Line | Count | Source (jump to first uncovered line) |
1 | | /* mpz_probab_prime_p -- |
2 | | An implementation of the probabilistic primality test found in Knuth's |
3 | | Seminumerical Algorithms book. If the function mpz_probab_prime_p() |
4 | | returns 0 then n is not prime. If it returns 1, then n is 'probably' |
5 | | prime. If it returns 2, n is surely prime. The probability of a false |
6 | | positive is (1/4)**reps, where reps is the number of internal passes of the |
7 | | probabilistic algorithm. Knuth indicates that 25 passes are reasonable. |
8 | | |
9 | | Copyright 1991, 1993, 1994, 1996-2002, 2005, 2015, 2016 Free Software |
10 | | Foundation, Inc. |
11 | | |
12 | | This file is part of the GNU MP Library. |
13 | | |
14 | | The GNU MP Library is free software; you can redistribute it and/or modify |
15 | | it under the terms of either: |
16 | | |
17 | | * the GNU Lesser General Public License as published by the Free |
18 | | Software Foundation; either version 3 of the License, or (at your |
19 | | option) any later version. |
20 | | |
21 | | or |
22 | | |
23 | | * the GNU General Public License as published by the Free Software |
24 | | Foundation; either version 2 of the License, or (at your option) any |
25 | | later version. |
26 | | |
27 | | or both in parallel, as here. |
28 | | |
29 | | The GNU MP Library is distributed in the hope that it will be useful, but |
30 | | WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY |
31 | | or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License |
32 | | for more details. |
33 | | |
34 | | You should have received copies of the GNU General Public License and the |
35 | | GNU Lesser General Public License along with the GNU MP Library. If not, |
36 | | see https://www.gnu.org/licenses/. */ |
37 | | |
38 | | #include "gmp-impl.h" |
39 | | #include "longlong.h" |
40 | | |
41 | | static int isprime (unsigned long int); |
42 | | |
43 | | |
44 | | /* MPN_MOD_OR_MODEXACT_1_ODD can be used instead of mpn_mod_1 for the trial |
45 | | division. It gives a result which is not the actual remainder r but a |
46 | | value congruent to r*2^n mod d. Since all the primes being tested are |
47 | | odd, r*2^n mod p will be 0 if and only if r mod p is 0. */ |
48 | | |
49 | | int |
50 | | mpz_probab_prime_p (mpz_srcptr n, int reps) |
51 | 0 | { |
52 | 0 | mp_limb_t r; |
53 | 0 | mpz_t n2; |
54 | | |
55 | | /* Handle small and negative n. */ |
56 | 0 | if (mpz_cmp_ui (n, 1000000L) <= 0) |
57 | 0 | { |
58 | 0 | if (mpz_cmpabs_ui (n, 1000000L) <= 0) |
59 | 0 | { |
60 | 0 | int is_prime; |
61 | 0 | unsigned long n0; |
62 | 0 | n0 = mpz_get_ui (n); |
63 | 0 | is_prime = n0 & (n0 > 1) ? isprime (n0) : n0 == 2; |
64 | 0 | return is_prime ? 2 : 0; |
65 | 0 | } |
66 | | /* Negative number. Negate and fall out. */ |
67 | 0 | PTR(n2) = PTR(n); |
68 | 0 | SIZ(n2) = -SIZ(n); |
69 | 0 | n = n2; |
70 | 0 | } |
71 | | |
72 | | /* If n is now even, it is not a prime. */ |
73 | 0 | if (mpz_even_p (n)) |
74 | 0 | return 0; |
75 | | |
76 | 0 | #if defined (PP) |
77 | | /* Check if n has small factors. */ |
78 | 0 | #if defined (PP_INVERTED) |
79 | 0 | r = MPN_MOD_OR_PREINV_MOD_1 (PTR(n), (mp_size_t) SIZ(n), (mp_limb_t) PP, |
80 | 0 | (mp_limb_t) PP_INVERTED); |
81 | | #else |
82 | | r = mpn_mod_1 (PTR(n), (mp_size_t) SIZ(n), (mp_limb_t) PP); |
83 | | #endif |
84 | 0 | if (r % 3 == 0 |
85 | 0 | #if GMP_LIMB_BITS >= 4 |
86 | 0 | || r % 5 == 0 |
87 | 0 | #endif |
88 | 0 | #if GMP_LIMB_BITS >= 8 |
89 | 0 | || r % 7 == 0 |
90 | 0 | #endif |
91 | 0 | #if GMP_LIMB_BITS >= 16 |
92 | 0 | || r % 11 == 0 || r % 13 == 0 |
93 | 0 | #endif |
94 | 0 | #if GMP_LIMB_BITS >= 32 |
95 | 0 | || r % 17 == 0 || r % 19 == 0 || r % 23 == 0 || r % 29 == 0 |
96 | 0 | #endif |
97 | 0 | #if GMP_LIMB_BITS >= 64 |
98 | 0 | || r % 31 == 0 || r % 37 == 0 || r % 41 == 0 || r % 43 == 0 |
99 | 0 | || r % 47 == 0 || r % 53 == 0 |
100 | 0 | #endif |
101 | 0 | ) |
102 | 0 | { |
103 | 0 | return 0; |
104 | 0 | } |
105 | 0 | #endif /* PP */ |
106 | | |
107 | | /* Do more dividing. We collect small primes, using umul_ppmm, until we |
108 | | overflow a single limb. We divide our number by the small primes product, |
109 | | and look for factors in the remainder. */ |
110 | 0 | { |
111 | 0 | unsigned long int ln2; |
112 | 0 | unsigned long int q; |
113 | 0 | mp_limb_t p1, p0, p; |
114 | 0 | unsigned int primes[15]; |
115 | 0 | int nprimes; |
116 | |
|
117 | 0 | nprimes = 0; |
118 | 0 | p = 1; |
119 | 0 | ln2 = mpz_sizeinbase (n, 2); /* FIXME: tune this limit */ |
120 | 0 | for (q = PP_FIRST_OMITTED; q < ln2; q += 2) |
121 | 0 | { |
122 | 0 | if (isprime (q)) |
123 | 0 | { |
124 | 0 | umul_ppmm (p1, p0, p, q); |
125 | 0 | if (p1 != 0) |
126 | 0 | { |
127 | 0 | r = MPN_MOD_OR_MODEXACT_1_ODD (PTR(n), (mp_size_t) SIZ(n), p); |
128 | 0 | while (--nprimes >= 0) |
129 | 0 | if (r % primes[nprimes] == 0) |
130 | 0 | { |
131 | 0 | ASSERT_ALWAYS (mpn_mod_1 (PTR(n), (mp_size_t) SIZ(n), (mp_limb_t) primes[nprimes]) == 0); |
132 | 0 | return 0; |
133 | 0 | } |
134 | 0 | p = q; |
135 | 0 | nprimes = 0; |
136 | 0 | } |
137 | 0 | else |
138 | 0 | { |
139 | 0 | p = p0; |
140 | 0 | } |
141 | 0 | primes[nprimes++] = q; |
142 | 0 | } |
143 | 0 | } |
144 | 0 | } |
145 | | |
146 | | /* Perform a number of Miller-Rabin tests. */ |
147 | 0 | return mpz_millerrabin (n, reps); |
148 | 0 | } |
149 | | |
150 | | static int |
151 | | isprime (unsigned long int t) |
152 | 0 | { |
153 | 0 | unsigned long int q, r, d; |
154 | |
|
155 | 0 | ASSERT (t >= 3 && (t & 1) != 0); |
156 | |
|
157 | 0 | d = 3; |
158 | 0 | do { |
159 | 0 | q = t / d; |
160 | 0 | r = t - q * d; |
161 | 0 | if (q < d) |
162 | 0 | return 1; |
163 | 0 | d += 2; |
164 | 0 | } while (r != 0); |
165 | 0 | return 0; |
166 | 0 | } |