4 */ |
118 | 0 | if (Q > 0) /* (V_k^2 - (P^2 -4Q) U_k^2) / 4 = Q^k */ |
119 | 0 | mpz_addmul_ui (T2, T1, Q); |
120 | 0 | else |
121 | 0 | mpz_submul_ui (T2, T1, NEG_CAST (unsigned long, Q)); |
122 | 0 | mpz_tdiv_r (Qk, T2, n); |
123 | 0 | } |
124 | 0 | } |
125 | |
|
126 | 0 | return res; |
127 | 0 | } |