Line | Count | Source (jump to first uncovered line) |
1 | | /* ripemd160.c |
2 | | |
3 | | RIPE-MD160 |
4 | | |
5 | | Copyright (C) 1998, 2001, 2002, 2003 Free Software Foundation, Inc. |
6 | | Copyright (C) 2011 Niels Möller |
7 | | |
8 | | This file is part of GNU Nettle. |
9 | | |
10 | | GNU Nettle is free software: you can redistribute it and/or |
11 | | modify it under the terms of either: |
12 | | |
13 | | * the GNU Lesser General Public License as published by the Free |
14 | | Software Foundation; either version 3 of the License, or (at your |
15 | | option) any later version. |
16 | | |
17 | | or |
18 | | |
19 | | * the GNU General Public License as published by the Free |
20 | | Software Foundation; either version 2 of the License, or (at your |
21 | | option) any later version. |
22 | | |
23 | | or both in parallel, as here. |
24 | | |
25 | | GNU Nettle is distributed in the hope that it will be useful, |
26 | | but WITHOUT ANY WARRANTY; without even the implied warranty of |
27 | | MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU |
28 | | General Public License for more details. |
29 | | |
30 | | You should have received copies of the GNU General Public License and |
31 | | the GNU Lesser General Public License along with this program. If |
32 | | not, see http://www.gnu.org/licenses/. |
33 | | */ |
34 | | |
35 | | #if HAVE_CONFIG_H |
36 | | # include "config.h" |
37 | | #endif |
38 | | |
39 | | #include <string.h> |
40 | | #include <assert.h> |
41 | | |
42 | | #include "ripemd160.h" |
43 | | #include "ripemd160-internal.h" |
44 | | |
45 | | #include "macros.h" |
46 | | #include "nettle-write.h" |
47 | | |
48 | | /********************************* |
49 | | * RIPEMD-160 is not patented, see (as of 2011-08-28) |
50 | | * http://www.esat.kuleuven.ac.be/~bosselae/ripemd160.html |
51 | | * Note that the code uses Little Endian byteorder, which is good for |
52 | | * 386 etc, but we must add some conversion when used on a big endian box. |
53 | | * |
54 | | * |
55 | | * Pseudo-code for RIPEMD-160 |
56 | | * |
57 | | * RIPEMD-160 is an iterative hash function that operates on 32-bit words. |
58 | | * The round function takes as input a 5-word chaining variable and a 16-word |
59 | | * message block and maps this to a new chaining variable. All operations are |
60 | | * defined on 32-bit words. Padding is identical to that of MD4. |
61 | | * |
62 | | * |
63 | | * RIPEMD-160: definitions |
64 | | * |
65 | | * |
66 | | * nonlinear functions at bit level: exor, mux, -, mux, - |
67 | | * |
68 | | * f(j, x, y, z) = x XOR y XOR z (0 <= j <= 15) |
69 | | * f(j, x, y, z) = (x AND y) OR (NOT(x) AND z) (16 <= j <= 31) |
70 | | * f(j, x, y, z) = (x OR NOT(y)) XOR z (32 <= j <= 47) |
71 | | * f(j, x, y, z) = (x AND z) OR (y AND NOT(z)) (48 <= j <= 63) |
72 | | * f(j, x, y, z) = x XOR (y OR NOT(z)) (64 <= j <= 79) |
73 | | * |
74 | | * |
75 | | * added constants (hexadecimal) |
76 | | * |
77 | | * K(j) = 0x00000000 (0 <= j <= 15) |
78 | | * K(j) = 0x5A827999 (16 <= j <= 31) int(2**30 x sqrt(2)) |
79 | | * K(j) = 0x6ED9EBA1 (32 <= j <= 47) int(2**30 x sqrt(3)) |
80 | | * K(j) = 0x8F1BBCDC (48 <= j <= 63) int(2**30 x sqrt(5)) |
81 | | * K(j) = 0xA953FD4E (64 <= j <= 79) int(2**30 x sqrt(7)) |
82 | | * K'(j) = 0x50A28BE6 (0 <= j <= 15) int(2**30 x cbrt(2)) |
83 | | * K'(j) = 0x5C4DD124 (16 <= j <= 31) int(2**30 x cbrt(3)) |
84 | | * K'(j) = 0x6D703EF3 (32 <= j <= 47) int(2**30 x cbrt(5)) |
85 | | * K'(j) = 0x7A6D76E9 (48 <= j <= 63) int(2**30 x cbrt(7)) |
86 | | * K'(j) = 0x00000000 (64 <= j <= 79) |
87 | | * |
88 | | * |
89 | | * selection of message word |
90 | | * |
91 | | * r(j) = j (0 <= j <= 15) |
92 | | * r(16..31) = 7, 4, 13, 1, 10, 6, 15, 3, 12, 0, 9, 5, 2, 14, 11, 8 |
93 | | * r(32..47) = 3, 10, 14, 4, 9, 15, 8, 1, 2, 7, 0, 6, 13, 11, 5, 12 |
94 | | * r(48..63) = 1, 9, 11, 10, 0, 8, 12, 4, 13, 3, 7, 15, 14, 5, 6, 2 |
95 | | * r(64..79) = 4, 0, 5, 9, 7, 12, 2, 10, 14, 1, 3, 8, 11, 6, 15, 13 |
96 | | * r0(0..15) = 5, 14, 7, 0, 9, 2, 11, 4, 13, 6, 15, 8, 1, 10, 3, 12 |
97 | | * r0(16..31)= 6, 11, 3, 7, 0, 13, 5, 10, 14, 15, 8, 12, 4, 9, 1, 2 |
98 | | * r0(32..47)= 15, 5, 1, 3, 7, 14, 6, 9, 11, 8, 12, 2, 10, 0, 4, 13 |
99 | | * r0(48..63)= 8, 6, 4, 1, 3, 11, 15, 0, 5, 12, 2, 13, 9, 7, 10, 14 |
100 | | * r0(64..79)= 12, 15, 10, 4, 1, 5, 8, 7, 6, 2, 13, 14, 0, 3, 9, 11 |
101 | | * |
102 | | * |
103 | | * amount for rotate left (rol) |
104 | | * |
105 | | * s(0..15) = 11, 14, 15, 12, 5, 8, 7, 9, 11, 13, 14, 15, 6, 7, 9, 8 |
106 | | * s(16..31) = 7, 6, 8, 13, 11, 9, 7, 15, 7, 12, 15, 9, 11, 7, 13, 12 |
107 | | * s(32..47) = 11, 13, 6, 7, 14, 9, 13, 15, 14, 8, 13, 6, 5, 12, 7, 5 |
108 | | * s(48..63) = 11, 12, 14, 15, 14, 15, 9, 8, 9, 14, 5, 6, 8, 6, 5, 12 |
109 | | * s(64..79) = 9, 15, 5, 11, 6, 8, 13, 12, 5, 12, 13, 14, 11, 8, 5, 6 |
110 | | * s'(0..15) = 8, 9, 9, 11, 13, 15, 15, 5, 7, 7, 8, 11, 14, 14, 12, 6 |
111 | | * s'(16..31)= 9, 13, 15, 7, 12, 8, 9, 11, 7, 7, 12, 7, 6, 15, 13, 11 |
112 | | * s'(32..47)= 9, 7, 15, 11, 8, 6, 6, 14, 12, 13, 5, 14, 13, 13, 7, 5 |
113 | | * s'(48..63)= 15, 5, 8, 11, 14, 14, 6, 14, 6, 9, 12, 9, 12, 5, 15, 8 |
114 | | * s'(64..79)= 8, 5, 12, 9, 12, 5, 14, 6, 8, 13, 6, 5, 15, 13, 11, 11 |
115 | | * |
116 | | * |
117 | | * initial value (hexadecimal) |
118 | | * |
119 | | * h0 = 0x67452301; h1 = 0xEFCDAB89; h2 = 0x98BADCFE; h3 = 0x10325476; |
120 | | * h4 = 0xC3D2E1F0; |
121 | | * |
122 | | * |
123 | | * RIPEMD-160: pseudo-code |
124 | | * |
125 | | * It is assumed that the message after padding consists of t 16-word blocks |
126 | | * that will be denoted with X[i][j], with 0 <= i <= t-1 and 0 <= j <= 15. |
127 | | * The symbol [+] denotes addition modulo 2**32 and rol_s denotes cyclic left |
128 | | * shift (rotate) over s positions. |
129 | | * |
130 | | * |
131 | | * for i := 0 to t-1 { |
132 | | * A := h0; B := h1; C := h2; D = h3; E = h4; |
133 | | * A' := h0; B' := h1; C' := h2; D' = h3; E' = h4; |
134 | | * for j := 0 to 79 { |
135 | | * T := rol_s(j)(A [+] f(j, B, C, D) [+] X[i][r(j)] [+] K(j)) [+] E; |
136 | | * A := E; E := D; D := rol_10(C); C := B; B := T; |
137 | | * T := rol_s'(j)(A' [+] f(79-j, B', C', D') [+] X[i][r'(j)] |
138 | | [+] K'(j)) [+] E'; |
139 | | * A' := E'; E' := D'; D' := rol_10(C'); C' := B'; B' := T; |
140 | | * } |
141 | | * T := h1 [+] C [+] D'; h1 := h2 [+] D [+] E'; h2 := h3 [+] E [+] A'; |
142 | | * h3 := h4 [+] A [+] B'; h4 := h0 [+] B [+] C'; h0 := T; |
143 | | * } |
144 | | */ |
145 | | |
146 | | /* Some examples: |
147 | | * "" 9c1185a5c5e9fc54612808977ee8f548b2258d31 |
148 | | * "a" 0bdc9d2d256b3ee9daae347be6f4dc835a467ffe |
149 | | * "abc" 8eb208f7e05d987a9b044a8e98c6b087f15a0bfc |
150 | | * "message digest" 5d0689ef49d2fae572b881b123a85ffa21595f36 |
151 | | * "a...z" f71c27109c692c1b56bbdceb5b9d2865b3708dbc |
152 | | * "abcdbcde...nopq" 12a053384a9c0c88e405a06c27dcf49ada62eb2b |
153 | | * "A...Za...z0...9" b0e20b6e3116640286ed3a87a5713079b21f5189 |
154 | | * 8 times "1234567890" 9b752e45573d4b39f4dbd3323cab82bf63326bfb |
155 | | * 1 million times "a" 52783243c1697bdbe16d37f97f68f08325dc1528 |
156 | | */ |
157 | | |
158 | | void |
159 | | ripemd160_init(struct ripemd160_ctx *ctx) |
160 | 0 | { |
161 | 0 | static const uint32_t iv[_RIPEMD160_DIGEST_LENGTH] = |
162 | 0 | { |
163 | 0 | 0x67452301, |
164 | 0 | 0xEFCDAB89, |
165 | 0 | 0x98BADCFE, |
166 | 0 | 0x10325476, |
167 | 0 | 0xC3D2E1F0, |
168 | 0 | }; |
169 | 0 | memcpy(ctx->state, iv, sizeof(ctx->state)); |
170 | 0 | ctx->count = 0; |
171 | 0 | ctx->index = 0; |
172 | 0 | } |
173 | | |
174 | 0 | #define COMPRESS(ctx, data) (_nettle_ripemd160_compress((ctx)->state, (data))) |
175 | | |
176 | | /* Update the message digest with the contents |
177 | | * of DATA with length LENGTH. |
178 | | */ |
179 | | void |
180 | | ripemd160_update(struct ripemd160_ctx *ctx, size_t length, const uint8_t *data) |
181 | 0 | { |
182 | 0 | MD_UPDATE(ctx, length, data, COMPRESS, ctx->count++); |
183 | 0 | } |
184 | | |
185 | | void |
186 | | ripemd160_digest(struct ripemd160_ctx *ctx, size_t length, uint8_t *digest) |
187 | 0 | { |
188 | 0 | uint64_t bit_count; |
189 | |
|
190 | 0 | assert(length <= RIPEMD160_DIGEST_SIZE); |
191 | | |
192 | 0 | MD_PAD(ctx, 8, COMPRESS); |
193 | | |
194 | | /* There are 2^9 bits in one block */ |
195 | 0 | bit_count = (ctx->count << 9) | (ctx->index << 3); |
196 | 0 | \ |
197 | | /* append the 64 bit count */ |
198 | 0 | LE_WRITE_UINT64(ctx->block + 56, bit_count); |
199 | 0 | _nettle_ripemd160_compress(ctx->state, ctx->block); |
200 | |
|
201 | 0 | _nettle_write_le32(length, digest, ctx->state); |
202 | 0 | ripemd160_init(ctx); |
203 | 0 | } |