Coverage Report

Created: 2025-03-18 06:55

/src/gnutls/lib/accelerated/x86/aes-gcm-x86-pclmul.c
Line
Count
Source (jump to first uncovered line)
1
/*
2
 * Copyright (C) 2011-2012 Free Software Foundation, Inc.
3
 * Copyright (C) 2018 Red Hat, Inc.
4
 *
5
 * Author: Nikos Mavrogiannopoulos
6
 *
7
 * This file is part of GnuTLS.
8
 *
9
 * The GnuTLS is free software; you can redistribute it and/or
10
 * modify it under the terms of the GNU Lesser General Public License
11
 * as published by the Free Software Foundation; either version 2.1 of
12
 * the License, or (at your option) any later version.
13
 *
14
 * This library is distributed in the hope that it will be useful, but
15
 * WITHOUT ANY WARRANTY; without even the implied warranty of
16
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
17
 * Lesser General Public License for more details.
18
 *
19
 * You should have received a copy of the GNU Lesser General Public License
20
 * along with this program.  If not, see <https://www.gnu.org/licenses/>
21
 *
22
 */
23
24
/*
25
 * The following code is an implementation of the AES-128-GCM cipher
26
 * using intel's AES instruction set.
27
 */
28
29
#include "errors.h"
30
#include "gnutls_int.h"
31
#include <gnutls/crypto.h>
32
#include "errors.h"
33
#include "aes-x86.h"
34
#include "x86-common.h"
35
#include <nettle/memxor.h>
36
#include <byteswap.h>
37
38
0
#define GCM_BLOCK_SIZE 16
39
40
/* GCM mode */
41
42
typedef struct {
43
  uint64_t hi, lo;
44
} u128;
45
46
/* This is the gcm128 structure used in openssl. It
47
 * is compatible with the included assembly code.
48
 */
49
struct gcm128_context {
50
  union {
51
    uint64_t u[2];
52
    uint32_t d[4];
53
    uint8_t c[16];
54
  } Yi, EKi, EK0, len, Xi, H;
55
  u128 Htable[16];
56
};
57
58
struct aes_gcm_ctx {
59
  AES_KEY expanded_key;
60
  struct gcm128_context gcm;
61
  unsigned finished;
62
  unsigned auth_finished;
63
  size_t rekey_counter;
64
};
65
66
void gcm_init_clmul(u128 Htable[16], const uint64_t Xi[2]);
67
void gcm_ghash_clmul(uint64_t Xi[2], const u128 Htable[16], const uint8_t *inp,
68
         size_t len);
69
void gcm_gmult_clmul(uint64_t Xi[2], const u128 Htable[16]);
70
71
static void aes_gcm_deinit(void *_ctx)
72
0
{
73
0
  struct aes_gcm_ctx *ctx = _ctx;
74
75
0
  zeroize_temp_key(ctx, sizeof(*ctx));
76
0
  gnutls_free(ctx);
77
0
}
78
79
static int aes_gcm_cipher_init(gnutls_cipher_algorithm_t algorithm, void **_ctx,
80
             int enc)
81
0
{
82
  /* we use key size to distinguish */
83
0
  if (algorithm != GNUTLS_CIPHER_AES_128_GCM &&
84
0
      algorithm != GNUTLS_CIPHER_AES_192_GCM &&
85
0
      algorithm != GNUTLS_CIPHER_AES_256_GCM)
86
0
    return GNUTLS_E_INVALID_REQUEST;
87
88
0
  *_ctx = gnutls_calloc(1, sizeof(struct aes_gcm_ctx));
89
0
  if (*_ctx == NULL) {
90
0
    gnutls_assert();
91
0
    return GNUTLS_E_MEMORY_ERROR;
92
0
  }
93
94
0
  return 0;
95
0
}
96
97
static int aes_gcm_cipher_setkey(void *_ctx, const void *userkey,
98
         size_t keysize)
99
0
{
100
0
  struct aes_gcm_ctx *ctx = _ctx;
101
0
  int ret;
102
103
0
  CHECK_AES_KEYSIZE(keysize);
104
105
0
  ret = aesni_set_encrypt_key(userkey, keysize * 8,
106
0
            ALIGN16(&ctx->expanded_key));
107
0
  if (ret != 0)
108
0
    return gnutls_assert_val(GNUTLS_E_ENCRYPTION_FAILED);
109
110
0
  aesni_ecb_encrypt(ctx->gcm.H.c, ctx->gcm.H.c, GCM_BLOCK_SIZE,
111
0
        ALIGN16(&ctx->expanded_key), 1);
112
113
0
  ctx->gcm.H.u[0] = bswap_64(ctx->gcm.H.u[0]);
114
0
  ctx->gcm.H.u[1] = bswap_64(ctx->gcm.H.u[1]);
115
116
0
  gcm_init_clmul(ctx->gcm.Htable, ctx->gcm.H.u);
117
118
0
  ctx->rekey_counter = 0;
119
0
  return 0;
120
0
}
121
122
static int aes_gcm_setiv(void *_ctx, const void *iv, size_t iv_size)
123
0
{
124
0
  struct aes_gcm_ctx *ctx = _ctx;
125
126
0
  if (iv_size != GCM_BLOCK_SIZE - 4)
127
0
    return gnutls_assert_val(GNUTLS_E_INVALID_REQUEST);
128
129
0
  memset(ctx->gcm.Xi.c, 0, sizeof(ctx->gcm.Xi.c));
130
0
  memset(ctx->gcm.len.c, 0, sizeof(ctx->gcm.len.c));
131
132
0
  memcpy(ctx->gcm.Yi.c, iv, GCM_BLOCK_SIZE - 4);
133
0
  ctx->gcm.Yi.c[GCM_BLOCK_SIZE - 4] = 0;
134
0
  ctx->gcm.Yi.c[GCM_BLOCK_SIZE - 3] = 0;
135
0
  ctx->gcm.Yi.c[GCM_BLOCK_SIZE - 2] = 0;
136
0
  ctx->gcm.Yi.c[GCM_BLOCK_SIZE - 1] = 1;
137
138
0
  aesni_ecb_encrypt(ctx->gcm.Yi.c, ctx->gcm.EK0.c, GCM_BLOCK_SIZE,
139
0
        ALIGN16(&ctx->expanded_key), 1);
140
0
  ctx->gcm.Yi.c[GCM_BLOCK_SIZE - 1] = 2;
141
0
  ctx->finished = 0;
142
0
  ctx->auth_finished = 0;
143
0
  ctx->rekey_counter = 0;
144
0
  return 0;
145
0
}
146
147
static void gcm_ghash(struct aes_gcm_ctx *ctx, const uint8_t *src,
148
          size_t src_size)
149
0
{
150
0
  size_t rest = src_size % GCM_BLOCK_SIZE;
151
0
  size_t aligned_size = src_size - rest;
152
153
0
  if (aligned_size > 0)
154
0
    gcm_ghash_clmul(ctx->gcm.Xi.u, ctx->gcm.Htable, src,
155
0
        aligned_size);
156
157
0
  if (rest > 0) {
158
0
    memxor(ctx->gcm.Xi.c, src + aligned_size, rest);
159
0
    gcm_gmult_clmul(ctx->gcm.Xi.u, ctx->gcm.Htable);
160
0
  }
161
0
}
162
163
static inline void ctr_encrypt_last(struct aes_gcm_ctx *ctx, const uint8_t *src,
164
            uint8_t *dst, size_t pos, size_t length)
165
0
{
166
0
  uint8_t tmp[GCM_BLOCK_SIZE];
167
0
  uint8_t out[GCM_BLOCK_SIZE];
168
169
0
  memcpy(tmp, &src[pos], length);
170
0
  aesni_ctr32_encrypt_blocks(tmp, out, 1, ALIGN16(&ctx->expanded_key),
171
0
           ctx->gcm.Yi.c);
172
173
0
  memcpy(&dst[pos], out, length);
174
0
}
175
176
static int aes_gcm_encrypt(void *_ctx, const void *src, size_t src_size,
177
         void *dst, size_t length)
178
0
{
179
0
  struct aes_gcm_ctx *ctx = _ctx;
180
0
  int blocks = src_size / GCM_BLOCK_SIZE;
181
0
  int exp_blocks = blocks * GCM_BLOCK_SIZE;
182
0
  int rest = src_size - (exp_blocks);
183
0
  uint32_t counter;
184
0
  int ret;
185
186
0
  if (unlikely(ctx->finished))
187
0
    return gnutls_assert_val(GNUTLS_E_INVALID_REQUEST);
188
189
0
  if (unlikely(length < src_size))
190
0
    return gnutls_assert_val(GNUTLS_E_SHORT_MEMORY_BUFFER);
191
192
0
  ret = record_aes_gcm_encrypt_size(&ctx->rekey_counter, src_size);
193
0
  if (ret < 0) {
194
0
    return gnutls_assert_val(ret);
195
0
  }
196
197
0
  if (blocks > 0) {
198
0
    aesni_ctr32_encrypt_blocks(src, dst, blocks,
199
0
             ALIGN16(&ctx->expanded_key),
200
0
             ctx->gcm.Yi.c);
201
202
0
    counter = _gnutls_read_uint32(ctx->gcm.Yi.c + 12);
203
0
    counter += blocks;
204
0
    _gnutls_write_uint32(counter, ctx->gcm.Yi.c + 12);
205
0
  }
206
207
0
  if (rest > 0) { /* last incomplete block */
208
0
    ctr_encrypt_last(ctx, src, dst, exp_blocks, rest);
209
0
    ctx->finished = 1;
210
0
  }
211
212
0
  gcm_ghash(ctx, dst, src_size);
213
0
  ctx->gcm.len.u[1] += src_size;
214
215
0
  return 0;
216
0
}
217
218
static int aes_gcm_decrypt(void *_ctx, const void *src, size_t src_size,
219
         void *dst, size_t dst_size)
220
0
{
221
0
  struct aes_gcm_ctx *ctx = _ctx;
222
0
  int blocks = src_size / GCM_BLOCK_SIZE;
223
0
  int exp_blocks = blocks * GCM_BLOCK_SIZE;
224
0
  int rest = src_size - (exp_blocks);
225
0
  uint32_t counter;
226
227
0
  if (unlikely(ctx->finished))
228
0
    return gnutls_assert_val(GNUTLS_E_INVALID_REQUEST);
229
230
0
  if (unlikely(dst_size < src_size))
231
0
    return gnutls_assert_val(GNUTLS_E_SHORT_MEMORY_BUFFER);
232
233
0
  gcm_ghash(ctx, src, src_size);
234
0
  ctx->gcm.len.u[1] += src_size;
235
236
0
  if (blocks > 0) {
237
0
    aesni_ctr32_encrypt_blocks(src, dst, blocks,
238
0
             ALIGN16(&ctx->expanded_key),
239
0
             ctx->gcm.Yi.c);
240
241
0
    counter = _gnutls_read_uint32(ctx->gcm.Yi.c + 12);
242
0
    counter += blocks;
243
0
    _gnutls_write_uint32(counter, ctx->gcm.Yi.c + 12);
244
0
  }
245
246
0
  if (rest > 0) { /* last incomplete block */
247
0
    ctr_encrypt_last(ctx, src, dst, exp_blocks, rest);
248
0
    ctx->finished = 1;
249
0
  }
250
251
0
  return 0;
252
0
}
253
254
static int aes_gcm_auth(void *_ctx, const void *src, size_t src_size)
255
0
{
256
0
  struct aes_gcm_ctx *ctx = _ctx;
257
258
0
  if (unlikely(ctx->auth_finished))
259
0
    return gnutls_assert_val(GNUTLS_E_INVALID_REQUEST);
260
261
0
  gcm_ghash(ctx, src, src_size);
262
0
  ctx->gcm.len.u[0] += src_size;
263
264
0
  if (src_size % GCM_BLOCK_SIZE != 0)
265
0
    ctx->auth_finished = 1;
266
267
0
  return 0;
268
0
}
269
270
static void aes_gcm_tag(void *_ctx, void *tag, size_t tagsize)
271
0
{
272
0
  struct aes_gcm_ctx *ctx = _ctx;
273
0
  uint8_t buffer[GCM_BLOCK_SIZE];
274
0
  uint64_t alen, clen;
275
276
0
  alen = ctx->gcm.len.u[0] * 8;
277
0
  clen = ctx->gcm.len.u[1] * 8;
278
279
0
  _gnutls_write_uint64(alen, buffer);
280
0
  _gnutls_write_uint64(clen, &buffer[8]);
281
282
0
  gcm_ghash_clmul(ctx->gcm.Xi.u, ctx->gcm.Htable, buffer, GCM_BLOCK_SIZE);
283
284
0
  ctx->gcm.Xi.u[0] ^= ctx->gcm.EK0.u[0];
285
0
  ctx->gcm.Xi.u[1] ^= ctx->gcm.EK0.u[1];
286
287
0
  memcpy(tag, ctx->gcm.Xi.c, MIN(GCM_BLOCK_SIZE, tagsize));
288
0
}
289
290
#include "aes-gcm-aead.h"
291
292
const gnutls_crypto_cipher_st _gnutls_aes_gcm_pclmul = {
293
  .init = aes_gcm_cipher_init,
294
  .setkey = aes_gcm_cipher_setkey,
295
  .setiv = aes_gcm_setiv,
296
  .aead_encrypt = aes_gcm_aead_encrypt,
297
  .aead_decrypt = aes_gcm_aead_decrypt,
298
  .encrypt = aes_gcm_encrypt,
299
  .decrypt = aes_gcm_decrypt,
300
  .deinit = aes_gcm_deinit,
301
  .tag = aes_gcm_tag,
302
  .auth = aes_gcm_auth,
303
};