/src/gmp/mpz/stronglucas.c
Line | Count | Source (jump to first uncovered line) |
1 | | /* mpz_stronglucas(n, t1, t2) -- An implementation of the strong Lucas |
2 | | primality test on n, using parameters as suggested by the BPSW test. |
3 | | |
4 | | THE FUNCTIONS IN THIS FILE ARE FOR INTERNAL USE ONLY. THEY'RE ALMOST |
5 | | CERTAIN TO BE SUBJECT TO INCOMPATIBLE CHANGES OR DISAPPEAR COMPLETELY IN |
6 | | FUTURE GNU MP RELEASES. |
7 | | |
8 | | Copyright 2018, 2020 Free Software Foundation, Inc. |
9 | | |
10 | | Contributed by Marco Bodrato. |
11 | | |
12 | | This file is part of the GNU MP Library. |
13 | | |
14 | | The GNU MP Library is free software; you can redistribute it and/or modify |
15 | | it under the terms of either: |
16 | | |
17 | | * the GNU Lesser General Public License as published by the Free |
18 | | Software Foundation; either version 3 of the License, or (at your |
19 | | option) any later version. |
20 | | |
21 | | or |
22 | | |
23 | | * the GNU General Public License as published by the Free Software |
24 | | Foundation; either version 2 of the License, or (at your option) any |
25 | | later version. |
26 | | |
27 | | or both in parallel, as here. |
28 | | |
29 | | The GNU MP Library is distributed in the hope that it will be useful, but |
30 | | WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY |
31 | | or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License |
32 | | for more details. |
33 | | |
34 | | You should have received copies of the GNU General Public License and the |
35 | | GNU Lesser General Public License along with the GNU MP Library. If not, |
36 | | see https://www.gnu.org/licenses/. */ |
37 | | |
38 | | #include "gmp-impl.h" |
39 | | #include "longlong.h" |
40 | | |
41 | | /* Returns an approximation of the sqare root of x. |
42 | | * It gives: |
43 | | * limb_apprsqrt (x) ^ 2 <= x < (limb_apprsqrt (x)+1) ^ 2 |
44 | | * or |
45 | | * x <= limb_apprsqrt (x) ^ 2 <= x * 9/8 |
46 | | */ |
47 | | static mp_limb_t |
48 | | limb_apprsqrt (mp_limb_t x) |
49 | 0 | { |
50 | 0 | int s; |
51 | |
|
52 | 0 | ASSERT (x > 2); |
53 | 0 | count_leading_zeros (s, x); |
54 | 0 | s = (GMP_LIMB_BITS - s) >> 1; |
55 | 0 | return ((CNST_LIMB(1) << (s - 1)) + (x >> 1 >> s)); |
56 | 0 | } |
57 | | |
58 | | static int |
59 | | mpz_oddjacobi_ui (mpz_t b, mp_limb_t a) |
60 | 0 | { |
61 | 0 | mp_limb_t b_rem; |
62 | 0 | int result_bit1; |
63 | |
|
64 | 0 | ASSERT (a & 1); |
65 | 0 | ASSERT (a > 1); |
66 | 0 | ASSERT (SIZ (b) > 0); |
67 | 0 | ASSERT ((*PTR (b) & 1) == 1); |
68 | |
|
69 | 0 | result_bit1 = 0; |
70 | 0 | JACOBI_MOD_OR_MODEXACT_1_ODD (result_bit1, b_rem, PTR (b), SIZ (b), a); |
71 | 0 | if (UNLIKELY (b_rem == 0)) |
72 | 0 | return 0; |
73 | 0 | else |
74 | 0 | return mpn_jacobi_base (b_rem, a, result_bit1); |
75 | 0 | } |
76 | | |
77 | | |
78 | | /* Performs strong Lucas' test on x, with parameters suggested */ |
79 | | /* for the BPSW test. Qk and V are passed to recycle variables. */ |
80 | | /* Requires GCD (x,6) = 1.*/ |
81 | | int |
82 | | mpz_stronglucas (mpz_srcptr x, mpz_ptr V, mpz_ptr Qk) |
83 | 0 | { |
84 | 0 | mp_bitcnt_t b0; |
85 | 0 | mpz_t n; |
86 | 0 | mp_limb_t D; /* The absolute value is stored. */ |
87 | 0 | mp_limb_t g; |
88 | 0 | long Q; |
89 | 0 | mpz_t T1, T2; |
90 | | |
91 | | /* Test on the absolute value. */ |
92 | 0 | mpz_roinit_n (n, PTR (x), ABSIZ (x)); |
93 | |
|
94 | 0 | ASSERT (mpz_odd_p (n)); |
95 | | /* ASSERT (mpz_gcd_ui (NULL, n, 6) == 1); */ |
96 | 0 | #if GMP_NUMB_BITS % 16 == 0 |
97 | | /* (2^12 - 1) | (2^{GMP_NUMB_BITS*3/4} - 1) */ |
98 | 0 | g = mpn_mod_34lsub1 (PTR (n), SIZ (n)); |
99 | | /* (2^12 - 1) = 3^2 * 5 * 7 * 13 */ |
100 | 0 | ASSERT (g % 3 != 0 && g % 5 != 0 && g % 7 != 0); |
101 | 0 | if ((g % 5 & 2) != 0) |
102 | | /* (5/n) = -1, iff n = 2 or 3 (mod 5) */ |
103 | | /* D = 5; Q = -1 */ |
104 | 0 | return mpn_strongfibo (PTR (n), SIZ (n), PTR (V)); |
105 | 0 | else if (! POW2_P (g % 7)) |
106 | | /* (-7/n) = -1, iff n = 3,5 or 6 (mod 7) */ |
107 | 0 | D = 7; /* Q = 2 */ |
108 | | /* (9/n) = -1, never: 9 = 3^2 */ |
109 | 0 | else if (mpz_oddjacobi_ui (n, 11) == -1) |
110 | | /* (-11/n) = (n/11) */ |
111 | 0 | D = 11; /* Q = 3 */ |
112 | 0 | else if ((((g % 13 - (g % 13 >> 3)) & 7) > 4) || |
113 | 0 | (((g % 13 - (g % 13 >> 3)) & 7) == 2)) |
114 | | /* (13/n) = -1, iff n = 2,5,6,7,8 or 11 (mod 13) */ |
115 | 0 | D = 13; /* Q = -3 */ |
116 | 0 | else if (g % 3 == 2) |
117 | | /* (-15/n) = (n/15) = (n/5)*(n/3) */ |
118 | | /* Here, (n/5) = 1, and */ |
119 | | /* (n/3) = -1, iff n = 2 (mod 3) */ |
120 | 0 | D = 15; /* Q = 4 */ |
121 | 0 | #if GMP_NUMB_BITS % 32 == 0 |
122 | | /* (2^24 - 1) | (2^{GMP_NUMB_BITS*3/4} - 1) */ |
123 | | /* (2^24 - 1) = (2^12 - 1) * 17 * 241 */ |
124 | 0 | else if (! POW2_P (g % 17) && ! POW2_P (17 - g % 17)) |
125 | | /* (17/n) = -1, iff n != +-1,+-2,+-4,+-8 (mod 17) */ |
126 | 0 | D = 17; /* Q = -4 */ |
127 | 0 | #endif |
128 | | #else |
129 | | if (mpz_oddjacobi_ui (n, 5) == -1) |
130 | | return mpn_strongfibo (PTR (n), SIZ (n), PTR (V)); |
131 | | #endif |
132 | 0 | else |
133 | 0 | { |
134 | 0 | mp_limb_t maxD; |
135 | 0 | int jac; |
136 | | |
137 | | /* n is odd, to possibly be a square, n % 8 = 1 is needed. */ |
138 | 0 | if (((*PTR (n) & 6) == 0) && UNLIKELY (mpz_perfect_square_p (n))) |
139 | 0 | return 0; /* A square is composite. */ |
140 | | |
141 | | /* Check Ds up to square root (in case, n is prime) |
142 | | or avoid overflows */ |
143 | 0 | if (SIZ (n) == 1) |
144 | 0 | maxD = limb_apprsqrt (* PTR (n)); |
145 | 0 | else if (BITS_PER_ULONG >= GMP_NUMB_BITS && SIZ (n) == 2) |
146 | 0 | mpn_sqrtrem (&maxD, (mp_ptr) NULL, PTR (n), 2); |
147 | 0 | else |
148 | 0 | maxD = GMP_NUMB_MAX; |
149 | 0 | maxD = MIN (maxD, ULONG_MAX); |
150 | |
|
151 | 0 | unsigned Ddiff = 2; |
152 | 0 | #if GMP_NUMB_BITS % 16 == 0 |
153 | 0 | const unsigned D2 = 6; |
154 | 0 | #if GMP_NUMB_BITS % 32 == 0 |
155 | 0 | D = 19; |
156 | 0 | Ddiff = 4; |
157 | | #else |
158 | | D = 17; |
159 | | #endif |
160 | | #else |
161 | | const unsigned D2 = 4; |
162 | | D = 7; |
163 | | #endif |
164 | | |
165 | | /* Search a D such that (D/n) = -1 in the sequence 5,-7,9,-11,.. */ |
166 | | /* For those Ds we have (D/n) = (n/|D|) */ |
167 | | /* FIXME: Should we loop only on prime Ds? */ |
168 | | /* The only interesting composite D is 15, because 3 is not tested. */ |
169 | 0 | for (;;) |
170 | 0 | { |
171 | 0 | jac = mpz_oddjacobi_ui (n, D); |
172 | 0 | if (jac != 1) |
173 | 0 | break; |
174 | 0 | if (UNLIKELY (D >= maxD)) |
175 | 0 | return 1; |
176 | 0 | D += Ddiff; |
177 | 0 | Ddiff = D2 - Ddiff; |
178 | 0 | } |
179 | | |
180 | 0 | if (UNLIKELY (jac == 0)) |
181 | 0 | return 0; |
182 | 0 | } |
183 | | |
184 | | /* D= P^2 - 4Q; P = 1; Q = (1-D)/4 */ |
185 | 0 | Q = (D & 2) ? (D >> 2) + 1 : -(long) (D >> 2); |
186 | | /* ASSERT (mpz_si_kronecker ((D & 2) ? NEG_CAST (long, D) : D, n) == -1); */ |
187 | | |
188 | | /* n-(D/n) = n+1 = d*2^{b0}, with d = (n>>b0) | 1 */ |
189 | 0 | b0 = mpz_scan0 (n, 0); |
190 | |
|
191 | 0 | mpz_init (T1); |
192 | 0 | mpz_init (T2); |
193 | | |
194 | | /* If Ud != 0 && Vd != 0 */ |
195 | 0 | if (mpz_lucas_mod (V, Qk, Q, b0, n, T1, T2) == 0) |
196 | 0 | if (LIKELY (--b0 != 0)) |
197 | 0 | for (;;) |
198 | 0 | { |
199 | | /* V_{2k} <- V_k ^ 2 - 2Q^k */ |
200 | 0 | mpz_mul (T2, V, V); |
201 | 0 | mpz_submul_ui (T2, Qk, 2); |
202 | 0 | mpz_tdiv_r (V, T2, n); |
203 | 0 | if (SIZ (V) == 0 || UNLIKELY (--b0 == 0)) |
204 | 0 | break; |
205 | | /* Q^{2k} = (Q^k)^2 */ |
206 | 0 | mpz_mul (T2, Qk, Qk); |
207 | 0 | mpz_tdiv_r (Qk, T2, n); |
208 | 0 | } |
209 | |
|
210 | 0 | mpz_clear (T1); |
211 | 0 | mpz_clear (T2); |
212 | |
|
213 | 0 | return (b0 != 0); |
214 | 0 | } |