/src/wireshark/epan/dissectors/packet-gelf.c
Line | Count | Source (jump to first uncovered line) |
1 | | /* packet-gelf.c |
2 | | * Routines for Graylog Extended Log Format (GELF) dissection |
3 | | * |
4 | | * Slava Bacherikov <slava@bacher09.org> |
5 | | * |
6 | | * Wireshark - Network traffic analyzer |
7 | | * By Gerald Combs <gerald@wireshark.org> |
8 | | * Copyright 1998 |
9 | | * |
10 | | * SPDX-License-Identifier: GPL-2.0-or-later |
11 | | */ |
12 | | |
13 | | #include "config.h" |
14 | | |
15 | | #include <epan/packet.h> |
16 | | #include <epan/expert.h> |
17 | | #include <epan/to_str.h> |
18 | | #include <epan/reassemble.h> |
19 | | |
20 | 0 | #define HEADER_GZIP 0x1f8b |
21 | 0 | #define HEADER_CHUNKED 0x1e0f |
22 | | /* not sure if this really used |
23 | | seen this here: https://github.com/lusis/gelfd/blob/229cf5f1f913a35db648b195300d1aaae841d522/lib/gelfd.rb#L7 */ |
24 | 0 | #define HEADER_UNCOMPRESSED 0x1f3c |
25 | 0 | #define HEADER_UNCOMPRESSED_PLAIN 0x7b22 // json payload without real header |
26 | | |
27 | | /* minimal size of json message with only required fields */ |
28 | 0 | #define MIN_PLAIN_MSG 48 |
29 | 0 | #define MIN_ZLIB_MSG 46 |
30 | | |
31 | | /* make 32 bit message id from 64 bit message id */ |
32 | 0 | #define BUILD_MESSAGE_ID(X) ((X[3] << 3 | X[2] << 2 | X[1] << 1 | X[0]) ^ \ |
33 | 0 | (X[4] << 3 | X[5] << 2 | X[6] << 1 | X[7])) |
34 | | |
35 | | |
36 | | void proto_register_gelf(void); |
37 | | void proto_reg_handoff_gelf(void); |
38 | | |
39 | | static dissector_handle_t json_handle; |
40 | | static int proto_gelf; |
41 | | static dissector_handle_t gelf_udp_handle; |
42 | | |
43 | | static int ett_gelf; |
44 | | static int hf_gelf_pdu_type; |
45 | | static int hf_gelf_pdu_message_id; |
46 | | static int hf_gelf_pdu_chunk_number; |
47 | | static int hf_gelf_pdu_chunk_count; |
48 | | static int hf_gelf_pdu_chunked; |
49 | | |
50 | | static const value_string gelf_udp_types[] = { |
51 | | { HEADER_GZIP, "gzip" }, |
52 | | { 0x7801, "zlib" }, |
53 | | { 0x785e, "zlib" }, |
54 | | { 0x789c, "zlib" }, |
55 | | { 0x78da, "zlib" }, |
56 | | { HEADER_CHUNKED, "chunked" }, |
57 | | { HEADER_UNCOMPRESSED, "uncompressed" }, |
58 | | { HEADER_UNCOMPRESSED_PLAIN, "uncompressed plain json" }, |
59 | | { 0, NULL } |
60 | | }; |
61 | | |
62 | | static reassembly_table gelf_udp_reassembly_table; |
63 | | |
64 | | static int ett_gelf_fragment; |
65 | | static int ett_gelf_fragments; |
66 | | |
67 | | static int hf_gelf_fragments; |
68 | | static int hf_gelf_fragment; |
69 | | static int hf_gelf_fragment_overlap; |
70 | | static int hf_gelf_fragment_overlap_conflict; |
71 | | static int hf_gelf_fragment_multiple_tails; |
72 | | static int hf_gelf_fragment_too_long_fragment; |
73 | | static int hf_gelf_fragment_error; |
74 | | static int hf_gelf_fragment_count; |
75 | | static int hf_gelf_reassembled_in; |
76 | | static int hf_gelf_reassembled_length; |
77 | | |
78 | | static const fragment_items gelf_fragment_items = { |
79 | | &ett_gelf_fragment, |
80 | | &ett_gelf_fragments, |
81 | | &hf_gelf_fragments, |
82 | | &hf_gelf_fragment, |
83 | | &hf_gelf_fragment_overlap, |
84 | | &hf_gelf_fragment_overlap_conflict, |
85 | | &hf_gelf_fragment_multiple_tails, |
86 | | &hf_gelf_fragment_too_long_fragment, |
87 | | &hf_gelf_fragment_error, |
88 | | &hf_gelf_fragment_count, |
89 | | &hf_gelf_reassembled_in, |
90 | | &hf_gelf_reassembled_length, |
91 | | NULL, |
92 | | "GELF fragments" |
93 | | }; |
94 | | |
95 | | static expert_field ei_gelf_invalid_header; |
96 | | static expert_field ei_gelf_broken_compression; |
97 | | |
98 | | static inline bool |
99 | 0 | is_simple_zlib(uint16_t header) { |
100 | 0 | return header == 0x7801 || header == 0x785e || header == 0x789c || header == 0x78da; |
101 | 0 | } |
102 | | |
103 | | static int |
104 | | dissect_gelf_simple_udp(tvbuff_t *tvb, packet_info *pinfo, proto_tree *tree, uint16_t header, |
105 | | proto_item* pdu_item) |
106 | 0 | { |
107 | 0 | int len; |
108 | 0 | tvbuff_t *next_tvb; |
109 | |
|
110 | 0 | len = tvb_captured_length(tvb); |
111 | 0 | if (header == HEADER_GZIP || is_simple_zlib(header)) { |
112 | 0 | next_tvb = tvb_child_uncompress_zlib(tvb, tvb, 0, len); |
113 | 0 | if (next_tvb) { |
114 | 0 | add_new_data_source(pinfo, next_tvb, "compressed data"); |
115 | 0 | call_dissector(json_handle, next_tvb, pinfo, tree); |
116 | 0 | } else { |
117 | 0 | expert_add_info_format(pinfo, pdu_item, &ei_gelf_broken_compression, |
118 | 0 | "Can't uncompress message"); |
119 | 0 | } |
120 | 0 | return len; |
121 | 0 | } else if (header == HEADER_UNCOMPRESSED) { |
122 | 0 | next_tvb = tvb_new_subset_remaining(tvb, 2); |
123 | 0 | if (next_tvb) { |
124 | 0 | call_dissector(json_handle, next_tvb, pinfo, tree); |
125 | 0 | } |
126 | 0 | return len; |
127 | 0 | } else if (header == HEADER_UNCOMPRESSED_PLAIN) { |
128 | 0 | if (call_dissector(json_handle, tvb, pinfo, tree) == 0) { |
129 | 0 | return 0; |
130 | 0 | } |
131 | 0 | return len; |
132 | 0 | } |
133 | 0 | return 0; |
134 | 0 | } |
135 | | |
136 | | static int |
137 | | dissect_gelf(tvbuff_t *tvb, packet_info *pinfo, proto_tree *tree, bool heur_check) |
138 | 0 | { |
139 | 0 | uint16_t header; |
140 | 0 | unsigned captured_length; |
141 | 0 | proto_item *it; |
142 | |
|
143 | 0 | captured_length = tvb_captured_length(tvb); |
144 | |
|
145 | 0 | if (captured_length < 2) |
146 | 0 | return 0; |
147 | | |
148 | 0 | header = tvb_get_ntohs(tvb, 0); |
149 | |
|
150 | 0 | if (heur_check) { |
151 | 0 | unsigned min_len; |
152 | 0 | uint8_t number, count; |
153 | |
|
154 | 0 | switch(header) { |
155 | 0 | case HEADER_GZIP: |
156 | 0 | min_len = MIN_ZLIB_MSG; |
157 | 0 | break; |
158 | 0 | case HEADER_UNCOMPRESSED_PLAIN: |
159 | 0 | min_len = MIN_PLAIN_MSG; |
160 | 0 | break; |
161 | 0 | case HEADER_UNCOMPRESSED: |
162 | 0 | min_len = MIN_PLAIN_MSG + 2; |
163 | 0 | break; |
164 | 0 | case HEADER_CHUNKED: |
165 | | /* 10 bytes is chunked header + 2 bytes of data */ |
166 | 0 | min_len = 10 + 2; |
167 | 0 | break; |
168 | 0 | default: |
169 | 0 | if (is_simple_zlib(header)) { |
170 | 0 | min_len = MIN_ZLIB_MSG; |
171 | 0 | } else { |
172 | 0 | return 0; |
173 | 0 | } |
174 | 0 | break; |
175 | 0 | } |
176 | | |
177 | 0 | if (tvb_reported_length(tvb) < min_len) |
178 | 0 | return 0; |
179 | | |
180 | 0 | if (header == HEADER_CHUNKED && captured_length >= 10) { |
181 | 0 | number = tvb_get_uint8(tvb, 10); |
182 | 0 | count = tvb_get_uint8(tvb, 11); |
183 | 0 | if (number >= count) |
184 | 0 | return 0; |
185 | 0 | } |
186 | 0 | } |
187 | | |
188 | | |
189 | 0 | proto_item *ti = proto_tree_add_item(tree, proto_gelf, tvb, 0, -1, ENC_NA); |
190 | 0 | proto_tree *gelf_tree = proto_item_add_subtree(ti, ett_gelf); |
191 | 0 | proto_item *pdu_item = proto_tree_add_item(gelf_tree, hf_gelf_pdu_type, tvb, 0, 2, ENC_BIG_ENDIAN); |
192 | 0 | col_set_str(pinfo->cinfo, COL_PROTOCOL, "GELF"); |
193 | |
|
194 | 0 | if (header == HEADER_CHUNKED) { |
195 | 0 | uint32_t number, count, short_id, data_len; |
196 | 0 | GByteArray *bytes; |
197 | 0 | char message_id[17]; |
198 | 0 | bool more_frags; |
199 | 0 | fragment_head *fd_head; |
200 | |
|
201 | 0 | message_id[0] = '\0'; |
202 | 0 | bytes = g_byte_array_sized_new(8); |
203 | |
|
204 | 0 | it = proto_tree_add_boolean(gelf_tree, hf_gelf_pdu_chunked, tvb, 0, 2, true); |
205 | 0 | proto_item_set_generated(it); |
206 | 0 | proto_tree_add_bytes_item(gelf_tree, hf_gelf_pdu_message_id, tvb, 2, 8, ENC_BIG_ENDIAN, bytes, |
207 | 0 | NULL, NULL); |
208 | 0 | proto_tree_add_item_ret_uint(gelf_tree, hf_gelf_pdu_chunk_number, tvb, 10, 1, ENC_BIG_ENDIAN, |
209 | 0 | &number); |
210 | 0 | proto_tree_add_item_ret_uint(gelf_tree, hf_gelf_pdu_chunk_count, tvb, 11, 1, ENC_BIG_ENDIAN, |
211 | 0 | &count); |
212 | 0 | bytes_to_hexstr(message_id, bytes->data, 8); |
213 | 0 | message_id[16] = '\0'; |
214 | | // HACK: convert 64 bit message id to 32 bit :) |
215 | 0 | short_id = BUILD_MESSAGE_ID(bytes->data); |
216 | 0 | g_byte_array_free(bytes, true); |
217 | 0 | col_add_fstr(pinfo->cinfo, COL_INFO, "Chunked packet: id: %s, number %u, count %u", message_id, |
218 | 0 | number, count); |
219 | 0 | data_len = tvb_captured_length_remaining(tvb, 12); |
220 | 0 | more_frags = (count == number + 1) ? false : true; |
221 | 0 | fd_head = fragment_add_seq_check(&gelf_udp_reassembly_table, tvb, 12, pinfo, short_id, NULL, number, |
222 | 0 | data_len, more_frags); |
223 | 0 | if (fd_head != NULL) { |
224 | 0 | tvbuff_t *newtvb; |
225 | 0 | newtvb = process_reassembled_data(tvb, 12, pinfo, "Reassembled GELF", fd_head, |
226 | 0 | &gelf_fragment_items, NULL, gelf_tree); |
227 | 0 | if (newtvb != NULL) { |
228 | 0 | uint16_t newheader = tvb_get_ntohs(newtvb, 0); |
229 | 0 | dissect_gelf_simple_udp(newtvb, pinfo, tree, newheader, pdu_item); |
230 | 0 | } |
231 | 0 | } |
232 | 0 | return captured_length; |
233 | 0 | } else { |
234 | 0 | it = proto_tree_add_boolean(gelf_tree, hf_gelf_pdu_chunked, tvb, 0, 2, false); |
235 | 0 | proto_item_set_generated(it); |
236 | |
|
237 | 0 | switch(header) { |
238 | 0 | case HEADER_GZIP: |
239 | 0 | col_set_str(pinfo->cinfo, COL_INFO, "GZIP"); |
240 | 0 | break; |
241 | 0 | case HEADER_UNCOMPRESSED_PLAIN: |
242 | 0 | col_set_str(pinfo->cinfo, COL_INFO, "uncompressed plain"); |
243 | 0 | break; |
244 | 0 | case HEADER_UNCOMPRESSED: |
245 | 0 | col_set_str(pinfo->cinfo, COL_INFO, "uncompressed"); |
246 | 0 | break; |
247 | 0 | default: |
248 | 0 | if (is_simple_zlib(header)) { |
249 | 0 | col_set_str(pinfo->cinfo, COL_INFO, "ZLIB"); |
250 | 0 | } else { |
251 | 0 | expert_add_info_format(pinfo, pdu_item, &ei_gelf_invalid_header, |
252 | 0 | "Invalid header magic"); |
253 | 0 | return 0; |
254 | 0 | } |
255 | 0 | break; |
256 | 0 | } |
257 | | |
258 | 0 | return dissect_gelf_simple_udp(tvb, pinfo, tree, header, pdu_item); |
259 | 0 | } |
260 | 0 | } |
261 | | |
262 | | static int |
263 | 0 | dissect_gelf_udp(tvbuff_t *tvb, packet_info *pinfo, proto_tree *tree, void *data _U_) { |
264 | 0 | return dissect_gelf(tvb, pinfo, tree, false); |
265 | 0 | } |
266 | | |
267 | | static bool |
268 | | dissect_gelf_heur_udp(tvbuff_t *tvb, packet_info *pinfo, proto_tree *tree, void *data _U_) |
269 | 0 | { |
270 | 0 | if (dissect_gelf(tvb, pinfo, tree, true) > 0) { |
271 | 0 | return true; |
272 | 0 | } else { |
273 | 0 | return false; |
274 | 0 | } |
275 | 0 | } |
276 | | |
277 | | void |
278 | | proto_register_gelf(void) |
279 | 14 | { |
280 | 14 | static hf_register_info hf[] = { |
281 | 14 | { &hf_gelf_pdu_type, |
282 | 14 | { |
283 | 14 | "GELF Type", "gelf.type", FT_UINT16, |
284 | 14 | BASE_HEX, VALS(gelf_udp_types), 0x0, |
285 | 14 | NULL, HFILL |
286 | 14 | } |
287 | 14 | }, |
288 | 14 | { &hf_gelf_pdu_message_id, |
289 | 14 | { |
290 | 14 | "Message id", "gelf.chunk.msg_id", FT_BYTES, |
291 | 14 | BASE_NONE, NULL, 0x0, |
292 | 14 | NULL, HFILL |
293 | 14 | } |
294 | 14 | }, |
295 | 14 | { &hf_gelf_pdu_chunk_number, |
296 | 14 | { |
297 | 14 | "Chunk number", "gelf.chunk.number", FT_UINT8, |
298 | 14 | BASE_DEC, NULL, 0x0, |
299 | 14 | NULL, HFILL |
300 | 14 | } |
301 | 14 | }, |
302 | 14 | { &hf_gelf_pdu_chunk_count, |
303 | 14 | { |
304 | 14 | "Chunk count", "gelf.chunk.count", FT_UINT8, |
305 | 14 | BASE_DEC, NULL, 0x0, |
306 | 14 | NULL, HFILL |
307 | 14 | } |
308 | 14 | }, |
309 | 14 | { &hf_gelf_pdu_chunked, |
310 | 14 | { |
311 | 14 | "Chunked message", "gelf.chunked", FT_BOOLEAN, |
312 | 14 | BASE_NONE, NULL, 0x0, |
313 | 14 | NULL, HFILL |
314 | 14 | } |
315 | 14 | } |
316 | 14 | /* Fragmentation */, |
317 | 14 | { &hf_gelf_fragments, |
318 | 14 | { |
319 | 14 | "GELF fragments", "gelf.fragments", FT_NONE, BASE_NONE, |
320 | 14 | NULL, 0x00, NULL, HFILL |
321 | 14 | } |
322 | 14 | }, |
323 | 14 | { &hf_gelf_fragment, |
324 | 14 | { |
325 | 14 | "GELF fragment", "gelf.fragment", FT_FRAMENUM, BASE_NONE, |
326 | 14 | NULL, 0x00, NULL, HFILL |
327 | 14 | } |
328 | 14 | }, |
329 | 14 | { &hf_gelf_fragment_overlap, |
330 | 14 | { |
331 | 14 | "GELF fragment overlap", "gelf.fragment.overlap", FT_BOOLEAN, |
332 | 14 | BASE_NONE, NULL, 0x00, NULL, HFILL |
333 | 14 | } |
334 | 14 | }, |
335 | 14 | { &hf_gelf_fragment_overlap_conflict, |
336 | 14 | { |
337 | 14 | "GELF fragment overlapping with conflicting data", |
338 | 14 | "gelf.fragment.overlap.conflicts", FT_BOOLEAN, BASE_NONE, |
339 | 14 | NULL, 0x00, NULL, HFILL |
340 | 14 | } |
341 | 14 | }, |
342 | 14 | { &hf_gelf_fragment_multiple_tails, |
343 | 14 | { |
344 | 14 | "GELF has multiple tail fragments", |
345 | 14 | "gelf.fragment.multiple_tails", FT_BOOLEAN, BASE_NONE, |
346 | 14 | NULL, 0x00, NULL, HFILL |
347 | 14 | } |
348 | 14 | }, |
349 | 14 | { &hf_gelf_fragment_too_long_fragment, |
350 | 14 | { |
351 | 14 | "GELF fragment too long", "gelf.fragment.too_long_fragment", |
352 | 14 | FT_BOOLEAN, BASE_NONE, NULL, 0x00, NULL, HFILL |
353 | 14 | } |
354 | 14 | }, |
355 | 14 | { &hf_gelf_fragment_error, |
356 | 14 | { |
357 | 14 | "GELF defragmentation error", "gelf.fragment.error", FT_FRAMENUM, |
358 | 14 | BASE_NONE, NULL, 0x00, NULL, HFILL |
359 | 14 | } |
360 | 14 | }, |
361 | 14 | { &hf_gelf_fragment_count, |
362 | 14 | { |
363 | 14 | "GELF fragment count", "gelf.fragment.count", FT_UINT32, BASE_DEC, |
364 | 14 | NULL, 0x00, NULL, HFILL |
365 | 14 | } |
366 | 14 | }, |
367 | 14 | { &hf_gelf_reassembled_in, |
368 | 14 | { |
369 | 14 | "Reassembled GELF in frame", "gelf.reassembled.in", FT_FRAMENUM, BASE_NONE, |
370 | 14 | NULL, 0x00, "This GELF packet is reassembled in this frame", HFILL |
371 | 14 | } |
372 | 14 | }, |
373 | 14 | { &hf_gelf_reassembled_length, |
374 | 14 | { |
375 | 14 | "Reassembled GELF length", "gelf.reassembled.length", FT_UINT32, BASE_DEC, |
376 | 14 | NULL, 0x00, "The total length of the reassembled payload", HFILL |
377 | 14 | } |
378 | 14 | }, |
379 | 14 | }; |
380 | | |
381 | 14 | static ei_register_info ei_gelf[] = { |
382 | 14 | { &ei_gelf_invalid_header, |
383 | 14 | { |
384 | 14 | "gelf.invalid_header", PI_MALFORMED, PI_ERROR, "Invalid header", EXPFILL |
385 | 14 | } |
386 | 14 | }, |
387 | 14 | { &ei_gelf_broken_compression, |
388 | 14 | { |
389 | 14 | "gelf.broken_compression", PI_MALFORMED, PI_ERROR, "Can't unpack message", EXPFILL |
390 | 14 | } |
391 | 14 | } |
392 | 14 | }; |
393 | | |
394 | 14 | static int *ett[] = { |
395 | 14 | &ett_gelf, |
396 | 14 | &ett_gelf_fragment, |
397 | 14 | &ett_gelf_fragments |
398 | 14 | }; |
399 | | |
400 | 14 | expert_module_t *expert_gelf; |
401 | | |
402 | 14 | proto_gelf = proto_register_protocol("Graylog Extended Log Format", "GELF", "gelf"); |
403 | 14 | gelf_udp_handle = register_dissector("gelf-udp", dissect_gelf_udp, proto_gelf); |
404 | 14 | proto_register_field_array(proto_gelf, hf, array_length(hf)); |
405 | 14 | proto_register_subtree_array(ett, array_length(ett)); |
406 | 14 | expert_gelf = expert_register_protocol(proto_gelf); |
407 | 14 | expert_register_field_array(expert_gelf, ei_gelf, array_length(ei_gelf)); |
408 | 14 | reassembly_table_register(&gelf_udp_reassembly_table, &addresses_reassembly_table_functions); |
409 | 14 | } |
410 | | |
411 | | |
412 | | void |
413 | | proto_reg_handoff_gelf(void) |
414 | 14 | { |
415 | 14 | dissector_add_for_decode_as("udp.port", gelf_udp_handle); |
416 | 14 | heur_dissector_add("udp", dissect_gelf_heur_udp, "GELF over UDP", "gelf_udp", proto_gelf, |
417 | 14 | HEURISTIC_DISABLE); |
418 | 14 | json_handle = find_dissector_add_dependency("json", proto_gelf); |
419 | 14 | } |
420 | | |
421 | | /* |
422 | | * Editor modelines - https://www.wireshark.org/tools/modelines.html |
423 | | * |
424 | | * Local variables: |
425 | | * c-basic-offset: 4 |
426 | | * tab-width: 8 |
427 | | * indent-tabs-mode: nil |
428 | | * End: |
429 | | * |
430 | | * vi: set shiftwidth=4 tabstop=8 expandtab: |
431 | | * :indentSize=4:tabSize=8:noTabs=true: |
432 | | */ |