Coverage Report

Created: 2025-03-18 06:55

/src/gmp/mpz/pprime_p.c
Line
Count
Source (jump to first uncovered line)
1
/* mpz_probab_prime_p --
2
   An implementation of the probabilistic primality test found in Knuth's
3
   Seminumerical Algorithms book.  If the function mpz_probab_prime_p()
4
   returns 0 then n is not prime.  If it returns 1, then n is 'probably'
5
   prime.  If it returns 2, n is surely prime.  The probability of a false
6
   positive is (1/4)**reps, where reps is the number of internal passes of the
7
   probabilistic algorithm.  Knuth indicates that 25 passes are reasonable.
8
9
Copyright 1991, 1993, 1994, 1996-2002, 2005, 2015, 2016 Free Software
10
Foundation, Inc.
11
12
This file is part of the GNU MP Library.
13
14
The GNU MP Library is free software; you can redistribute it and/or modify
15
it under the terms of either:
16
17
  * the GNU Lesser General Public License as published by the Free
18
    Software Foundation; either version 3 of the License, or (at your
19
    option) any later version.
20
21
or
22
23
  * the GNU General Public License as published by the Free Software
24
    Foundation; either version 2 of the License, or (at your option) any
25
    later version.
26
27
or both in parallel, as here.
28
29
The GNU MP Library is distributed in the hope that it will be useful, but
30
WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
31
or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
32
for more details.
33
34
You should have received copies of the GNU General Public License and the
35
GNU Lesser General Public License along with the GNU MP Library.  If not,
36
see https://www.gnu.org/licenses/.  */
37
38
#include "gmp-impl.h"
39
#include "longlong.h"
40
41
static int isprime (unsigned long int);
42
43
44
/* MPN_MOD_OR_MODEXACT_1_ODD can be used instead of mpn_mod_1 for the trial
45
   division.  It gives a result which is not the actual remainder r but a
46
   value congruent to r*2^n mod d.  Since all the primes being tested are
47
   odd, r*2^n mod p will be 0 if and only if r mod p is 0.  */
48
49
int
50
mpz_probab_prime_p (mpz_srcptr n, int reps)
51
0
{
52
0
  mp_limb_t r;
53
0
  mpz_t n2;
54
55
  /* Handle small and negative n.  */
56
0
  if (mpz_cmp_ui (n, 1000000L) <= 0)
57
0
    {
58
0
      if (mpz_cmpabs_ui (n, 1000000L) <= 0)
59
0
  {
60
0
    int is_prime;
61
0
    unsigned long n0;
62
0
    n0 = mpz_get_ui (n);
63
0
    is_prime = n0 & (n0 > 1) ? isprime (n0) : n0 == 2;
64
0
    return is_prime ? 2 : 0;
65
0
  }
66
      /* Negative number.  Negate and fall out.  */
67
0
      PTR(n2) = PTR(n);
68
0
      SIZ(n2) = -SIZ(n);
69
0
      n = n2;
70
0
    }
71
72
  /* If n is now even, it is not a prime.  */
73
0
  if (mpz_even_p (n))
74
0
    return 0;
75
76
0
#if defined (PP)
77
  /* Check if n has small factors.  */
78
0
#if defined (PP_INVERTED)
79
0
  r = MPN_MOD_OR_PREINV_MOD_1 (PTR(n), (mp_size_t) SIZ(n), (mp_limb_t) PP,
80
0
             (mp_limb_t) PP_INVERTED);
81
#else
82
  r = mpn_mod_1 (PTR(n), (mp_size_t) SIZ(n), (mp_limb_t) PP);
83
#endif
84
0
  if (r % 3 == 0
85
0
#if GMP_LIMB_BITS >= 4
86
0
      || r % 5 == 0
87
0
#endif
88
0
#if GMP_LIMB_BITS >= 8
89
0
      || r % 7 == 0
90
0
#endif
91
0
#if GMP_LIMB_BITS >= 16
92
0
      || r % 11 == 0 || r % 13 == 0
93
0
#endif
94
0
#if GMP_LIMB_BITS >= 32
95
0
      || r % 17 == 0 || r % 19 == 0 || r % 23 == 0 || r % 29 == 0
96
0
#endif
97
0
#if GMP_LIMB_BITS >= 64
98
0
      || r % 31 == 0 || r % 37 == 0 || r % 41 == 0 || r % 43 == 0
99
0
      || r % 47 == 0 || r % 53 == 0
100
0
#endif
101
0
      )
102
0
    {
103
0
      return 0;
104
0
    }
105
0
#endif /* PP */
106
107
  /* Do more dividing.  We collect small primes, using umul_ppmm, until we
108
     overflow a single limb.  We divide our number by the small primes product,
109
     and look for factors in the remainder.  */
110
0
  {
111
0
    unsigned long int ln2;
112
0
    unsigned long int q;
113
0
    mp_limb_t p1, p0, p;
114
0
    unsigned int primes[15];
115
0
    int nprimes;
116
117
0
    nprimes = 0;
118
0
    p = 1;
119
0
    ln2 = mpz_sizeinbase (n, 2);  /* FIXME: tune this limit */
120
0
    for (q = PP_FIRST_OMITTED; q < ln2; q += 2)
121
0
      {
122
0
  if (isprime (q))
123
0
    {
124
0
      umul_ppmm (p1, p0, p, q);
125
0
      if (p1 != 0)
126
0
        {
127
0
    r = MPN_MOD_OR_MODEXACT_1_ODD (PTR(n), (mp_size_t) SIZ(n), p);
128
0
    while (--nprimes >= 0)
129
0
      if (r % primes[nprimes] == 0)
130
0
        {
131
0
          ASSERT_ALWAYS (mpn_mod_1 (PTR(n), (mp_size_t) SIZ(n), (mp_limb_t) primes[nprimes]) == 0);
132
0
          return 0;
133
0
        }
134
0
    p = q;
135
0
    nprimes = 0;
136
0
        }
137
0
      else
138
0
        {
139
0
    p = p0;
140
0
        }
141
0
      primes[nprimes++] = q;
142
0
    }
143
0
      }
144
0
  }
145
146
  /* Perform a number of Miller-Rabin tests.  */
147
0
  return mpz_millerrabin (n, reps);
148
0
}
149
150
static int
151
isprime (unsigned long int t)
152
0
{
153
0
  unsigned long int q, r, d;
154
155
0
  ASSERT (t >= 3 && (t & 1) != 0);
156
157
0
  d = 3;
158
0
  do {
159
0
      q = t / d;
160
0
      r = t - q * d;
161
0
      if (q < d)
162
0
  return 1;
163
0
      d += 2;
164
0
  } while (r != 0);
165
0
  return 0;
166
0
}