Coverage Report

Created: 2025-07-23 07:18

/src/nettle/sha256-compress-n.c
Line
Count
Source
1
/* sha256-compress-n.c
2
3
   The compression function of the sha256 hash function.
4
5
   Copyright (C) 2001, 2010, 2022 Niels Möller
6
7
   This file is part of GNU Nettle.
8
9
   GNU Nettle is free software: you can redistribute it and/or
10
   modify it under the terms of either:
11
12
     * the GNU Lesser General Public License as published by the Free
13
       Software Foundation; either version 3 of the License, or (at your
14
       option) any later version.
15
16
   or
17
18
     * the GNU General Public License as published by the Free
19
       Software Foundation; either version 2 of the License, or (at your
20
       option) any later version.
21
22
   or both in parallel, as here.
23
24
   GNU Nettle is distributed in the hope that it will be useful,
25
   but WITHOUT ANY WARRANTY; without even the implied warranty of
26
   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
27
   General Public License for more details.
28
29
   You should have received copies of the GNU General Public License and
30
   the GNU Lesser General Public License along with this program.  If
31
   not, see http://www.gnu.org/licenses/.
32
*/
33
34
#if HAVE_CONFIG_H
35
# include "config.h"
36
#endif
37
38
#ifndef SHA256_DEBUG
39
# define SHA256_DEBUG 0
40
#endif
41
42
#if SHA256_DEBUG
43
# include <stdio.h>
44
# define DEBUG(i) \
45
  fprintf(stderr, "%2d: %8x %8x %8x %8x %8x %8x %8x %8x\n", \
46
    i, A, B, C, D ,E, F, G, H)
47
#else
48
# define DEBUG(i)
49
#endif
50
51
#include <assert.h>
52
#include <stdlib.h>
53
#include <string.h>
54
55
#include "sha2.h"
56
#include "sha2-internal.h"
57
58
#include "macros.h"
59
60
/* A block, treated as a sequence of 32-bit words. */
61
4.84k
#define SHA256_DATA_LENGTH 16
62
63
/* The SHA256 functions. The Choice function is the same as the SHA1
64
   function f1, and the majority function is the same as the SHA1 f3
65
   function. They can be optimized to save one boolean operation each
66
   - thanks to Rich Schroeppel, rcs@cs.arizona.edu for discovering
67
   this */
68
69
/* #define Choice(x,y,z) ( ( (x) & (y) ) | ( ~(x) & (z) ) ) */
70
18.2k
#define Choice(x,y,z)   ( (z) ^ ( (x) & ( (y) ^ (z) ) ) ) 
71
/* #define Majority(x,y,z) ( ((x) & (y)) ^ ((x) & (z)) ^ ((y) & (z)) ) */
72
18.2k
#define Majority(x,y,z) ( ((x) & (y)) ^ ((z) & ((x) ^ (y))) )
73
74
18.2k
#define S0(x) (ROTL32(30,(x)) ^ ROTL32(19,(x)) ^ ROTL32(10,(x))) 
75
18.2k
#define S1(x) (ROTL32(26,(x)) ^ ROTL32(21,(x)) ^ ROTL32(7,(x)))
76
77
#define s0(x) (ROTL32(25,(x)) ^ ROTL32(14,(x)) ^ ((x) >> 3))
78
#define s1(x) (ROTL32(15,(x)) ^ ROTL32(13,(x)) ^ ((x) >> 10))
79
80
/* The initial expanding function.  The hash function is defined over an
81
   64-word expanded input array W, where the first 16 are copies of the input
82
   data, and the remaining 64 are defined by
83
84
        W[ t ] = s1(W[t-2]) + W[t-7] + s0(W[i-15]) + W[i-16]
85
86
   This implementation generates these values on the fly in a circular
87
   buffer - thanks to Colin Plumb, colin@nyx10.cs.du.edu for this
88
   optimization.
89
*/
90
91
#define EXPAND(W,i) \
92
( W[(i) & 15 ] += (s1(W[((i)-2) & 15]) + W[((i)-7) & 15] + s0(W[((i)-15) & 15])) )
93
94
/* The prototype SHA sub-round.  The fundamental sub-round is:
95
96
        T1 = h + S1(e) + Choice(e,f,g) + K[t] + W[t]
97
  T2 = S0(a) + Majority(a,b,c)
98
  a' = T1+T2
99
  b' = a
100
  c' = b
101
  d' = c
102
  e' = d + T1
103
  f' = e
104
  g' = f
105
  h' = g
106
107
   but this is implemented by unrolling the loop 8 times and renaming
108
   the variables
109
   ( h, a, b, c, d, e, f, g ) = ( a, b, c, d, e, f, g, h ) each
110
   iteration. */
111
112
/* It's crucial that DATA is only used once, as that argument will
113
 * have side effects. */
114
18.2k
#define ROUND(a,b,c,d,e,f,g,h,k,data) do { \
115
18.2k
    h += S1(e) + Choice(e,f,g) + k + data; \
116
18.2k
    d += h;         \
117
18.2k
    h += S0(a) + Majority(a,b,c);    \
118
18.2k
  } while (0)
119
120
/* For fat builds */
121
#if HAVE_NATIVE_sha256_compress_n
122
const uint8_t *
123
_nettle_sha256_compress_n_c(uint32_t *state, const uint32_t *table,
124
          size_t blocks, const uint8_t *input);
125
#define _nettle_sha256_compress_n _nettle_sha256_compress_n_c
126
#endif
127
128
const uint8_t *
129
_nettle_sha256_compress_n(uint32_t *state, const uint32_t *table,
130
        size_t blocks, const uint8_t *input)
131
570
{
132
570
  uint32_t A, B, C, D, E, F, G, H;     /* Local vars */
133
134
570
  A = state[0];
135
570
  B = state[1];
136
570
  C = state[2];
137
570
  D = state[3];
138
570
  E = state[4];
139
570
  F = state[5];
140
570
  G = state[6];
141
570
  H = state[7];
142
143
855
  for (; blocks > 0; blocks--)
144
285
    {
145
285
      uint32_t data[SHA256_DATA_LENGTH];
146
285
      unsigned i;
147
285
      const uint32_t *k;
148
285
      uint32_t *d;
149
4.84k
      for (i = 0; i < SHA256_DATA_LENGTH; i++, input+= 4)
150
4.56k
  {
151
4.56k
    data[i] = READ_UINT32(input);
152
4.56k
  }
153
154
      /* Heavy mangling */
155
      /* First 16 subrounds that act on the original data */
156
157
285
      DEBUG(-1);
158
855
      for (i = 0, d = data, k = table; i<16; i+=8, k += 8, d+= 8)
159
570
  {
160
570
    ROUND(A, B, C, D, E, F, G, H, k[0], d[0]); DEBUG(i);
161
570
    ROUND(H, A, B, C, D, E, F, G, k[1], d[1]); DEBUG(i+1);
162
570
    ROUND(G, H, A, B, C, D, E, F, k[2], d[2]);
163
570
    ROUND(F, G, H, A, B, C, D, E, k[3], d[3]);
164
570
    ROUND(E, F, G, H, A, B, C, D, k[4], d[4]);
165
570
    ROUND(D, E, F, G, H, A, B, C, k[5], d[5]);
166
570
    ROUND(C, D, E, F, G, H, A, B, k[6], d[6]); DEBUG(i+6);
167
570
    ROUND(B, C, D, E, F, G, H, A, k[7], d[7]); DEBUG(i+7);
168
570
  }
169
  
170
1.14k
      for (; i<64; i += 16, k+= 16)
171
855
  {
172
855
    ROUND(A, B, C, D, E, F, G, H, k[ 0], EXPAND(data,  0)); DEBUG(i);
173
855
    ROUND(H, A, B, C, D, E, F, G, k[ 1], EXPAND(data,  1)); DEBUG(i+1);
174
855
    ROUND(G, H, A, B, C, D, E, F, k[ 2], EXPAND(data,  2)); DEBUG(i+2);
175
855
    ROUND(F, G, H, A, B, C, D, E, k[ 3], EXPAND(data,  3)); DEBUG(i+3);
176
855
    ROUND(E, F, G, H, A, B, C, D, k[ 4], EXPAND(data,  4)); DEBUG(i+4);
177
855
    ROUND(D, E, F, G, H, A, B, C, k[ 5], EXPAND(data,  5)); DEBUG(i+5);
178
855
    ROUND(C, D, E, F, G, H, A, B, k[ 6], EXPAND(data,  6)); DEBUG(i+6);
179
855
    ROUND(B, C, D, E, F, G, H, A, k[ 7], EXPAND(data,  7)); DEBUG(i+7);
180
855
    ROUND(A, B, C, D, E, F, G, H, k[ 8], EXPAND(data,  8)); DEBUG(i+8);
181
855
    ROUND(H, A, B, C, D, E, F, G, k[ 9], EXPAND(data,  9)); DEBUG(i+9);
182
855
    ROUND(G, H, A, B, C, D, E, F, k[10], EXPAND(data, 10)); DEBUG(i+10);
183
855
    ROUND(F, G, H, A, B, C, D, E, k[11], EXPAND(data, 11)); DEBUG(i+11);
184
855
    ROUND(E, F, G, H, A, B, C, D, k[12], EXPAND(data, 12)); DEBUG(i+12);
185
855
    ROUND(D, E, F, G, H, A, B, C, k[13], EXPAND(data, 13)); DEBUG(i+13);
186
855
    ROUND(C, D, E, F, G, H, A, B, k[14], EXPAND(data, 14)); DEBUG(i+14);
187
855
    ROUND(B, C, D, E, F, G, H, A, k[15], EXPAND(data, 15)); DEBUG(i+15);
188
855
  }
189
190
      /* Update state */
191
285
      state[0] = A = state[0] + A;
192
285
      state[1] = B = state[1] + B;
193
285
      state[2] = C = state[2] + C;
194
285
      state[3] = D = state[3] + D;
195
285
      state[4] = E = state[4] + E;
196
285
      state[5] = F = state[5] + F;
197
285
      state[6] = G = state[6] + G;
198
285
      state[7] = H = state[7] + H;
199
#if SHA256_DEBUG
200
      fprintf(stderr, "99: %8x %8x %8x %8x %8x %8x %8x %8x\n",
201
        state[0], state[1], state[2], state[3],
202
        state[4], state[5], state[6], state[7]);
203
#endif
204
285
    }
205
570
  return input;
206
570
}