Line | Count | Source (jump to first uncovered line) |
1 | | /* memxor3.c |
2 | | |
3 | | Copyright (C) 2010, 2014 Niels Möller |
4 | | |
5 | | This file is part of GNU Nettle. |
6 | | |
7 | | GNU Nettle is free software: you can redistribute it and/or |
8 | | modify it under the terms of either: |
9 | | |
10 | | * the GNU Lesser General Public License as published by the Free |
11 | | Software Foundation; either version 3 of the License, or (at your |
12 | | option) any later version. |
13 | | |
14 | | or |
15 | | |
16 | | * the GNU General Public License as published by the Free |
17 | | Software Foundation; either version 2 of the License, or (at your |
18 | | option) any later version. |
19 | | |
20 | | or both in parallel, as here. |
21 | | |
22 | | GNU Nettle is distributed in the hope that it will be useful, |
23 | | but WITHOUT ANY WARRANTY; without even the implied warranty of |
24 | | MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU |
25 | | General Public License for more details. |
26 | | |
27 | | You should have received copies of the GNU General Public License and |
28 | | the GNU Lesser General Public License along with this program. If |
29 | | not, see http://www.gnu.org/licenses/. |
30 | | */ |
31 | | |
32 | | /* Implementation inspired by memcmp in glibc, contributed to the FSF |
33 | | by Torbjorn Granlund. |
34 | | */ |
35 | | |
36 | | #if HAVE_CONFIG_H |
37 | | # include "config.h" |
38 | | #endif |
39 | | |
40 | | #include <assert.h> |
41 | | #include <limits.h> |
42 | | |
43 | | #include "memxor.h" |
44 | | #include "memxor-internal.h" |
45 | | |
46 | 0 | #define WORD_T_THRESH 16 |
47 | | |
48 | | /* For fat builds */ |
49 | | #if HAVE_NATIVE_memxor3 |
50 | | void * |
51 | | _nettle_memxor3_c(void *dst_in, const void *a_in, const void *b_in, size_t n); |
52 | | # define nettle_memxor3 _nettle_memxor3_c |
53 | | #endif |
54 | | |
55 | | /* XOR word-aligned areas. n is the number of words, not bytes. */ |
56 | | static void |
57 | | memxor3_common_alignment (word_t *dst, |
58 | | const word_t *a, const word_t *b, size_t n) |
59 | 0 | { |
60 | | /* FIXME: Require n > 0? */ |
61 | 0 | if (n & 1) |
62 | 0 | { |
63 | 0 | n--; |
64 | 0 | dst[n] = a[n] ^ b[n]; |
65 | 0 | } |
66 | 0 | while (n > 0) |
67 | 0 | { |
68 | 0 | n -= 2; |
69 | 0 | dst[n+1] = a[n+1] ^ b[n+1]; |
70 | 0 | dst[n] = a[n] ^ b[n]; |
71 | 0 | } |
72 | 0 | } |
73 | | |
74 | | static void |
75 | | memxor3_different_alignment_b (word_t *dst, |
76 | | const word_t *a, const unsigned char *b, |
77 | | unsigned offset, size_t n) |
78 | 0 | { |
79 | 0 | int shl, shr; |
80 | 0 | const word_t *b_word; |
81 | |
|
82 | 0 | word_t s0, s1; |
83 | |
|
84 | 0 | assert (n > 0); |
85 | | |
86 | 0 | shl = CHAR_BIT * offset; |
87 | 0 | shr = CHAR_BIT * (sizeof(word_t) - offset); |
88 | |
|
89 | 0 | b_word = (const word_t *) ((uintptr_t) b & -sizeof(word_t)); |
90 | | |
91 | | /* Read top offset bytes, in native byte order. */ |
92 | 0 | READ_PARTIAL (s0, (unsigned char *) &b_word[n], offset); |
93 | | #ifdef WORDS_BIGENDIAN |
94 | | s0 <<= shr; |
95 | | #endif |
96 | |
|
97 | 0 | if (n & 1) |
98 | 0 | s1 = s0; |
99 | 0 | else |
100 | 0 | { |
101 | 0 | n--; |
102 | 0 | s1 = b_word[n]; |
103 | 0 | dst[n] = a[n] ^ MERGE (s1, shl, s0, shr); |
104 | 0 | } |
105 | |
|
106 | 0 | while (n > 2) |
107 | 0 | { |
108 | 0 | n -= 2; |
109 | 0 | s0 = b_word[n+1]; |
110 | 0 | dst[n+1] = a[n+1] ^ MERGE(s0, shl, s1, shr); |
111 | 0 | s1 = b_word[n]; |
112 | 0 | dst[n] = a[n] ^ MERGE(s1, shl, s0, shr); |
113 | 0 | } |
114 | 0 | assert (n == 1); |
115 | | /* Read low wordsize - offset bytes */ |
116 | 0 | READ_PARTIAL (s0, b, sizeof(word_t) - offset); |
117 | 0 | #ifndef WORDS_BIGENDIAN |
118 | 0 | s0 <<= shl; |
119 | 0 | #endif /* !WORDS_BIGENDIAN */ |
120 | |
|
121 | 0 | dst[0] = a[0] ^ MERGE(s0, shl, s1, shr); |
122 | 0 | } |
123 | | |
124 | | static void |
125 | | memxor3_different_alignment_ab (word_t *dst, |
126 | | const unsigned char *a, const unsigned char *b, |
127 | | unsigned offset, size_t n) |
128 | 0 | { |
129 | 0 | int shl, shr; |
130 | 0 | const word_t *a_word; |
131 | 0 | const word_t *b_word; |
132 | |
|
133 | 0 | word_t s0, s1, t; |
134 | |
|
135 | 0 | assert (n > 0); |
136 | | |
137 | 0 | shl = CHAR_BIT * offset; |
138 | 0 | shr = CHAR_BIT * (sizeof(word_t) - offset); |
139 | |
|
140 | 0 | a_word = (const word_t *) ((uintptr_t) a & -sizeof(word_t)); |
141 | 0 | b_word = (const word_t *) ((uintptr_t) b & -sizeof(word_t)); |
142 | | |
143 | | /* Read top offset bytes, in native byte order. */ |
144 | 0 | READ_PARTIAL (s0, (unsigned char *) &a_word[n], offset); |
145 | 0 | READ_PARTIAL (t, (unsigned char *) &b_word[n], offset); |
146 | 0 | s0 ^= t; |
147 | | #ifdef WORDS_BIGENDIAN |
148 | | s0 <<= shr; |
149 | | #endif |
150 | |
|
151 | 0 | if (n & 1) |
152 | 0 | s1 = s0; |
153 | 0 | else |
154 | 0 | { |
155 | 0 | n--; |
156 | 0 | s1 = a_word[n] ^ b_word[n]; |
157 | 0 | dst[n] = MERGE (s1, shl, s0, shr); |
158 | 0 | } |
159 | |
|
160 | 0 | while (n > 2) |
161 | 0 | { |
162 | 0 | n -= 2; |
163 | 0 | s0 = a_word[n+1] ^ b_word[n+1]; |
164 | 0 | dst[n+1] = MERGE(s0, shl, s1, shr); |
165 | 0 | s1 = a_word[n] ^ b_word[n]; |
166 | 0 | dst[n] = MERGE(s1, shl, s0, shr); |
167 | 0 | } |
168 | 0 | assert (n == 1); |
169 | | /* Read low wordsize - offset bytes */ |
170 | 0 | READ_PARTIAL (s0, a, sizeof(word_t) - offset); |
171 | 0 | READ_PARTIAL (t, b, sizeof(word_t) - offset); |
172 | 0 | s0 ^= t; |
173 | 0 | #ifndef WORDS_BIGENDIAN |
174 | 0 | s0 <<= shl; |
175 | 0 | #endif /* !WORDS_BIGENDIAN */ |
176 | |
|
177 | 0 | dst[0] = MERGE(s0, shl, s1, shr); |
178 | 0 | } |
179 | | |
180 | | static void |
181 | | memxor3_different_alignment_all (word_t *dst, |
182 | | const unsigned char *a, const unsigned char *b, |
183 | | unsigned a_offset, unsigned b_offset, |
184 | | size_t n) |
185 | 0 | { |
186 | 0 | int al, ar, bl, br; |
187 | 0 | const word_t *a_word; |
188 | 0 | const word_t *b_word; |
189 | |
|
190 | 0 | word_t a0, a1, b0, b1; |
191 | |
|
192 | 0 | al = CHAR_BIT * a_offset; |
193 | 0 | ar = CHAR_BIT * (sizeof(word_t) - a_offset); |
194 | 0 | bl = CHAR_BIT * b_offset; |
195 | 0 | br = CHAR_BIT * (sizeof(word_t) - b_offset); |
196 | |
|
197 | 0 | a_word = (const word_t *) ((uintptr_t) a & -sizeof(word_t)); |
198 | 0 | b_word = (const word_t *) ((uintptr_t) b & -sizeof(word_t)); |
199 | | |
200 | | /* Read top offset bytes, in native byte order. */ |
201 | 0 | READ_PARTIAL (a0, (unsigned char *) &a_word[n], a_offset); |
202 | 0 | READ_PARTIAL (b0, (unsigned char *) &b_word[n], b_offset); |
203 | | #ifdef WORDS_BIGENDIAN |
204 | | a0 <<= ar; |
205 | | b0 <<= br; |
206 | | #endif |
207 | |
|
208 | 0 | if (n & 1) |
209 | 0 | { |
210 | 0 | a1 = a0; b1 = b0; |
211 | 0 | } |
212 | 0 | else |
213 | 0 | { |
214 | 0 | n--; |
215 | 0 | a1 = a_word[n]; |
216 | 0 | b1 = b_word[n]; |
217 | |
|
218 | 0 | dst[n] = MERGE (a1, al, a0, ar) ^ MERGE (b1, bl, b0, br); |
219 | 0 | } |
220 | 0 | while (n > 2) |
221 | 0 | { |
222 | 0 | n -= 2; |
223 | 0 | a0 = a_word[n+1]; b0 = b_word[n+1]; |
224 | 0 | dst[n+1] = MERGE(a0, al, a1, ar) ^ MERGE(b0, bl, b1, br); |
225 | 0 | a1 = a_word[n]; b1 = b_word[n]; |
226 | 0 | dst[n] = MERGE(a1, al, a0, ar) ^ MERGE(b1, bl, b0, br); |
227 | 0 | } |
228 | 0 | assert (n == 1); |
229 | | /* Read low wordsize - offset bytes */ |
230 | 0 | READ_PARTIAL (a0, a, sizeof(word_t) - a_offset); |
231 | 0 | READ_PARTIAL (b0, b, sizeof(word_t) - b_offset); |
232 | 0 | #ifndef WORDS_BIGENDIAN |
233 | 0 | a0 <<= al; |
234 | 0 | b0 <<= bl; |
235 | 0 | #endif /* !WORDS_BIGENDIAN */ |
236 | |
|
237 | 0 | dst[0] = MERGE(a0, al, a1, ar) ^ MERGE(b0, bl, b1, br); |
238 | 0 | } |
239 | | |
240 | | /* Current implementation processes data in descending order, to |
241 | | support overlapping operation with one of the sources overlapping |
242 | | the start of the destination area. This feature is used only |
243 | | internally by cbc decrypt, and it is not advertised or documented |
244 | | to nettle users. */ |
245 | | void * |
246 | | nettle_memxor3(void *dst_in, const void *a_in, |
247 | | const void *b_in, size_t n) |
248 | 0 | { |
249 | 0 | unsigned char *dst = dst_in; |
250 | 0 | const unsigned char *a = a_in; |
251 | 0 | const unsigned char *b = b_in; |
252 | |
|
253 | 0 | if (n >= WORD_T_THRESH) |
254 | 0 | { |
255 | 0 | unsigned i; |
256 | 0 | unsigned a_offset; |
257 | 0 | unsigned b_offset; |
258 | 0 | size_t nwords; |
259 | |
|
260 | 0 | for (i = ALIGN_OFFSET(dst + n); i > 0; i--) |
261 | 0 | { |
262 | 0 | n--; |
263 | 0 | dst[n] = a[n] ^ b[n]; |
264 | 0 | } |
265 | |
|
266 | 0 | a_offset = ALIGN_OFFSET(a + n); |
267 | 0 | b_offset = ALIGN_OFFSET(b + n); |
268 | |
|
269 | 0 | nwords = n / sizeof (word_t); |
270 | 0 | n %= sizeof (word_t); |
271 | |
|
272 | 0 | if (a_offset == b_offset) |
273 | 0 | { |
274 | 0 | if (!a_offset) |
275 | 0 | memxor3_common_alignment((word_t *) (dst + n), |
276 | 0 | (const word_t *) (a + n), |
277 | 0 | (const word_t *) (b + n), nwords); |
278 | 0 | else |
279 | 0 | memxor3_different_alignment_ab((word_t *) (dst + n), |
280 | 0 | a + n, b + n, a_offset, |
281 | 0 | nwords); |
282 | 0 | } |
283 | 0 | else if (!a_offset) |
284 | 0 | memxor3_different_alignment_b((word_t *) (dst + n), |
285 | 0 | (const word_t *) (a + n), b + n, |
286 | 0 | b_offset, nwords); |
287 | 0 | else if (!b_offset) |
288 | 0 | memxor3_different_alignment_b((word_t *) (dst + n), |
289 | 0 | (const word_t *) (b + n), a + n, |
290 | 0 | a_offset, nwords); |
291 | 0 | else |
292 | 0 | memxor3_different_alignment_all((word_t *) (dst + n), a + n, b + n, |
293 | 0 | a_offset, b_offset, nwords); |
294 | |
|
295 | 0 | } |
296 | 0 | while (n-- > 0) |
297 | 0 | dst[n] = a[n] ^ b[n]; |
298 | |
|
299 | 0 | return dst; |
300 | 0 | } |