Line | Count | Source (jump to first uncovered line) |
1 | | /* rsa-sign.c |
2 | | |
3 | | Creating RSA signatures. |
4 | | |
5 | | Copyright (C) 2001, 2003 Niels Möller |
6 | | |
7 | | This file is part of GNU Nettle. |
8 | | |
9 | | GNU Nettle is free software: you can redistribute it and/or |
10 | | modify it under the terms of either: |
11 | | |
12 | | * the GNU Lesser General Public License as published by the Free |
13 | | Software Foundation; either version 3 of the License, or (at your |
14 | | option) any later version. |
15 | | |
16 | | or |
17 | | |
18 | | * the GNU General Public License as published by the Free |
19 | | Software Foundation; either version 2 of the License, or (at your |
20 | | option) any later version. |
21 | | |
22 | | or both in parallel, as here. |
23 | | |
24 | | GNU Nettle is distributed in the hope that it will be useful, |
25 | | but WITHOUT ANY WARRANTY; without even the implied warranty of |
26 | | MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU |
27 | | General Public License for more details. |
28 | | |
29 | | You should have received copies of the GNU General Public License and |
30 | | the GNU Lesser General Public License along with this program. If |
31 | | not, see http://www.gnu.org/licenses/. |
32 | | */ |
33 | | |
34 | | #if HAVE_CONFIG_H |
35 | | # include "config.h" |
36 | | #endif |
37 | | |
38 | | #include <assert.h> |
39 | | |
40 | | #include "rsa.h" |
41 | | #include "rsa-internal.h" |
42 | | #include "gmp-glue.h" |
43 | | |
44 | | void |
45 | | rsa_private_key_init(struct rsa_private_key *key) |
46 | 0 | { |
47 | 0 | mpz_init(key->d); |
48 | 0 | mpz_init(key->p); |
49 | 0 | mpz_init(key->q); |
50 | 0 | mpz_init(key->a); |
51 | 0 | mpz_init(key->b); |
52 | 0 | mpz_init(key->c); |
53 | | |
54 | | /* Not really necessary, but it seems cleaner to initialize all the |
55 | | * storage. */ |
56 | 0 | key->size = 0; |
57 | 0 | } |
58 | | |
59 | | void |
60 | | rsa_private_key_clear(struct rsa_private_key *key) |
61 | 0 | { |
62 | 0 | mpz_clear(key->d); |
63 | 0 | mpz_clear(key->p); |
64 | 0 | mpz_clear(key->q); |
65 | 0 | mpz_clear(key->a); |
66 | 0 | mpz_clear(key->b); |
67 | 0 | mpz_clear(key->c); |
68 | 0 | } |
69 | | |
70 | | int |
71 | | rsa_private_key_prepare(struct rsa_private_key *key) |
72 | 0 | { |
73 | 0 | mpz_t n; |
74 | | |
75 | | /* A key is invalid if the sizes of q and c are smaller than |
76 | | * the size of n, we rely on that property in calculations so |
77 | | * fail early if that happens. */ |
78 | 0 | if (mpz_size (key->q) + mpz_size (key->c) < mpz_size(key->p)) |
79 | 0 | return 0; |
80 | | |
81 | | /* The size of the product is the sum of the sizes of the factors, |
82 | | * or sometimes one less. It's possible but tricky to compute the |
83 | | * size without computing the full product. */ |
84 | | |
85 | 0 | mpz_init(n); |
86 | 0 | mpz_mul(n, key->p, key->q); |
87 | |
|
88 | 0 | key->size = _rsa_check_size(n); |
89 | |
|
90 | 0 | mpz_clear(n); |
91 | |
|
92 | 0 | return (key->size > 0); |
93 | 0 | } |
94 | | |
95 | | #if NETTLE_USE_MINI_GMP |
96 | | |
97 | | /* Computing an rsa root. */ |
98 | | void |
99 | | rsa_compute_root(const struct rsa_private_key *key, |
100 | | mpz_t x, const mpz_t m) |
101 | | { |
102 | | mpz_t xp; /* modulo p */ |
103 | | mpz_t xq; /* modulo q */ |
104 | | |
105 | | mpz_init(xp); mpz_init(xq); |
106 | | |
107 | | /* Compute xq = m^d % q = (m%q)^b % q */ |
108 | | mpz_fdiv_r(xq, m, key->q); |
109 | | mpz_powm_sec(xq, xq, key->b, key->q); |
110 | | |
111 | | /* Compute xp = m^d % p = (m%p)^a % p */ |
112 | | mpz_fdiv_r(xp, m, key->p); |
113 | | mpz_powm_sec(xp, xp, key->a, key->p); |
114 | | |
115 | | /* Set xp' = (xp - xq) c % p. */ |
116 | | mpz_sub(xp, xp, xq); |
117 | | mpz_mul(xp, xp, key->c); |
118 | | mpz_fdiv_r(xp, xp, key->p); |
119 | | |
120 | | /* Finally, compute x = xq + q xp' |
121 | | * |
122 | | * To prove that this works, note that |
123 | | * |
124 | | * xp = x + i p, |
125 | | * xq = x + j q, |
126 | | * c q = 1 + k p |
127 | | * |
128 | | * for some integers i, j and k. Now, for some integer l, |
129 | | * |
130 | | * xp' = (xp - xq) c + l p |
131 | | * = (x + i p - (x + j q)) c + l p |
132 | | * = (i p - j q) c + l p |
133 | | * = (i c + l) p - j (c q) |
134 | | * = (i c + l) p - j (1 + kp) |
135 | | * = (i c + l - j k) p - j |
136 | | * |
137 | | * which shows that xp' = -j (mod p). We get |
138 | | * |
139 | | * xq + q xp' = x + j q + (i c + l - j k) p q - j q |
140 | | * = x + (i c + l - j k) p q |
141 | | * |
142 | | * so that |
143 | | * |
144 | | * xq + q xp' = x (mod pq) |
145 | | * |
146 | | * We also get 0 <= xq + q xp' < p q, because |
147 | | * |
148 | | * 0 <= xq < q and 0 <= xp' < p. |
149 | | */ |
150 | | mpz_mul(x, key->q, xp); |
151 | | mpz_add(x, x, xq); |
152 | | |
153 | | mpz_clear(xp); mpz_clear(xq); |
154 | | } |
155 | | |
156 | | #else /* !NETTLE_USE_MINI_GMP */ |
157 | | |
158 | | /* Computing an rsa root. */ |
159 | | void |
160 | | rsa_compute_root(const struct rsa_private_key *key, |
161 | | mpz_t x, const mpz_t m) |
162 | 0 | { |
163 | 0 | TMP_GMP_DECL (scratch, mp_limb_t); |
164 | 0 | TMP_GMP_DECL (ml, mp_limb_t); |
165 | 0 | mp_limb_t *xl; |
166 | 0 | size_t key_size; |
167 | |
|
168 | 0 | key_size = NETTLE_OCTET_SIZE_TO_LIMB_SIZE(key->size); |
169 | 0 | assert(mpz_size (m) <= key_size); |
170 | | |
171 | | /* we need a copy because m can be shorter than key_size, |
172 | | * but _rsa_sec_compute_root expect all inputs to be |
173 | | * normalized to a key_size long buffer length */ |
174 | 0 | TMP_GMP_ALLOC (ml, key_size); |
175 | 0 | mpz_limbs_copy(ml, m, key_size); |
176 | |
|
177 | 0 | TMP_GMP_ALLOC (scratch, _rsa_sec_compute_root_itch(key)); |
178 | |
|
179 | 0 | xl = mpz_limbs_write (x, key_size); |
180 | 0 | _rsa_sec_compute_root (key, xl, ml, scratch); |
181 | 0 | mpz_limbs_finish (x, key_size); |
182 | |
|
183 | 0 | TMP_GMP_FREE (ml); |
184 | 0 | TMP_GMP_FREE (scratch); |
185 | 0 | } |
186 | | #endif /* !NETTLE_USE_MINI_GMP */ |