/src/nettle/sha256-compress-n.c
Line | Count | Source |
1 | | /* sha256-compress-n.c |
2 | | |
3 | | The compression function of the sha256 hash function. |
4 | | |
5 | | Copyright (C) 2001, 2010, 2022 Niels Möller |
6 | | |
7 | | This file is part of GNU Nettle. |
8 | | |
9 | | GNU Nettle is free software: you can redistribute it and/or |
10 | | modify it under the terms of either: |
11 | | |
12 | | * the GNU Lesser General Public License as published by the Free |
13 | | Software Foundation; either version 3 of the License, or (at your |
14 | | option) any later version. |
15 | | |
16 | | or |
17 | | |
18 | | * the GNU General Public License as published by the Free |
19 | | Software Foundation; either version 2 of the License, or (at your |
20 | | option) any later version. |
21 | | |
22 | | or both in parallel, as here. |
23 | | |
24 | | GNU Nettle is distributed in the hope that it will be useful, |
25 | | but WITHOUT ANY WARRANTY; without even the implied warranty of |
26 | | MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU |
27 | | General Public License for more details. |
28 | | |
29 | | You should have received copies of the GNU General Public License and |
30 | | the GNU Lesser General Public License along with this program. If |
31 | | not, see http://www.gnu.org/licenses/. |
32 | | */ |
33 | | |
34 | | #if HAVE_CONFIG_H |
35 | | # include "config.h" |
36 | | #endif |
37 | | |
38 | | #ifndef SHA256_DEBUG |
39 | | # define SHA256_DEBUG 0 |
40 | | #endif |
41 | | |
42 | | #if SHA256_DEBUG |
43 | | # include <stdio.h> |
44 | | # define DEBUG(i) \ |
45 | | fprintf(stderr, "%2d: %8x %8x %8x %8x %8x %8x %8x %8x\n", \ |
46 | | i, A, B, C, D ,E, F, G, H) |
47 | | #else |
48 | | # define DEBUG(i) |
49 | | #endif |
50 | | |
51 | | #include <assert.h> |
52 | | #include <stdlib.h> |
53 | | #include <string.h> |
54 | | |
55 | | #include "sha2.h" |
56 | | #include "sha2-internal.h" |
57 | | |
58 | | #include "macros.h" |
59 | | |
60 | | /* A block, treated as a sequence of 32-bit words. */ |
61 | 5.03k | #define SHA256_DATA_LENGTH 16 |
62 | | |
63 | | /* The SHA256 functions. The Choice function is the same as the SHA1 |
64 | | function f1, and the majority function is the same as the SHA1 f3 |
65 | | function. They can be optimized to save one boolean operation each |
66 | | - thanks to Rich Schroeppel, rcs@cs.arizona.edu for discovering |
67 | | this */ |
68 | | |
69 | | /* #define Choice(x,y,z) ( ( (x) & (y) ) | ( ~(x) & (z) ) ) */ |
70 | 18.9k | #define Choice(x,y,z) ( (z) ^ ( (x) & ( (y) ^ (z) ) ) ) |
71 | | /* #define Majority(x,y,z) ( ((x) & (y)) ^ ((x) & (z)) ^ ((y) & (z)) ) */ |
72 | 18.9k | #define Majority(x,y,z) ( ((x) & (y)) ^ ((z) & ((x) ^ (y))) ) |
73 | | |
74 | 18.9k | #define S0(x) (ROTL32(30,(x)) ^ ROTL32(19,(x)) ^ ROTL32(10,(x))) |
75 | 18.9k | #define S1(x) (ROTL32(26,(x)) ^ ROTL32(21,(x)) ^ ROTL32(7,(x))) |
76 | | |
77 | | #define s0(x) (ROTL32(25,(x)) ^ ROTL32(14,(x)) ^ ((x) >> 3)) |
78 | | #define s1(x) (ROTL32(15,(x)) ^ ROTL32(13,(x)) ^ ((x) >> 10)) |
79 | | |
80 | | /* The initial expanding function. The hash function is defined over an |
81 | | 64-word expanded input array W, where the first 16 are copies of the input |
82 | | data, and the remaining 64 are defined by |
83 | | |
84 | | W[ t ] = s1(W[t-2]) + W[t-7] + s0(W[i-15]) + W[i-16] |
85 | | |
86 | | This implementation generates these values on the fly in a circular |
87 | | buffer - thanks to Colin Plumb, colin@nyx10.cs.du.edu for this |
88 | | optimization. |
89 | | */ |
90 | | |
91 | | #define EXPAND(W,i) \ |
92 | | ( W[(i) & 15 ] += (s1(W[((i)-2) & 15]) + W[((i)-7) & 15] + s0(W[((i)-15) & 15])) ) |
93 | | |
94 | | /* The prototype SHA sub-round. The fundamental sub-round is: |
95 | | |
96 | | T1 = h + S1(e) + Choice(e,f,g) + K[t] + W[t] |
97 | | T2 = S0(a) + Majority(a,b,c) |
98 | | a' = T1+T2 |
99 | | b' = a |
100 | | c' = b |
101 | | d' = c |
102 | | e' = d + T1 |
103 | | f' = e |
104 | | g' = f |
105 | | h' = g |
106 | | |
107 | | but this is implemented by unrolling the loop 8 times and renaming |
108 | | the variables |
109 | | ( h, a, b, c, d, e, f, g ) = ( a, b, c, d, e, f, g, h ) each |
110 | | iteration. */ |
111 | | |
112 | | /* It's crucial that DATA is only used once, as that argument will |
113 | | * have side effects. */ |
114 | 18.9k | #define ROUND(a,b,c,d,e,f,g,h,k,data) do { \ |
115 | 18.9k | h += S1(e) + Choice(e,f,g) + k + data; \ |
116 | 18.9k | d += h; \ |
117 | 18.9k | h += S0(a) + Majority(a,b,c); \ |
118 | 18.9k | } while (0) |
119 | | |
120 | | /* For fat builds */ |
121 | | #if HAVE_NATIVE_sha256_compress_n |
122 | | const uint8_t * |
123 | | _nettle_sha256_compress_n_c(uint32_t *state, const uint32_t *table, |
124 | | size_t blocks, const uint8_t *input); |
125 | | #define _nettle_sha256_compress_n _nettle_sha256_compress_n_c |
126 | | #endif |
127 | | |
128 | | const uint8_t * |
129 | | _nettle_sha256_compress_n(uint32_t *state, const uint32_t *table, |
130 | | size_t blocks, const uint8_t *input) |
131 | 592 | { |
132 | 592 | uint32_t A, B, C, D, E, F, G, H; /* Local vars */ |
133 | | |
134 | 592 | A = state[0]; |
135 | 592 | B = state[1]; |
136 | 592 | C = state[2]; |
137 | 592 | D = state[3]; |
138 | 592 | E = state[4]; |
139 | 592 | F = state[5]; |
140 | 592 | G = state[6]; |
141 | 592 | H = state[7]; |
142 | | |
143 | 888 | for (; blocks > 0; blocks--) |
144 | 296 | { |
145 | 296 | uint32_t data[SHA256_DATA_LENGTH]; |
146 | 296 | unsigned i; |
147 | 296 | const uint32_t *k; |
148 | 296 | uint32_t *d; |
149 | 5.03k | for (i = 0; i < SHA256_DATA_LENGTH; i++, input+= 4) |
150 | 4.73k | { |
151 | 4.73k | data[i] = READ_UINT32(input); |
152 | 4.73k | } |
153 | | |
154 | | /* Heavy mangling */ |
155 | | /* First 16 subrounds that act on the original data */ |
156 | | |
157 | 296 | DEBUG(-1); |
158 | 888 | for (i = 0, d = data, k = table; i<16; i+=8, k += 8, d+= 8) |
159 | 592 | { |
160 | 592 | ROUND(A, B, C, D, E, F, G, H, k[0], d[0]); DEBUG(i); |
161 | 592 | ROUND(H, A, B, C, D, E, F, G, k[1], d[1]); DEBUG(i+1); |
162 | 592 | ROUND(G, H, A, B, C, D, E, F, k[2], d[2]); |
163 | 592 | ROUND(F, G, H, A, B, C, D, E, k[3], d[3]); |
164 | 592 | ROUND(E, F, G, H, A, B, C, D, k[4], d[4]); |
165 | 592 | ROUND(D, E, F, G, H, A, B, C, k[5], d[5]); |
166 | 592 | ROUND(C, D, E, F, G, H, A, B, k[6], d[6]); DEBUG(i+6); |
167 | 592 | ROUND(B, C, D, E, F, G, H, A, k[7], d[7]); DEBUG(i+7); |
168 | 592 | } |
169 | | |
170 | 1.18k | for (; i<64; i += 16, k+= 16) |
171 | 888 | { |
172 | 888 | ROUND(A, B, C, D, E, F, G, H, k[ 0], EXPAND(data, 0)); DEBUG(i); |
173 | 888 | ROUND(H, A, B, C, D, E, F, G, k[ 1], EXPAND(data, 1)); DEBUG(i+1); |
174 | 888 | ROUND(G, H, A, B, C, D, E, F, k[ 2], EXPAND(data, 2)); DEBUG(i+2); |
175 | 888 | ROUND(F, G, H, A, B, C, D, E, k[ 3], EXPAND(data, 3)); DEBUG(i+3); |
176 | 888 | ROUND(E, F, G, H, A, B, C, D, k[ 4], EXPAND(data, 4)); DEBUG(i+4); |
177 | 888 | ROUND(D, E, F, G, H, A, B, C, k[ 5], EXPAND(data, 5)); DEBUG(i+5); |
178 | 888 | ROUND(C, D, E, F, G, H, A, B, k[ 6], EXPAND(data, 6)); DEBUG(i+6); |
179 | 888 | ROUND(B, C, D, E, F, G, H, A, k[ 7], EXPAND(data, 7)); DEBUG(i+7); |
180 | 888 | ROUND(A, B, C, D, E, F, G, H, k[ 8], EXPAND(data, 8)); DEBUG(i+8); |
181 | 888 | ROUND(H, A, B, C, D, E, F, G, k[ 9], EXPAND(data, 9)); DEBUG(i+9); |
182 | 888 | ROUND(G, H, A, B, C, D, E, F, k[10], EXPAND(data, 10)); DEBUG(i+10); |
183 | 888 | ROUND(F, G, H, A, B, C, D, E, k[11], EXPAND(data, 11)); DEBUG(i+11); |
184 | 888 | ROUND(E, F, G, H, A, B, C, D, k[12], EXPAND(data, 12)); DEBUG(i+12); |
185 | 888 | ROUND(D, E, F, G, H, A, B, C, k[13], EXPAND(data, 13)); DEBUG(i+13); |
186 | 888 | ROUND(C, D, E, F, G, H, A, B, k[14], EXPAND(data, 14)); DEBUG(i+14); |
187 | 888 | ROUND(B, C, D, E, F, G, H, A, k[15], EXPAND(data, 15)); DEBUG(i+15); |
188 | 888 | } |
189 | | |
190 | | /* Update state */ |
191 | 296 | state[0] = A = state[0] + A; |
192 | 296 | state[1] = B = state[1] + B; |
193 | 296 | state[2] = C = state[2] + C; |
194 | 296 | state[3] = D = state[3] + D; |
195 | 296 | state[4] = E = state[4] + E; |
196 | 296 | state[5] = F = state[5] + F; |
197 | 296 | state[6] = G = state[6] + G; |
198 | 296 | state[7] = H = state[7] + H; |
199 | | #if SHA256_DEBUG |
200 | | fprintf(stderr, "99: %8x %8x %8x %8x %8x %8x %8x %8x\n", |
201 | | state[0], state[1], state[2], state[3], |
202 | | state[4], state[5], state[6], state[7]); |
203 | | #endif |
204 | 296 | } |
205 | 592 | return input; |
206 | 592 | } |