/src/wolfssl-normal-math/wolfcrypt/src/eccsi.c
Line | Count | Source (jump to first uncovered line) |
1 | | /* eccsi.c |
2 | | * |
3 | | * Copyright (C) 2006-2025 wolfSSL Inc. |
4 | | * |
5 | | * This file is part of wolfSSL. |
6 | | * |
7 | | * wolfSSL is free software; you can redistribute it and/or modify |
8 | | * it under the terms of the GNU General Public License as published by |
9 | | * the Free Software Foundation; either version 3 of the License, or |
10 | | * (at your option) any later version. |
11 | | * |
12 | | * wolfSSL is distributed in the hope that it will be useful, |
13 | | * but WITHOUT ANY WARRANTY; without even the implied warranty of |
14 | | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
15 | | * GNU General Public License for more details. |
16 | | * |
17 | | * You should have received a copy of the GNU General Public License |
18 | | * along with this program; if not, write to the Free Software |
19 | | * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1335, USA |
20 | | */ |
21 | | |
22 | | #include <wolfssl/wolfcrypt/libwolfssl_sources.h> |
23 | | |
24 | | #ifdef NO_INLINE |
25 | | #include <wolfssl/wolfcrypt/misc.h> |
26 | | #else |
27 | | #define WOLFSSL_MISC_INCLUDED |
28 | | #include <wolfcrypt/src/misc.c> |
29 | | #endif |
30 | | |
31 | | #ifdef WOLFCRYPT_HAVE_ECCSI |
32 | | |
33 | | #include <wolfssl/wolfcrypt/eccsi.h> |
34 | | #include <wolfssl/wolfcrypt/asn_public.h> |
35 | | #ifdef WOLFSSL_HAVE_SP_ECC |
36 | | #include <wolfssl/wolfcrypt/sp.h> |
37 | | #endif |
38 | | |
39 | | #if defined(WOLFSSL_LINUXKM) && !defined(WOLFSSL_SP_ASM) |
40 | | /* force off unneeded vector register save/restore. */ |
41 | | #undef SAVE_VECTOR_REGISTERS |
42 | | #define SAVE_VECTOR_REGISTERS(fail_clause) WC_DO_NOTHING |
43 | | #undef RESTORE_VECTOR_REGISTERS |
44 | | #define RESTORE_VECTOR_REGISTERS() WC_DO_NOTHING |
45 | | #endif |
46 | | |
47 | | #ifndef WOLFSSL_HAVE_ECC_KEY_GET_PRIV |
48 | | /* FIPS build has replaced ecc.h. */ |
49 | | #define wc_ecc_key_get_priv(key) (&((key)->k)) |
50 | | #define WOLFSSL_HAVE_ECC_KEY_GET_PRIV |
51 | | #endif |
52 | | |
53 | | /** |
54 | | * Initialize the components of the ECCSI key and use the specified curve. |
55 | | * |
56 | | * Must be called before performing any operations. |
57 | | * Free the ECCSI key with wc_FreeEccsiKey() when no longer needed. |
58 | | * |
59 | | * @param [in] key ECCSI key to initialize. |
60 | | * @param [in] heap Heap hint. |
61 | | * @param [in] devId Device identifier. |
62 | | * Use INVALID_DEVID when no device used. |
63 | | * @return 0 on success. |
64 | | * @return BAD_FUNC_ARG when key is NULL. |
65 | | * @return MEMORY_E when dynamic memory allocation fails. |
66 | | */ |
67 | | int wc_InitEccsiKey_ex(EccsiKey* key, int keySz, int curveId, void* heap, |
68 | | int devId) |
69 | 57 | { |
70 | 57 | int err = 0; |
71 | 57 | ecc_key* ecc = NULL; |
72 | 57 | ecc_key* pubkey = NULL; |
73 | 57 | EccsiKeyParams* params = NULL; |
74 | | |
75 | 57 | if (key == NULL) { |
76 | 0 | err = BAD_FUNC_ARG; |
77 | 0 | } |
78 | | |
79 | 57 | if (err == 0) { |
80 | 57 | XMEMSET(key, 0, sizeof(*key)); |
81 | 57 | key->heap = heap; |
82 | 57 | params = &key->params; |
83 | | |
84 | 57 | err = wc_ecc_init_ex(&key->ecc, heap, devId); |
85 | 57 | } |
86 | 57 | if (err == 0) { |
87 | 57 | ecc = &key->ecc; |
88 | 57 | err = wc_ecc_init_ex(&key->pubkey, heap, devId); |
89 | 57 | } |
90 | 57 | if (err == 0) { |
91 | 57 | key->pvt = wc_ecc_new_point_h(heap); |
92 | 57 | if (key->pvt == NULL) { |
93 | 0 | err = MEMORY_E; |
94 | 0 | } |
95 | 57 | } |
96 | 57 | if (err == 0) { |
97 | 57 | pubkey = &key->pubkey; |
98 | 57 | err = mp_init_multi(¶ms->order, |
99 | 57 | #ifdef WOLFCRYPT_ECCSI_CLIENT |
100 | 57 | ¶ms->a, ¶ms->b, ¶ms->prime, &key->tmp, &key->ssk |
101 | | #else |
102 | | NULL, NULL, NULL, NULL, NULL |
103 | | #endif |
104 | 57 | ); |
105 | 57 | } |
106 | 57 | if (err == 0) { |
107 | 57 | err = wc_ecc_set_curve(&key->ecc, keySz, curveId); |
108 | 57 | } |
109 | 57 | if (err == 0) { |
110 | 57 | err = wc_ecc_set_curve(&key->pubkey, keySz, curveId); |
111 | 57 | } |
112 | | |
113 | 57 | if (err != 0) { |
114 | 0 | wc_ecc_free(pubkey); |
115 | 0 | wc_ecc_free(ecc); |
116 | 0 | } |
117 | | |
118 | 57 | return err; |
119 | 57 | } |
120 | | |
121 | | /** |
122 | | * Initialize the components of the ECCSI key. |
123 | | * Default curve used: NIST_P256 (ECC_SECP256R1) |
124 | | * |
125 | | * Must be called before performing any operations. |
126 | | * Free the ECCSI key with wc_FreeEccsiKey() when no longer needed. |
127 | | * |
128 | | * @param [in] key ECCSI key to initialize. |
129 | | * @param [in] heap Heap hint. |
130 | | * @param [in] devId Device identifier. |
131 | | * Use INVALID_DEVID when no device used. |
132 | | * @return 0 on success. |
133 | | * @return BAD_FUNC_ARG when key is NULL. |
134 | | * @return MEMORY_E when dynamic memory allocation fails. |
135 | | */ |
136 | | int wc_InitEccsiKey(EccsiKey* key, void* heap, int devId) |
137 | 0 | { |
138 | 0 | return wc_InitEccsiKey_ex(key, 32, ECC_SECP256R1, heap, devId); |
139 | 0 | } |
140 | | |
141 | | /** |
142 | | * Frees memory associated with components of the ECCIS key. |
143 | | * |
144 | | * Must be called when finished with the ECCIS key. |
145 | | * |
146 | | * @param [in] key ECCIS key. |
147 | | */ |
148 | | void wc_FreeEccsiKey(EccsiKey* key) |
149 | 57 | { |
150 | 57 | if (key != NULL) { |
151 | 57 | EccsiKeyParams* params = &key->params; |
152 | | |
153 | 57 | wc_ecc_del_point_h(params->base, key->heap); |
154 | 57 | #ifdef WOLFCRYPT_ECCSI_CLIENT |
155 | 57 | mp_free(&key->ssk); |
156 | 57 | mp_free(&key->tmp); |
157 | 57 | mp_free(¶ms->prime); |
158 | 57 | mp_free(¶ms->b); |
159 | 57 | mp_free(¶ms->a); |
160 | 57 | #endif |
161 | 57 | mp_free(¶ms->order); |
162 | 57 | wc_ecc_del_point_h(key->pvt, key->heap); |
163 | 57 | wc_ecc_free(&key->pubkey); |
164 | 57 | wc_ecc_free(&key->ecc); |
165 | 57 | XMEMSET(key, 0, sizeof(*key)); |
166 | 57 | } |
167 | 57 | } |
168 | | |
169 | | /* |
170 | | * Order, as a hex string in the ECC object, loaded into mp_int in key. |
171 | | * Flags that the order is available so it isn't loaded multiple times. |
172 | | * |
173 | | * @param [in] key ECCSI key. |
174 | | * @return 0 on success. |
175 | | * @return MEMORY_E when dynamic memory allocation fails. |
176 | | */ |
177 | | static int eccsi_load_order(EccsiKey* key) |
178 | 0 | { |
179 | 0 | int err = 0; |
180 | |
|
181 | 0 | if (!key->params.haveOrder) { |
182 | 0 | err = mp_read_radix(&key->params.order, key->ecc.dp->order, |
183 | 0 | MP_RADIX_HEX); |
184 | 0 | if (err == 0) { |
185 | 0 | key->params.haveOrder = 1; |
186 | 0 | } |
187 | 0 | } |
188 | |
|
189 | 0 | return err; |
190 | 0 | } |
191 | | |
192 | | #ifdef WOLFCRYPT_ECCSI_CLIENT |
193 | | /* |
194 | | * Parameters, as a hex strings in the ECC object, loaded into mp_ints in key. |
195 | | * |
196 | | * Parameters loaded: order, A, B, prime. |
197 | | * Flags that each parameter is available so they aren't loaded multiple times. |
198 | | * |
199 | | * @param [in] key ECCSI key. |
200 | | * @return 0 on success. |
201 | | * @return MEMORY_E when dynamic memory allocation fails. |
202 | | */ |
203 | | static int eccsi_load_ecc_params(EccsiKey* key) |
204 | 0 | { |
205 | 0 | int err = 0; |
206 | 0 | EccsiKeyParams* params = &key->params; |
207 | |
|
208 | 0 | err = eccsi_load_order(key); |
209 | 0 | if ((err == 0) && (!params->haveA)) { |
210 | 0 | err = mp_read_radix(¶ms->a, key->ecc.dp->Af, MP_RADIX_HEX); |
211 | 0 | if (err == 0) { |
212 | 0 | params->haveA = 1; |
213 | 0 | } |
214 | 0 | } |
215 | 0 | if ((err == 0) && (!params->haveB)) { |
216 | 0 | err = mp_read_radix(¶ms->b, key->ecc.dp->Bf, MP_RADIX_HEX); |
217 | 0 | if (err == 0) { |
218 | 0 | params->haveB = 1; |
219 | 0 | } |
220 | 0 | } |
221 | 0 | if ((err == 0) && (!params->havePrime)) { |
222 | 0 | err = mp_read_radix(¶ms->prime, key->ecc.dp->prime, MP_RADIX_HEX); |
223 | 0 | if (err == 0) { |
224 | 0 | params->havePrime = 1; |
225 | 0 | } |
226 | 0 | } |
227 | |
|
228 | 0 | return err; |
229 | 0 | } |
230 | | #endif /* WOLFCRYPT_ECCSI_CLIENT */ |
231 | | |
232 | | /* |
233 | | * Get the base point, hex encoded in the ECC object, as an ecc_point. |
234 | | * |
235 | | * Flags that base is available so it isn't loaded multiple times. |
236 | | |
237 | | * @param [in] key ECCSI key. |
238 | | * @param [out] base Base point of curve. |
239 | | * @return 0 on success. |
240 | | * @return MEMORY_E when dynamic memory allocation fails. |
241 | | */ |
242 | | static int eccsi_load_base(EccsiKey* key) |
243 | 0 | { |
244 | 0 | int err = 0; |
245 | 0 | EccsiKeyParams* params = &key->params; |
246 | |
|
247 | 0 | if (!params->haveBase) { |
248 | 0 | if (params->base == NULL) { |
249 | 0 | params->base = wc_ecc_new_point_h(key->heap); |
250 | 0 | if (params->base == NULL) { |
251 | 0 | err = MEMORY_E; |
252 | 0 | } |
253 | 0 | } |
254 | 0 | if (err == 0) { |
255 | 0 | err = mp_read_radix(params->base->x, key->ecc.dp->Gx, MP_RADIX_HEX); |
256 | 0 | } |
257 | 0 | if (err == 0) { |
258 | 0 | err = mp_read_radix(params->base->y, key->ecc.dp->Gy, MP_RADIX_HEX); |
259 | 0 | } |
260 | 0 | if (err == 0) { |
261 | 0 | err = mp_set(params->base->z, 1); |
262 | 0 | } |
263 | 0 | if (err == 0) { |
264 | 0 | params->haveBase = 1; |
265 | 0 | } |
266 | 0 | } |
267 | |
|
268 | 0 | return err; |
269 | 0 | } |
270 | | |
271 | | /* |
272 | | * Encode the base point of the curve. |
273 | | * |
274 | | * Base point is hex encoded in the ECC object or cached as an ECC point from |
275 | | * previous load calls. |
276 | | * |
277 | | * @param [in] key ECCSI key. |
278 | | * @param [out] data Buffer to encode base point into. |
279 | | * @param [out] dataSz Length of base point in bytes. |
280 | | * @return 0 on success. |
281 | | * @return MEMORY_E when dynamic memory allocation fails. |
282 | | * @return Other -ve value when an internal operation fails. |
283 | | */ |
284 | | static int eccsi_encode_base(EccsiKey* key, byte* data, word32* dataSz) |
285 | 0 | { |
286 | 0 | int err; |
287 | 0 | int idx = wc_ecc_get_curve_idx(key->ecc.dp->id); |
288 | |
|
289 | 0 | err = eccsi_load_base(key); |
290 | 0 | if (err == 0) { |
291 | 0 | err = wc_ecc_export_point_der(idx, key->params.base, data, dataSz); |
292 | 0 | } |
293 | |
|
294 | 0 | return err; |
295 | 0 | } |
296 | | |
297 | | #ifndef WOLFSSL_HAVE_SP_ECC |
298 | | /* |
299 | | * Convert the KPAK to montgomery form. |
300 | | * |
301 | | * The KPAK is needed in Montgomery form for verification. |
302 | | * |
303 | | * @param [in] key ECCSI key. |
304 | | * @return 0 on success. |
305 | | * @return MP_MEM or MEMORY_E when dynamic memory allocation fails. |
306 | | * @return Other -ve value when an internal operation fails. |
307 | | */ |
308 | | static int eccsi_kpak_to_mont(EccsiKey* key) |
309 | 0 | { |
310 | 0 | int err = 0; |
311 | 0 | ecc_point* kpak = &key->ecc.pubkey; |
312 | 0 | mp_int* mu = &key->tmp; |
313 | 0 | mp_int* prime = &key->params.prime; |
314 | |
|
315 | 0 | if (!key->kpakMont) { |
316 | 0 | err = mp_montgomery_calc_normalization(mu, prime); |
317 | 0 | if (err == 0) { |
318 | 0 | err = mp_mulmod(kpak->x, mu, prime, kpak->x); |
319 | 0 | } |
320 | 0 | if (err == 0) { |
321 | 0 | err = mp_mulmod(kpak->y, mu, prime, kpak->y); |
322 | 0 | } |
323 | 0 | if (err == 0) { |
324 | 0 | err = mp_mulmod(kpak->z, mu, prime, kpak->z); |
325 | 0 | } |
326 | 0 | if (err == 0) { |
327 | 0 | key->kpakMont = 1; |
328 | 0 | } |
329 | 0 | } |
330 | |
|
331 | 0 | return err; |
332 | 0 | } |
333 | | #endif |
334 | | |
335 | | /* |
336 | | * Convert the KPAK from montgomery form. |
337 | | * |
338 | | * The KPAK is needed in Montgomery form for verification. |
339 | | * |
340 | | * @param [in] key ECCSI key. |
341 | | * @return 0 on success. |
342 | | * @return MP_MEM or MEMORY_E when dynamic memory allocation fails. |
343 | | * @return Other -ve value when an internal operation fails. |
344 | | */ |
345 | | static int eccsi_kpak_from_mont(EccsiKey* key) |
346 | 0 | { |
347 | 0 | int err = 0; |
348 | 0 | ecc_point* kpak = &key->ecc.pubkey; |
349 | 0 | mp_digit mp; |
350 | 0 | mp_int* prime = &key->params.prime; |
351 | |
|
352 | 0 | if (key->kpakMont) { |
353 | 0 | err = mp_montgomery_setup(prime, &mp); |
354 | 0 | if (err == 0) { |
355 | 0 | err = mp_montgomery_reduce(kpak->x, prime, mp); |
356 | 0 | } |
357 | 0 | if (err == 0) { |
358 | 0 | err = mp_montgomery_reduce(kpak->y, prime, mp); |
359 | 0 | } |
360 | 0 | if (err == 0) { |
361 | 0 | err = mp_montgomery_reduce(kpak->z, prime, mp); |
362 | 0 | } |
363 | 0 | if (err == 0) { |
364 | 0 | key->kpakMont = 0; |
365 | 0 | } |
366 | 0 | } |
367 | |
|
368 | 0 | return err; |
369 | 0 | } |
370 | | |
371 | | /* |
372 | | * Compute HS = hash( G | KPAK | ID | PVT ) |
373 | | * |
374 | | * Use when making a (SSK,PVT) pair, signing and verifying. |
375 | | * |
376 | | * @param [in] key ECCSI key. |
377 | | * @param [in] hashType Type of hash algorithm. e.g. WC_SHA256 |
378 | | * @param [in] id Identity to create hash from. |
379 | | * @param [in] idSz Length of identity in bytes. |
380 | | * @param [in] pvt Public Validation Token (PVT) as an ECC point. |
381 | | * @param [out] hash Buffer to hold hash data. |
382 | | * @param [out] hashSz Length of hash data in bytes. |
383 | | * @return 0 on success. |
384 | | * @return MEMORY_E when dynamic memory allocation fails. |
385 | | * @return Other -ve value when an internal operation fails. |
386 | | */ |
387 | | static int eccsi_compute_hs(EccsiKey* key, enum wc_HashType hashType, |
388 | | const byte* id, word32 idSz, ecc_point* pvt, byte* hash, byte* hashSz) |
389 | 0 | { |
390 | 0 | int err; |
391 | 0 | word32 dataSz = 0; |
392 | 0 | int idx = wc_ecc_get_curve_idx(key->ecc.dp->id); |
393 | 0 | ecc_point* kpak = &key->ecc.pubkey; |
394 | 0 | int hash_inited = 0; |
395 | | |
396 | | /* HS = hash( G | KPAK | ID | PVT ) */ |
397 | 0 | err = wc_HashInit_ex(&key->hash, hashType, key->heap, INVALID_DEVID); |
398 | 0 | if (err == 0) { |
399 | 0 | hash_inited = 1; |
400 | | /* Base Point - G */ |
401 | 0 | dataSz = sizeof(key->data); |
402 | 0 | err = eccsi_encode_base(key, key->data, &dataSz); |
403 | 0 | } |
404 | 0 | if (err == 0) { |
405 | 0 | err = wc_HashUpdate(&key->hash, hashType, key->data, dataSz); |
406 | 0 | } |
407 | 0 | if (err == 0) { |
408 | 0 | err = eccsi_kpak_from_mont(key); |
409 | 0 | } |
410 | 0 | if (err == 0) { |
411 | 0 | dataSz = sizeof(key->data); |
412 | | /* KPAK - public key */ |
413 | 0 | err = wc_ecc_export_point_der(idx, kpak, key->data, &dataSz); |
414 | 0 | } |
415 | 0 | if (err == 0) { |
416 | 0 | err = wc_HashUpdate(&key->hash, hashType, key->data, dataSz); |
417 | 0 | } |
418 | 0 | if (err == 0) { |
419 | | /* Id - Signer's ID */ |
420 | 0 | err = wc_HashUpdate(&key->hash, hashType, id, idSz); |
421 | 0 | } |
422 | 0 | if (err == 0) { |
423 | 0 | dataSz = sizeof(key->data); |
424 | | /* PVT - Public Validation Token */ |
425 | 0 | err = wc_ecc_export_point_der(idx, pvt, key->data, &dataSz); |
426 | 0 | } |
427 | 0 | if (err == 0) { |
428 | | /* PVT - Public Validation Token */ |
429 | 0 | err = wc_HashUpdate(&key->hash, hashType, key->data, dataSz); |
430 | 0 | } |
431 | 0 | if (err == 0) { |
432 | 0 | err = wc_HashFinal(&key->hash, hashType, hash); |
433 | 0 | } |
434 | |
|
435 | 0 | if (err == 0) { |
436 | 0 | *hashSz = (byte)wc_HashGetDigestSize(hashType); |
437 | 0 | } |
438 | |
|
439 | 0 | if (hash_inited) { |
440 | 0 | (void)wc_HashFree(&key->hash, hashType); |
441 | 0 | } |
442 | |
|
443 | 0 | return err; |
444 | 0 | } |
445 | | |
446 | | #ifdef WOLFCRYPT_ECCSI_KMS |
447 | | /** |
448 | | * Generate KMS Secret Auth Key (KSAK) and KMS Public Auth Key (KPAK). |
449 | | * |
450 | | * RFC 6507, Section 4.2 |
451 | | * |
452 | | * Called when establishing a new KMS.\n |
453 | | * KSAK must be kept secret while KPAK is required by clients for signing |
454 | | * and verifying.\n |
455 | | * Export key using wc_ExportEccsiKey(), once generated, to reuse the key.\n |
456 | | * Export KPAK using wc_ExportEccsiPublicKey(), once generate to send to |
457 | | * clients. |
458 | | * |
459 | | * Creates a random private key and multiplies it by the base point to calculate |
460 | | * the public key. |
461 | | * |
462 | | * @param [in] key ECCSI key. |
463 | | * @param [in] rng Random number generator. |
464 | | * @return 0 on success. |
465 | | * @return BAD_FUNC_ARG when key or rng is NULL. |
466 | | * @return MP_MEM or MEMORY_E when dynamic memory allocation fails. |
467 | | * @return Other -ve value when an internal operation fails. |
468 | | */ |
469 | | int wc_MakeEccsiKey(EccsiKey* key, WC_RNG* rng) |
470 | 0 | { |
471 | 0 | int err = 0; |
472 | |
|
473 | 0 | if ((key == NULL) || (rng == NULL)) { |
474 | 0 | err = BAD_FUNC_ARG; |
475 | 0 | } |
476 | |
|
477 | 0 | if (err == 0) { |
478 | 0 | err = wc_ecc_make_key_ex(rng, key->ecc.dp->size, &key->ecc, |
479 | 0 | key->ecc.dp->id); |
480 | 0 | } |
481 | |
|
482 | 0 | return err; |
483 | 0 | } |
484 | | |
485 | | /* |
486 | | * Encode a point into a buffer. |
487 | | * |
488 | | * X and y ordinate of point concatenated. Each number is zero padded tosize. |
489 | | * Descriptor byte (0x04) is prepended when not raw. |
490 | | * |
491 | | * @param [in] point ECC point to encode. |
492 | | * @param [in] size Size of prime in bytes - maximum ordinate length. |
493 | | * @param [out] data Buffer to hold encoded data. |
494 | | * NULL when needing length of encoded data. |
495 | | * @param [in,out] sz In, the size of the buffer in bytes. |
496 | | * Out, the size of the encoded data in bytes. |
497 | | * @param [in] raw On 0, prepend descriptor byte. |
498 | | * On 1, only include ordinates. |
499 | | * @return 0 on success. |
500 | | * @return BAD_FUNC_ARG when key or sz is NULL. |
501 | | * @return LENGTH_ONLY_E when data is NULL - sz will hold the size in bytes of |
502 | | * the encoded data. |
503 | | * @return BUFFER_E when size of buffer is too small. |
504 | | */ |
505 | | static int eccsi_encode_point(ecc_point* point, word32 size, byte* data, |
506 | | word32* sz, int raw) |
507 | 0 | { |
508 | 0 | int err = 0; |
509 | |
|
510 | 0 | if (data == NULL) { |
511 | 0 | *sz = size * 2 + !raw; |
512 | 0 | err = WC_NO_ERR_TRACE(LENGTH_ONLY_E); |
513 | 0 | } |
514 | 0 | if ((err == 0) && (*sz < size * 2 + !raw)) { |
515 | 0 | err = BUFFER_E; |
516 | 0 | } |
517 | |
|
518 | 0 | if (err == 0) { |
519 | 0 | if (!raw) { |
520 | 0 | data[0] = 0x04; |
521 | 0 | data++; |
522 | 0 | } |
523 | | |
524 | | /* Write out the point's x ordinate into key size bytes. */ |
525 | 0 | err = mp_to_unsigned_bin_len(point->x, data, (int)size); |
526 | 0 | } |
527 | 0 | if (err == 0) { |
528 | 0 | data += size; |
529 | | /* Write out the point's y ordinate into key size bytes. */ |
530 | 0 | err = mp_to_unsigned_bin_len(point->y, data, (int)size); |
531 | 0 | } |
532 | 0 | if (err == 0) { |
533 | 0 | *sz = size * 2 + !raw; |
534 | 0 | } |
535 | |
|
536 | 0 | return err; |
537 | 0 | } |
538 | | |
539 | | /* |
540 | | * Decode the data into an ECC point. |
541 | | * |
542 | | * X and y ordinate of point concatenated. Each number is zero padded to |
543 | | * key size. Supports prepended descriptor byte (0x04). |
544 | | * |
545 | | * @param [out] point ECC point to encode. |
546 | | * @param [in] size Size of prime in bytes - maximum ordinate length. |
547 | | * @param [in] data Encoded public key. |
548 | | * @param [in] sz Size of the encoded public key in bytes. |
549 | | * @return 0 on success. |
550 | | * @return BAD_FUNC_ARG when key or z is NULL. |
551 | | * @return BUFFER_E when size of data is not equal to the expected size. |
552 | | * @return ASN_PARSE_E when format byte is invalid. |
553 | | * @return MP_MEM or MEMORY_E when dynamic memory allocation fails. |
554 | | */ |
555 | | static int eccsi_decode_point(ecc_point* point, word32 size, const byte* data, |
556 | | word32 sz) |
557 | 57 | { |
558 | 57 | int err = 0; |
559 | | |
560 | 57 | if ((sz != size * 2) && (sz != size * 2 + 1)) { |
561 | 0 | err = BUFFER_E; |
562 | 0 | } |
563 | | |
564 | 57 | if ((err == 0) && (sz & 1)) { |
565 | 0 | if (data[0] != 0x04) { |
566 | 0 | err = ASN_PARSE_E; |
567 | 0 | } |
568 | 0 | data++; |
569 | 0 | } |
570 | | |
571 | 57 | if (err == 0) { |
572 | | /* Read the public key point's x value from key size bytes. */ |
573 | 57 | err = mp_read_unsigned_bin(point->x, data, size); |
574 | 57 | } |
575 | 57 | if (err == 0) { |
576 | 57 | data += size; |
577 | | /* Read the public key point's y value from key size bytes. */ |
578 | 57 | err = mp_read_unsigned_bin(point->y, data, size); |
579 | 57 | } |
580 | 57 | if (err == 0) { |
581 | 57 | err = mp_set(point->z, 1); |
582 | 57 | } |
583 | | |
584 | 57 | return err; |
585 | 57 | } |
586 | | |
587 | | /* |
588 | | * Encode the ECCSI key. |
589 | | * |
590 | | * Encodes the private key as big-endian bytes of fixed length. |
591 | | * Encodes the public key x and y ordinates as big-endian bytes of fixed length. |
592 | | * |
593 | | * @param [in] key ECCSI key. |
594 | | * @param [out] data Buffer to hold encoded ECCSI key. |
595 | | * @return 0 on success. |
596 | | * @return MEMORY_E when dynamic memory allocation fails (WOLFSSL_SMALL_STACK). |
597 | | */ |
598 | | static int eccsi_encode_key(EccsiKey* key, byte* data) |
599 | 0 | { |
600 | 0 | int err; |
601 | 0 | word32 sz = (word32)key->ecc.dp->size * 2; |
602 | | |
603 | | /* Write out the secret value into key size bytes. */ |
604 | 0 | err = mp_to_unsigned_bin_len(wc_ecc_key_get_priv(&key->ecc), data, |
605 | 0 | key->ecc.dp->size); |
606 | 0 | if (err == 0) { |
607 | 0 | data += key->ecc.dp->size; |
608 | | /* Write the public key. */ |
609 | 0 | err = eccsi_encode_point(&key->ecc.pubkey, (word32)key->ecc.dp->size, |
610 | 0 | data, &sz, 1); |
611 | 0 | } |
612 | |
|
613 | 0 | return err; |
614 | 0 | } |
615 | | |
616 | | /** |
617 | | * Export the ECCSI key as encoded public/private ECC key. |
618 | | * |
619 | | * Use when saving the KMS key pair. |
620 | | * |
621 | | * Private key, x ordinate of public key and y ordinate of public key |
622 | | * concatenated. Each number is zero padded to key size. |
623 | | * |
624 | | * @param [in] key ECCSI key. |
625 | | * @param [out] data Buffer to hold encoded ECCSI key. |
626 | | * NULL when requesting required length. |
627 | | * @param [in,out] sz On in, size of buffer in bytes. |
628 | | * On out, size of encoded ECCSI key in bytes. |
629 | | * @return 0 on success. |
630 | | * @return BAD_FUNC_ARG when key or sz is NULL |
631 | | * @return BAD_STATE_E when no key to export. |
632 | | * @return LENGTH_ONLY_E when data is NULL - sz is set. |
633 | | * @return BUFFER_E when the buffer passed in is too small. |
634 | | * @return MEMORY_E when dynamic memory allocation fails (WOLFSSL_SMALL_STACK). |
635 | | */ |
636 | | int wc_ExportEccsiKey(EccsiKey* key, byte* data, word32* sz) |
637 | 0 | { |
638 | 0 | int err = 0; |
639 | |
|
640 | 0 | if ((key == NULL) || (sz == NULL)) { |
641 | 0 | err = BAD_FUNC_ARG; |
642 | 0 | } |
643 | |
|
644 | 0 | if ((err == 0) && (key->ecc.type != ECC_PRIVATEKEY)) { |
645 | 0 | err = BAD_STATE_E; |
646 | 0 | } |
647 | |
|
648 | 0 | if (err == 0) { |
649 | 0 | if (data == NULL) { |
650 | 0 | *sz = (word32)(key->ecc.dp->size * 3); |
651 | 0 | err = WC_NO_ERR_TRACE(LENGTH_ONLY_E); |
652 | 0 | } |
653 | 0 | else if (*sz < (word32)key->ecc.dp->size * 3) { |
654 | 0 | err = BUFFER_E; |
655 | 0 | } |
656 | 0 | else { |
657 | 0 | *sz = (word32)(key->ecc.dp->size * 3); |
658 | 0 | } |
659 | 0 | } |
660 | 0 | if (err == 0) { |
661 | 0 | err = eccsi_kpak_from_mont(key); |
662 | 0 | } |
663 | 0 | if (err == 0) { |
664 | | /* Encode key */ |
665 | 0 | err = eccsi_encode_key(key, data); |
666 | 0 | } |
667 | |
|
668 | 0 | return err; |
669 | 0 | } |
670 | | |
671 | | /* |
672 | | * Import the ECCSI key as encoded public/private ECC key. |
673 | | * |
674 | | * Decodes the private key as big-endian bytes of fixed length. |
675 | | * Decodes the public key x and y ordinates as big-endian bytes of fixed length. |
676 | | * |
677 | | * @param [in] key ECCSI key. |
678 | | * @param [in] data Buffer holding encoded ECCSI key. |
679 | | * @return 0 on success. |
680 | | * @return MP_MEM or MEMORY_E when dynamic memory allocation fails. |
681 | | */ |
682 | | static int eccsi_decode_key(EccsiKey* key, const byte* data) |
683 | 57 | { |
684 | 57 | int err; |
685 | | |
686 | | /* Read the secret value from key size bytes. */ |
687 | 57 | err = mp_read_unsigned_bin(wc_ecc_key_get_priv(&key->ecc), data, |
688 | 57 | (word32)key->ecc.dp->size); |
689 | 57 | if (err == 0) { |
690 | 57 | data += key->ecc.dp->size; |
691 | | /* Read public key. */ |
692 | 57 | err = eccsi_decode_point(&key->ecc.pubkey, (word32)key->ecc.dp->size, |
693 | 57 | data, (word32)(key->ecc.dp->size * 2)); |
694 | 57 | } |
695 | | |
696 | 57 | return err; |
697 | 57 | } |
698 | | |
699 | | /** |
700 | | * Import the ECCSI key as encoded public/private ECC key. |
701 | | * |
702 | | * Use when restoring the KMS key pair. |
703 | | * |
704 | | * Private key, x ordinate of public key and y ordinate of public key |
705 | | * concatenated. Each number is zero padded to key size. |
706 | | * |
707 | | * @param [in] key ECCSI key. |
708 | | * @param [in] data Buffer holding encoded ECCSI key. |
709 | | * @param [in] sz Size of encoded ECCSI key in bytes. |
710 | | * @return 0 on success. |
711 | | * @return BAD_FUNC_ARG when key or data is NULL. |
712 | | * @return BUFFER_E when size of data is not equal to the expected size. |
713 | | * @return MP_MEM or MEMORY_E when dynamic memory allocation fails. |
714 | | */ |
715 | | int wc_ImportEccsiKey(EccsiKey* key, const byte* data, word32 sz) |
716 | 57 | { |
717 | 57 | int err = 0; |
718 | | |
719 | 57 | if ((key == NULL) || (data == NULL)) { |
720 | 0 | err = BAD_FUNC_ARG; |
721 | 0 | } |
722 | 57 | if ((err == 0) && (sz != (word32)key->ecc.dp->size * 3)) { |
723 | 0 | err = BUFFER_E; |
724 | 0 | } |
725 | | |
726 | 57 | if (err == 0) { |
727 | 57 | key->kpakMont = 0; |
728 | | |
729 | | /* Decode key */ |
730 | 57 | err = eccsi_decode_key(key, data); |
731 | 57 | } |
732 | 57 | if (err == 0) { |
733 | 57 | key->ecc.type = ECC_PRIVATEKEY; |
734 | 57 | } |
735 | | |
736 | 57 | return err; |
737 | 57 | } |
738 | | |
739 | | /** |
740 | | * Export the ECCSI private key. |
741 | | * |
742 | | * Use when saving the KMS key. |
743 | | * |
744 | | * Private key is zero padded to key size. |
745 | | * |
746 | | * @param [in] key ECCSI key. |
747 | | * @param [out] data Buffer to hold encoded ECCSI private key. |
748 | | * NULL when requesting required length. |
749 | | * @param [in,out] sz On in, size of buffer in bytes. |
750 | | * On out, size of encoded ECCSI private key in bytes. |
751 | | * @return 0 on success. |
752 | | * @return BAD_FUNC_ARG when key or sz is NULL |
753 | | * @return BAD_STATE_E when no key to export. |
754 | | * @return LENGTH_ONLY_E when data is NULL - sz is set. |
755 | | * @return BUFFER_E when the buffer passed in is too small. |
756 | | * @return MEMORY_E when dynamic memory allocation fails (WOLFSSL_SMALL_STACK). |
757 | | */ |
758 | | int wc_ExportEccsiPrivateKey(EccsiKey* key, byte* data, word32* sz) |
759 | 0 | { |
760 | 0 | int err = 0; |
761 | |
|
762 | 0 | if ((key == NULL) || (sz == NULL)) { |
763 | 0 | err = BAD_FUNC_ARG; |
764 | 0 | } |
765 | |
|
766 | 0 | if ((err == 0) && (key->ecc.type != ECC_PRIVATEKEY)) { |
767 | 0 | err = BAD_STATE_E; |
768 | 0 | } |
769 | |
|
770 | 0 | if (err == 0) { |
771 | 0 | if (data == NULL) { |
772 | 0 | *sz = (word32)key->ecc.dp->size; |
773 | 0 | err = WC_NO_ERR_TRACE(LENGTH_ONLY_E); |
774 | 0 | } |
775 | 0 | else if (*sz < (word32)key->ecc.dp->size) { |
776 | 0 | err = BUFFER_E; |
777 | 0 | } |
778 | 0 | else { |
779 | 0 | *sz = (word32)key->ecc.dp->size; |
780 | 0 | } |
781 | 0 | } |
782 | 0 | if (err == 0) { |
783 | 0 | err = mp_to_unsigned_bin_len(wc_ecc_key_get_priv(&key->ecc), data, |
784 | 0 | key->ecc.dp->size); |
785 | 0 | } |
786 | |
|
787 | 0 | return err; |
788 | 0 | } |
789 | | |
790 | | /** |
791 | | * Import the ECCSI private key. |
792 | | * |
793 | | * Use when restoring the KMS key pair. |
794 | | * |
795 | | * Private key is zero padded to key size. |
796 | | * |
797 | | * @param [in] key ECCSI key. |
798 | | * @param [in] data Buffer holding encoded ECCSI private key. |
799 | | * @param [in] sz Size of encoded ECCSI private key in bytes. |
800 | | * @return 0 on success. |
801 | | * @return BAD_FUNC_ARG when key or data is NULL. |
802 | | * @return BUFFER_E when size of data is not equal to the expected size. |
803 | | * @return MP_MEM or MEMORY_E when dynamic memory allocation fails. |
804 | | */ |
805 | | int wc_ImportEccsiPrivateKey(EccsiKey* key, const byte* data, word32 sz) |
806 | 0 | { |
807 | 0 | int err = 0; |
808 | |
|
809 | 0 | if ((key == NULL) || (data == NULL)) { |
810 | 0 | err = BAD_FUNC_ARG; |
811 | 0 | } |
812 | 0 | if ((err == 0) && (sz != (word32)key->ecc.dp->size)) { |
813 | 0 | err = BUFFER_E; |
814 | 0 | } |
815 | |
|
816 | 0 | if (err == 0) { |
817 | 0 | err = mp_read_unsigned_bin(wc_ecc_key_get_priv(&key->ecc), data, |
818 | 0 | (word32)key->ecc.dp->size); |
819 | 0 | } |
820 | |
|
821 | 0 | return err; |
822 | 0 | } |
823 | | |
824 | | /** |
825 | | * Export the KMS Public Auth Key (KPAK) from the ECCSI object. |
826 | | * |
827 | | * KPAK is required by all clients in order to perform cryptographic operations. |
828 | | * |
829 | | * X and y ordinate of public key concatenated. Each number is zero padded to |
830 | | * key size. |
831 | | * Descriptor byte (0x04) is prepended when not raw. |
832 | | * |
833 | | * @param [in] key ECCSI key. |
834 | | * @param [out] data Buffer to hold the encoded public key. |
835 | | * @param [in,out] sz On in, size of buffer in bytes. |
836 | | * On out, length of encoded public key in bytes. |
837 | | * @param [in] raw On 0, prepend descriptor byte. |
838 | | * On 1, only include ordinates. |
839 | | * @return 0 on success. |
840 | | * @return BAD_FUNC_ARG when key or sz is NULL. |
841 | | * @return LENGTH_ONLY_E when data is NULL - sz is set. |
842 | | * @return BUFFER_E when the buffer passed in is too small. |
843 | | */ |
844 | | int wc_ExportEccsiPublicKey(EccsiKey* key, byte* data, word32* sz, int raw) |
845 | 0 | { |
846 | 0 | int err = 0; |
847 | |
|
848 | 0 | if ((key == NULL) || (sz == NULL)) { |
849 | 0 | err = BAD_FUNC_ARG; |
850 | 0 | } |
851 | 0 | if ((err == 0) && (key->ecc.type != ECC_PRIVATEKEY) && |
852 | 0 | (key->ecc.type != ECC_PUBLICKEY)) { |
853 | 0 | err = BAD_STATE_E; |
854 | 0 | } |
855 | |
|
856 | 0 | if ((err == 0) && (data != NULL)) { |
857 | 0 | err = eccsi_kpak_from_mont(key); |
858 | 0 | } |
859 | 0 | if (err == 0) { |
860 | | /* Write out public key. */ |
861 | 0 | err = eccsi_encode_point(&key->ecc.pubkey, (word32)key->ecc.dp->size, |
862 | 0 | data, sz, raw); |
863 | 0 | } |
864 | |
|
865 | 0 | return err; |
866 | 0 | } |
867 | | |
868 | | /* |
869 | | * Generates an (SSK, PVT) Pair - signing key pair. |
870 | | * |
871 | | * RFC 6507, Section 5.1.1 |
872 | | * |
873 | | * @param [in] key ECCSI key. |
874 | | * @param [in] rng Random number generator. |
875 | | * @param [in] hashType Type of hash algorithm. e.g. WC_SHA256 |
876 | | * @param [in] id Identity to create hash from. |
877 | | * @param [in] idSz Length of identity in bytes. |
878 | | * @param [out] ssk Secret Signing Key as an MP integer. |
879 | | * @param [out] pvt Public Validation Token (PVT) as an ECC point. |
880 | | * @return 0 on success. |
881 | | * @return MP_MEM or MEMORY_E when dynamic memory allocation fails. |
882 | | * @return Other -ve value when an internal operation fails. |
883 | | */ |
884 | | static int eccsi_make_pair(EccsiKey* key, WC_RNG* rng, |
885 | | enum wc_HashType hashType, const byte* id, word32 idSz, mp_int* ssk, |
886 | | ecc_point* pvt) |
887 | 0 | { |
888 | 0 | int err = 0; |
889 | 0 | byte hashSz = 0; |
890 | 0 | int genTryCnt = 0; |
891 | |
|
892 | 0 | do { |
893 | | /* Don't infinitely make pairs when random number generator fails. */ |
894 | 0 | if ((++genTryCnt) > ECCSI_MAX_GEN_COUNT) { |
895 | 0 | err = RNG_FAILURE_E; |
896 | 0 | } |
897 | |
|
898 | 0 | if (err == 0) { |
899 | 0 | wc_ecc_free(&key->pubkey); |
900 | | |
901 | | /* Step 1 and 2: Generate ephemeral key - v, PVT = [v]G */ |
902 | 0 | err = wc_ecc_make_key_ex(rng, key->ecc.dp->size, &key->pubkey, |
903 | 0 | key->ecc.dp->id); |
904 | 0 | } |
905 | 0 | if (err == 0) { |
906 | 0 | err = wc_ecc_copy_point(&key->pubkey.pubkey, pvt); |
907 | 0 | } |
908 | | |
909 | | /* Step 3: Compute HS */ |
910 | 0 | if (err == 0) { |
911 | 0 | hashSz = (byte)sizeof(key->data); |
912 | 0 | err = eccsi_compute_hs(key, hashType, id, idSz, pvt, key->data, |
913 | 0 | &hashSz); |
914 | 0 | } |
915 | | |
916 | | /* Step 4: Compute SSK = ( KSAK + HS * v ) modulo q */ |
917 | 0 | if (err == 0) { |
918 | 0 | err = mp_read_unsigned_bin(ssk, key->data, hashSz); |
919 | 0 | } |
920 | 0 | if (err == 0) { |
921 | 0 | err = mp_mulmod(ssk, wc_ecc_key_get_priv(&key->pubkey), |
922 | 0 | &key->params.order, ssk); |
923 | 0 | } |
924 | 0 | if (err == 0) { |
925 | 0 | err = mp_addmod(ssk, wc_ecc_key_get_priv(&key->ecc), |
926 | 0 | &key->params.order, ssk); |
927 | 0 | } |
928 | 0 | } |
929 | 0 | while ((err == 0) && (mp_iszero(ssk) || |
930 | 0 | (mp_cmp(ssk, wc_ecc_key_get_priv(&key->ecc)) == MP_EQ))); |
931 | | /* Step 5: ensure SSK and HS are non-zero (code lines above) */ |
932 | | |
933 | | /* Step 6: Copy out SSK (done during calc) and PVT. Erase v */ |
934 | 0 | mp_forcezero(wc_ecc_key_get_priv(&key->pubkey)); |
935 | |
|
936 | 0 | return err; |
937 | 0 | } |
938 | | |
939 | | /** |
940 | | * Generates an (SSK, PVT) Pair - signing key pair. |
941 | | * |
942 | | * RFC 6507, Section 5.1.1 |
943 | | * |
944 | | * ID should include information to indicate a revocation date.\n |
945 | | * SSK must be zeroized after sending to client.\n |
946 | | * SSK is sent to signing client only.\n |
947 | | * PVT is sent to all client types. |
948 | | * |
949 | | * @param [in] key ECCSI key. |
950 | | * @param [in] rng Random number generator. |
951 | | * @param [in] hashType Type of hash algorithm. e.g. WC_SHA256 |
952 | | * @param [in] id Identity to create hash from. |
953 | | * @param [in] idSz Length of identity in bytes. |
954 | | * @param [out] ssk Secret Signing Key as an MP integer. |
955 | | * @param [out] pvt Public Validation Token (PVT) as an ECC point. |
956 | | * @return 0 on success. |
957 | | * @return BAD_FUNC_ARG when key, rng, id, ssk or pvt is NULL. |
958 | | * @return BAD_STATE_E when curve not set (key not set). |
959 | | * @return MP_MEM or MEMORY_E when dynamic memory allocation fails. |
960 | | * @return Other -ve value when an internal operation fails. |
961 | | */ |
962 | | int wc_MakeEccsiPair(EccsiKey* key, WC_RNG* rng, enum wc_HashType hashType, |
963 | | const byte* id, word32 idSz, mp_int* ssk, ecc_point* pvt) |
964 | 0 | { |
965 | 0 | int err = 0; |
966 | |
|
967 | 0 | if ((key == NULL) || (rng == NULL) || (id == NULL) || (ssk == NULL) || |
968 | 0 | (pvt == NULL)) { |
969 | 0 | err = BAD_FUNC_ARG; |
970 | 0 | } |
971 | 0 | if ((err == 0) && (key->ecc.type != ECC_PRIVATEKEY)) { |
972 | 0 | err = BAD_STATE_E; |
973 | 0 | } |
974 | |
|
975 | 0 | if (err == 0) { |
976 | 0 | err = eccsi_load_order(key); |
977 | 0 | } |
978 | 0 | if (err == 0) { |
979 | 0 | err = eccsi_make_pair(key, rng, hashType, id, idSz, ssk, pvt); |
980 | 0 | } |
981 | |
|
982 | 0 | return err; |
983 | 0 | } |
984 | | |
985 | | /** |
986 | | * Encode the SSK and PVT into a buffer. |
987 | | * |
988 | | * SSK and PVT required by client signing messages. |
989 | | * |
990 | | * @param [in] key ECCSI key. |
991 | | * @param [in] ssk Secret Signing Key as an MP integer. |
992 | | * @param [in] pvt Public Validation Token (PVT) as an ECC point. |
993 | | * @param [out] data Buffer to encode key pair into. |
994 | | * @param [in,out] sz In, size of buffer in bytes. |
995 | | * Out, size of encoded pair data in bytes. |
996 | | * @return 0 on success. |
997 | | * @return BAD_FUNC_ARG when key, ssk, pvt or sz is NULL. |
998 | | * @return MP_MEM or MEMORY_E when dynamic memory allocation fails. |
999 | | * @return LENGTH_ONLY_E when data is NULL - sz is set. |
1000 | | */ |
1001 | | int wc_EncodeEccsiPair(const EccsiKey* key, mp_int* ssk, ecc_point* pvt, |
1002 | | byte* data, word32* sz) |
1003 | 0 | { |
1004 | 0 | int err = 0; |
1005 | |
|
1006 | 0 | if ((key == NULL) || (ssk == NULL) || (pvt == NULL) || (sz == NULL)) { |
1007 | 0 | err = BAD_FUNC_ARG; |
1008 | 0 | } |
1009 | |
|
1010 | 0 | if ((err == 0) && (data == NULL)) { |
1011 | 0 | *sz = (word32)(key->ecc.dp->size * 3); |
1012 | 0 | err = WC_NO_ERR_TRACE(LENGTH_ONLY_E); |
1013 | 0 | } |
1014 | 0 | if ((err == 0) && (*sz < (word32)(key->ecc.dp->size * 3))) { |
1015 | 0 | err = BUFFER_E; |
1016 | 0 | } |
1017 | |
|
1018 | 0 | if (err == 0) { |
1019 | 0 | err = mp_to_unsigned_bin_len(ssk, data, key->ecc.dp->size); |
1020 | 0 | } |
1021 | 0 | if (err == 0) { |
1022 | 0 | data += key->ecc.dp->size; |
1023 | | /* Write out the PVT's x ordinate into key size bytes. */ |
1024 | 0 | err = mp_to_unsigned_bin_len(pvt->x, data, key->ecc.dp->size); |
1025 | 0 | } |
1026 | 0 | if (err == 0) { |
1027 | 0 | data += key->ecc.dp->size; |
1028 | | /* Write out the PVT's y ordinate into key size bytes. */ |
1029 | 0 | err = mp_to_unsigned_bin_len(pvt->y, data, key->ecc.dp->size); |
1030 | 0 | } |
1031 | 0 | if (err == 0) { |
1032 | 0 | *sz = (word32)(key->ecc.dp->size * 3); |
1033 | 0 | } |
1034 | |
|
1035 | 0 | return err; |
1036 | 0 | } |
1037 | | |
1038 | | /** |
1039 | | * Encode the Secret Signing Key (SSK). |
1040 | | * |
1041 | | * Use when saving the key pair. |
1042 | | * |
1043 | | * SSK is zero padded to key size. |
1044 | | * |
1045 | | * @param [in] key ECCSI key. |
1046 | | * @param [in] ssk Secret Signing Key as an MP integer. |
1047 | | * @param [out] data Buffer to hold encoded SSK. |
1048 | | * NULL when requesting required length. |
1049 | | * @param [in,out] sz On in, size of buffer in bytes. |
1050 | | * On out, size of encoded ECCSI key in bytes. |
1051 | | * @return 0 on success. |
1052 | | * @return BAD_FUNC_ARG when key, ssk or sz is NULL |
1053 | | * @return BAD_STATE_E when no key to export. |
1054 | | * @return LENGTH_ONLY_E when data is NULL - sz is set. |
1055 | | * @return BUFFER_E when the buffer passed in is too small. |
1056 | | * @return MEMORY_E when dynamic memory allocation fails (WOLFSSL_SMALL_STACK). |
1057 | | */ |
1058 | | int wc_EncodeEccsiSsk(const EccsiKey* key, mp_int* ssk, byte* data, word32* sz) |
1059 | 0 | { |
1060 | 0 | int err = 0; |
1061 | |
|
1062 | 0 | if ((key == NULL) || (ssk == NULL) || (sz == NULL)) { |
1063 | 0 | err = BAD_FUNC_ARG; |
1064 | 0 | } |
1065 | |
|
1066 | 0 | if ((err == 0) && (key->ecc.type != ECC_PRIVATEKEY)) { |
1067 | 0 | err = BAD_STATE_E; |
1068 | 0 | } |
1069 | |
|
1070 | 0 | if (err == 0) { |
1071 | 0 | if (data == NULL) { |
1072 | 0 | *sz = (word32)key->ecc.dp->size; |
1073 | 0 | err = WC_NO_ERR_TRACE(LENGTH_ONLY_E); |
1074 | 0 | } |
1075 | 0 | else if (*sz < (word32)key->ecc.dp->size) { |
1076 | 0 | err = BUFFER_E; |
1077 | 0 | } |
1078 | 0 | else { |
1079 | 0 | *sz = (word32)key->ecc.dp->size; |
1080 | 0 | } |
1081 | 0 | } |
1082 | 0 | if (err == 0) { |
1083 | 0 | err = mp_to_unsigned_bin_len(ssk, data, key->ecc.dp->size); |
1084 | 0 | } |
1085 | |
|
1086 | 0 | return err; |
1087 | 0 | } |
1088 | | |
1089 | | /** |
1090 | | * Decode the Secret Signing Key (SSK). |
1091 | | * |
1092 | | * Use when restoring the key pair. |
1093 | | * |
1094 | | * SSK is zero padded to key size. |
1095 | | * |
1096 | | * @param [in] key ECCSI key. |
1097 | | * @param [in] data Buffer holding encoded ECCSI key. |
1098 | | * @param [in] sz Size of encoded ECCSI key in bytes. |
1099 | | * @param [out] ssk Secret Signing Key as an MP integer. |
1100 | | * @return 0 on success. |
1101 | | * @return BAD_FUNC_ARG when key, data or ssk is NULL. |
1102 | | * @return BUFFER_E when size of data is not equal to the expected size. |
1103 | | * @return MP_MEM or MEMORY_E when dynamic memory allocation fails. |
1104 | | */ |
1105 | | int wc_DecodeEccsiSsk(const EccsiKey* key, const byte* data, word32 sz, |
1106 | | mp_int* ssk) |
1107 | 0 | { |
1108 | 0 | int err = 0; |
1109 | |
|
1110 | 0 | if ((key == NULL) || (data == NULL) || (ssk == NULL)) { |
1111 | 0 | err = BAD_FUNC_ARG; |
1112 | 0 | } |
1113 | 0 | if ((err == 0) && (sz != (word32)key->ecc.dp->size)) { |
1114 | 0 | err = BUFFER_E; |
1115 | 0 | } |
1116 | |
|
1117 | 0 | if (err == 0) { |
1118 | 0 | err = mp_read_unsigned_bin(ssk, data, (word32)key->ecc.dp->size); |
1119 | 0 | } |
1120 | |
|
1121 | 0 | return err; |
1122 | 0 | } |
1123 | | |
1124 | | /** |
1125 | | * Encode the PVT into a buffer. |
1126 | | * |
1127 | | * PVT required by client verifying messages. |
1128 | | * |
1129 | | * X and y ordinate of public key concatenated. Each number is zero padded to |
1130 | | * key size. |
1131 | | * Descriptor byte (0x04) is prepended when not raw. |
1132 | | * |
1133 | | * @param [in] key ECCSI key. |
1134 | | * @param [in] pvt Public Validation Token (PVT) as an ECC point. |
1135 | | * @param [out] data Buffer to encode key pair into. |
1136 | | * @param [in,out] sz In, size of buffer in bytes. |
1137 | | * Out, size of encoded pair data in bytes. |
1138 | | * @param [in] raw On 0, prepend descriptor byte. |
1139 | | * On 1, only include ordinates. |
1140 | | * @return 0 on success. |
1141 | | * @return BAD_FUNC_ARG when key, pvt or sz is NULL. |
1142 | | * @return BAD_STATE_E when PVT has not been set. |
1143 | | * @return MP_MEM or MEMORY_E when dynamic memory allocation fails. |
1144 | | * @return LENGTH_ONLY_E when data is NULL - sz is set. |
1145 | | */ |
1146 | | int wc_EncodeEccsiPvt(const EccsiKey* key, ecc_point* pvt, byte* data, |
1147 | | word32* sz, int raw) |
1148 | 0 | { |
1149 | 0 | int err = 0; |
1150 | |
|
1151 | 0 | if ((key == NULL) || (pvt == NULL) || (sz == NULL)) { |
1152 | 0 | err = BAD_FUNC_ARG; |
1153 | 0 | } |
1154 | |
|
1155 | 0 | if (err == 0) { |
1156 | 0 | err = eccsi_encode_point(pvt, (word32)key->ecc.dp->size, data, sz, raw); |
1157 | 0 | } |
1158 | |
|
1159 | 0 | return err; |
1160 | 0 | } |
1161 | | |
1162 | | #endif /* WOLFCRYPT_ECCSI_KMS */ |
1163 | | |
1164 | | #ifdef WOLFCRYPT_ECCSI_CLIENT |
1165 | | /** |
1166 | | * Decode the SSK and PVT data into separate variables. |
1167 | | * |
1168 | | * A signing client decodes the data so that it can validate the pair and sign. |
1169 | | * |
1170 | | * @param [in] key ECCSI key. |
1171 | | * @param [in] data Buffer holding key pair data. |
1172 | | * @param [in] sz Size of data in bytes. |
1173 | | * @param [out] ssk Secret Signing Key as an MP integer. |
1174 | | * @param [out] pvt Public Validation Token (PVT) as an ECC point. |
1175 | | * @return 0 on success. |
1176 | | * @return BAD_FUNC_ARG when key, data, ssk or pvt is NULL. |
1177 | | * @return LENGTH_ONLY_E when data is NULL - sz is set. |
1178 | | * @return BUFFER_E when size of data is not equal to the expected size. |
1179 | | * @return MP_MEM or MEMORY_E when dynamic memory allocation fails. |
1180 | | */ |
1181 | | int wc_DecodeEccsiPair(const EccsiKey* key, const byte* data, word32 sz, |
1182 | | mp_int* ssk, ecc_point* pvt) |
1183 | 0 | { |
1184 | 0 | int err = 0; |
1185 | |
|
1186 | 0 | if ((key == NULL) || (data == NULL) || (ssk == NULL) || (pvt == NULL)) { |
1187 | 0 | err = BAD_FUNC_ARG; |
1188 | 0 | } |
1189 | 0 | if ((err == 0) && (sz != (word32)(key->ecc.dp->size * 3))) { |
1190 | 0 | err = BUFFER_E; |
1191 | 0 | } |
1192 | |
|
1193 | 0 | if (err == 0) { |
1194 | | /* Read the SSK value from key size bytes. */ |
1195 | 0 | err = mp_read_unsigned_bin(ssk, data, (word32)key->ecc.dp->size); |
1196 | 0 | } |
1197 | 0 | if (err == 0) { |
1198 | 0 | data += key->ecc.dp->size; |
1199 | | /* Read the PVT's x value from key size bytes. */ |
1200 | 0 | err = mp_read_unsigned_bin(pvt->x, data, (word32)key->ecc.dp->size); |
1201 | 0 | } |
1202 | 0 | if (err == 0) { |
1203 | 0 | data += key->ecc.dp->size; |
1204 | | /* Read the PVT's y value from key size bytes. */ |
1205 | 0 | err = mp_read_unsigned_bin(pvt->y, data, (word32)key->ecc.dp->size); |
1206 | 0 | } |
1207 | 0 | if (err == 0) { |
1208 | 0 | err = mp_set(pvt->z, 1); |
1209 | 0 | } |
1210 | |
|
1211 | 0 | return err; |
1212 | 0 | } |
1213 | | |
1214 | | /** |
1215 | | * Decode the PVT data into an ECC point. |
1216 | | * |
1217 | | * A verifying client decodes the data so that it can verify a message. |
1218 | | * |
1219 | | * X and y ordinate of public key concatenated. Each number is zero padded to |
1220 | | * key size. |
1221 | | * Descriptor byte (0x04) is prepended when not raw. |
1222 | | * |
1223 | | * @param [in] key ECCSI key. |
1224 | | * @param [in] data Buffer holding PVT data. |
1225 | | * @param [in] sz Size of data in bytes. |
1226 | | * @param [out] pvt Public Validation Token (PVT) as an ECC point. |
1227 | | * @return 0 on success. |
1228 | | * @return BAD_FUNC_ARG when key, data, ssk or pvt is NULL. |
1229 | | * @return BUFFER_E when size of data is not equal to the expected size. |
1230 | | * @return ASN_PARSE_E when format byte is invalid. |
1231 | | * @return MP_MEM or MEMORY_E when dynamic memory allocation fails. |
1232 | | */ |
1233 | | int wc_DecodeEccsiPvt(const EccsiKey* key, const byte* data, word32 sz, |
1234 | | ecc_point* pvt) |
1235 | 0 | { |
1236 | 0 | int err = 0; |
1237 | |
|
1238 | 0 | if ((key == NULL) || (data == NULL) || (pvt == NULL)) { |
1239 | 0 | err = BAD_FUNC_ARG; |
1240 | 0 | } |
1241 | |
|
1242 | 0 | if (err == 0) { |
1243 | 0 | err = eccsi_decode_point(pvt, (word32)key->ecc.dp->size, data, sz); |
1244 | 0 | } |
1245 | |
|
1246 | 0 | return err; |
1247 | 0 | } |
1248 | | |
1249 | | /** |
1250 | | * Decode the PVT data, from a signature, into an ECC point. |
1251 | | * |
1252 | | * A verifying client decodes the data so that it can calculate the identity |
1253 | | * hash. |
1254 | | * |
1255 | | * X and y ordinate of public key concatenated. Each number is zero padded to |
1256 | | * key size. |
1257 | | * Descriptor byte (0x04) is prepended when not raw. |
1258 | | * |
1259 | | * @param [in] key ECCSI key. |
1260 | | * @param [in] sig Buffer holding signature data. |
1261 | | * @param [in] sz Size of data in bytes. |
1262 | | * @param [out] pvt Public Validation Token (PVT) as an ECC point. |
1263 | | * @return 0 on success. |
1264 | | * @return BAD_FUNC_ARG when key, data, ssk or pvt is NULL. |
1265 | | * @return BUFFER_E when size of data is not equal to the expected size. |
1266 | | * @return ASN_PARSE_E when format byte is invalid. |
1267 | | * @return MP_MEM or MEMORY_E when dynamic memory allocation fails. |
1268 | | */ |
1269 | | int wc_DecodeEccsiPvtFromSig(const EccsiKey* key, const byte* sig, word32 sz, |
1270 | | ecc_point* pvt) |
1271 | 0 | { |
1272 | 0 | int err = 0; |
1273 | |
|
1274 | 0 | if ((key == NULL) || (sig == NULL) || (pvt == NULL)) { |
1275 | 0 | err = BAD_FUNC_ARG; |
1276 | 0 | } |
1277 | |
|
1278 | 0 | if (err == 0) { |
1279 | 0 | word32 rSz = (word32)(key->ecc.dp->size * 2); |
1280 | 0 | err = eccsi_decode_point(pvt, (word32)key->ecc.dp->size, sig + rSz, |
1281 | 0 | sz - rSz); |
1282 | 0 | } |
1283 | |
|
1284 | 0 | return err; |
1285 | 0 | } |
1286 | | |
1287 | | /** |
1288 | | * Import the KMS Public Auth Key (KPAK) into the ECCSI object. |
1289 | | * |
1290 | | * Clients import the KPAK to perform cryptographic operations. |
1291 | | * |
1292 | | * X and y ordinate of public key concatenated. Each number is zero padded to |
1293 | | * key size. |
1294 | | * Descriptor byte (0x04) is prepended when not raw. |
1295 | | * |
1296 | | * @param [in] key ECCSI key. |
1297 | | * @param [in] data Encoded public key as an array of bytes. |
1298 | | * @param [in] sz Length of encoded KPAK in bytes. |
1299 | | * @param [in] trusted 1 when public key is trusted. |
1300 | | * 0 when validation is required to be performed. |
1301 | | * @return 0 on success. |
1302 | | * @return BAD_FUNC_ARG when key or data is NULL. |
1303 | | * @return BUFFER_E when size of data is not equal to the expected size. |
1304 | | * @return ASN_PARSE_E when format byte is invalid. |
1305 | | * @return ECC_OUT_OF_RANGE_E when point is invalid. |
1306 | | * @return ECC_INF_E when point is at infinity and invalid. |
1307 | | * @return MP_MEM or MEMORY_E when dynamic memory allocation fails. |
1308 | | */ |
1309 | | int wc_ImportEccsiPublicKey(EccsiKey* key, const byte* data, word32 sz, |
1310 | | int trusted) |
1311 | 0 | { |
1312 | 0 | int err = 0; |
1313 | |
|
1314 | 0 | if ((key == NULL) || (data == NULL)) { |
1315 | 0 | err = BAD_FUNC_ARG; |
1316 | 0 | } |
1317 | |
|
1318 | 0 | if (err == 0) { |
1319 | 0 | key->kpakMont = 0; |
1320 | | |
1321 | | /* Read the public key. */ |
1322 | 0 | err = eccsi_decode_point(&key->ecc.pubkey, (word32)key->ecc.dp->size, |
1323 | 0 | data, sz); |
1324 | 0 | } |
1325 | 0 | if (err == 0) { |
1326 | 0 | key->ecc.type = ECC_PUBLICKEY; |
1327 | 0 | } |
1328 | 0 | if ((err == 0) && (!trusted)) { |
1329 | 0 | err = wc_ecc_check_key(&key->ecc); |
1330 | 0 | } |
1331 | |
|
1332 | 0 | return err; |
1333 | 0 | } |
1334 | | |
1335 | | /* |
1336 | | * Scalar multiply the base point of the curve and add a point. |
1337 | | * |
1338 | | * @param [in] key ECCSI key. |
1339 | | * @param [in] n MP integer representing scalar to multiply by. |
1340 | | * @param [in] a ECC point to add. |
1341 | | * @param [out] res ECC point representation of the resulting point. |
1342 | | * @param [in] mp Montgomery reduction multiplier. |
1343 | | * @param [in] map 0 indicates to leave in projective representation. |
1344 | | * 1 indicates map projective point to affine. |
1345 | | * @return 0 on success. |
1346 | | * @return MEMORY_E when dynamic memory allocation fails. |
1347 | | * @return Other -ve value when an internal operation fails. |
1348 | | */ |
1349 | | static int eccsi_mulmod_base_add(EccsiKey* key, const mp_int* n, |
1350 | | ecc_point* a, ecc_point* res, mp_digit mp, int map) |
1351 | 0 | { |
1352 | 0 | int err = 0; |
1353 | |
|
1354 | | #if defined(WOLFSSL_HAVE_SP_ECC) && !defined(WOLFSSL_SP_NO_256) |
1355 | | if ((key->ecc.idx != ECC_CUSTOM_IDX) && |
1356 | | (ecc_sets[key->ecc.idx].id == ECC_SECP256R1)) { |
1357 | | err = sp_ecc_mulmod_base_add_256(n, a, 1, res, map, key->heap); |
1358 | | } |
1359 | | else |
1360 | | #endif |
1361 | 0 | #ifndef WOLFSSL_SP_MATH |
1362 | 0 | { |
1363 | 0 | EccsiKeyParams* params = &key->params; |
1364 | 0 | err = wc_ecc_mulmod(n, params->base, params->base, ¶ms->a, |
1365 | 0 | ¶ms->prime, 0); |
1366 | 0 | key->params.haveBase = 0; |
1367 | 0 | if (err == 0) { |
1368 | 0 | err = ecc_projective_add_point(params->base, a, res, ¶ms->a, |
1369 | 0 | ¶ms->prime, mp); |
1370 | 0 | } |
1371 | 0 | if ((err == 0) && map) { |
1372 | 0 | err = ecc_map(res, ¶ms->prime, mp); |
1373 | 0 | } |
1374 | 0 | } |
1375 | | #else |
1376 | | { |
1377 | | err = NOT_COMPILED_IN; |
1378 | | } |
1379 | | (void)key; |
1380 | | (void)n; |
1381 | | (void)a; |
1382 | | (void)res; |
1383 | | (void)mp; |
1384 | | (void)map; |
1385 | | #endif |
1386 | |
|
1387 | 0 | return err; |
1388 | 0 | } |
1389 | | |
1390 | | /* |
1391 | | * Scalar multiply a point on the curve. |
1392 | | * |
1393 | | * @param [in] key ECCSI key. |
1394 | | * @param [in] n MP integer representing scalar to multiply by. |
1395 | | * @param [in] point ECC point representation of a point on the curve. |
1396 | | * @param [out] res ECC point representation of the resulting point. |
1397 | | * @param [in] map 0 indicates to leave in projective representation. |
1398 | | * 1 indicates map projective point to affine. |
1399 | | * @return 0 on success. |
1400 | | * @return MEMORY_E when dynamic memory allocation fails. |
1401 | | * @return Other -ve value when an internal operation fails. |
1402 | | */ |
1403 | | static int eccsi_mulmod_point(EccsiKey* key, const mp_int* n, ecc_point* point, |
1404 | | ecc_point* res, int map) |
1405 | 0 | { |
1406 | 0 | int err; |
1407 | |
|
1408 | | #if defined(WOLFSSL_HAVE_SP_ECC) && !defined(WOLFSSL_SP_NO_256) |
1409 | | if ((key->ecc.idx != ECC_CUSTOM_IDX) && |
1410 | | (ecc_sets[key->ecc.idx].id == ECC_SECP256R1)) { |
1411 | | err = sp_ecc_mulmod_256(n, point, res, map, key->heap); |
1412 | | } |
1413 | | else |
1414 | | #endif |
1415 | 0 | { |
1416 | 0 | EccsiKeyParams* params = &key->params; |
1417 | |
|
1418 | 0 | err = wc_ecc_mulmod(n, point, res, ¶ms->a, ¶ms->prime, map); |
1419 | 0 | } |
1420 | |
|
1421 | 0 | return err; |
1422 | 0 | } |
1423 | | |
1424 | | /* |
1425 | | * Scalar multiply a point on the curve and add a. |
1426 | | * |
1427 | | * @param [in] key ECCSI key. |
1428 | | * @param [in] n MP integer representing scalar to multiply by. |
1429 | | * @param [in] point ECC point representation of a point on the curve. |
1430 | | * @param [in] a ECC point to add. |
1431 | | * @param [out] res ECC point representation of the resulting point. |
1432 | | * @param [in] mp Montgomery reduction multiplier. |
1433 | | * @param [in] map 0 indicates to leave in projective representation. |
1434 | | * 1 indicates map projective point to affine. |
1435 | | * @return 0 on success. |
1436 | | * @return MEMORY_E when dynamic memory allocation fails. |
1437 | | * @return Other -ve value when an internal operation fails. |
1438 | | */ |
1439 | | static int eccsi_mulmod_point_add(EccsiKey* key, const mp_int* n, |
1440 | | ecc_point* point, ecc_point* a, ecc_point* res, mp_digit mp, int map) |
1441 | 0 | { |
1442 | | #if defined(WOLFSSL_HAVE_SP_ECC) && !defined(WOLFSSL_SP_NO_256) |
1443 | | int err = WC_NO_ERR_TRACE(NOT_COMPILED_IN); |
1444 | | |
1445 | | if ((key->ecc.idx != ECC_CUSTOM_IDX) && |
1446 | | (ecc_sets[key->ecc.idx].id == ECC_SECP256R1)) { |
1447 | | err = sp_ecc_mulmod_add_256(n, point, a, 0, res, map, key->heap); |
1448 | | } |
1449 | | |
1450 | | (void)mp; |
1451 | | |
1452 | | return err; |
1453 | | #else |
1454 | 0 | int err; |
1455 | 0 | EccsiKeyParams* params = &key->params; |
1456 | |
|
1457 | 0 | err = wc_ecc_mulmod(n, point, res, ¶ms->a, ¶ms->prime, 0); |
1458 | 0 | if (err == 0) { |
1459 | 0 | err = ecc_projective_add_point(res, a, res, &key->params.a, |
1460 | 0 | ¶ms->prime, mp); |
1461 | 0 | } |
1462 | 0 | if ((err == 0) && map) { |
1463 | 0 | err = ecc_map(res, ¶ms->prime, mp); |
1464 | 0 | } |
1465 | |
|
1466 | 0 | return err; |
1467 | 0 | #endif |
1468 | 0 | } |
1469 | | |
1470 | | /** |
1471 | | * Validate an (SSV, PVT) Pair. |
1472 | | * |
1473 | | * RFC 6507, Section 5.1.2 |
1474 | | * |
1475 | | * A signing client should validate the key pair before first use. |
1476 | | * |
1477 | | * @param [in] key ECCSI key. |
1478 | | * @param [in] hashType Type of hash algorithm. e.g. WC_SHA256 |
1479 | | * @param [in] id Identity to create hash from. |
1480 | | * @param [in] idSz Length of identity in bytes. |
1481 | | * @param [in] ssk Secret Signing Key as an MP integer. |
1482 | | * @param [in] pvt Public Validation Token (PVT) as an ECC point. |
1483 | | * @param [out] valid 1 when pair is valid and 0 otherwise. |
1484 | | * @return 0 on success. |
1485 | | * @return BAD_FUNC_ARG when key, id, ssk, pvt or valid is NULL. |
1486 | | * @return BAD_STATE_E when curve not set (key not set). |
1487 | | * @return MP_MEM or MEMORY_E when dynamic memory allocation fails. |
1488 | | * @return IS_POINT_E when point is not on the curve. |
1489 | | * @return Other -ve value when an internal operation fails. |
1490 | | */ |
1491 | | int wc_ValidateEccsiPair(EccsiKey* key, enum wc_HashType hashType, |
1492 | | const byte* id, word32 idSz, const mp_int* ssk, ecc_point* pvt, |
1493 | | int* valid) |
1494 | 0 | { |
1495 | 0 | int err = 0; |
1496 | 0 | ecc_point* res = NULL; |
1497 | 0 | mp_int* hs = NULL; |
1498 | 0 | mp_digit mp = 0; |
1499 | 0 | byte hashSz = 0; |
1500 | 0 | EccsiKeyParams* params = NULL; |
1501 | |
|
1502 | 0 | if ((key == NULL) || (id == NULL) || (ssk == NULL) || (pvt == NULL) || |
1503 | 0 | (valid == NULL)) { |
1504 | 0 | err = BAD_FUNC_ARG; |
1505 | 0 | } |
1506 | |
|
1507 | 0 | if ((err == 0) && (key->ecc.type != ECC_PRIVATEKEY) && |
1508 | 0 | (key->ecc.type != ECC_PUBLICKEY)) { |
1509 | 0 | err = BAD_STATE_E; |
1510 | 0 | } |
1511 | |
|
1512 | 0 | if (err != 0) |
1513 | 0 | return err; |
1514 | | |
1515 | 0 | SAVE_VECTOR_REGISTERS(return _svr_ret;); |
1516 | |
|
1517 | 0 | params = &key->params; |
1518 | 0 | hs = &key->tmp; |
1519 | 0 | res = &key->pubkey.pubkey; |
1520 | |
|
1521 | 0 | err = eccsi_load_base(key); |
1522 | |
|
1523 | 0 | if (err == 0) { |
1524 | 0 | err = eccsi_load_ecc_params(key); |
1525 | 0 | } |
1526 | 0 | if (err == 0) { |
1527 | 0 | err = mp_montgomery_setup(¶ms->prime, &mp); |
1528 | 0 | } |
1529 | | |
1530 | | /* Step 1: Validate PVT is on curve */ |
1531 | 0 | if (err == 0) { |
1532 | 0 | err = wc_ecc_is_point(pvt, ¶ms->a, ¶ms->b, ¶ms->prime); |
1533 | 0 | if (err == -1) { |
1534 | 0 | err = IS_POINT_E; |
1535 | 0 | } |
1536 | 0 | } |
1537 | | |
1538 | | /* Step 2: Compute HS = hash( G | KPAK | ID | PVT ) */ |
1539 | 0 | if (err == 0) { |
1540 | 0 | hashSz = (byte)sizeof(key->data); |
1541 | | /* Converts KPAK from mont. */ |
1542 | 0 | err = eccsi_compute_hs(key, hashType, id, idSz, pvt, key->data, |
1543 | 0 | &hashSz); |
1544 | 0 | } |
1545 | | |
1546 | | /* Step 3: Validate that KPAK = [SSK]G - [HS]PVT */ |
1547 | 0 | if (err == 0) { |
1548 | 0 | err = mp_read_unsigned_bin(hs, key->data, hashSz); |
1549 | 0 | } |
1550 | | /* [HS]PVT */ |
1551 | 0 | if (err == 0) { |
1552 | 0 | err = eccsi_mulmod_point(key, hs, pvt, res, 0); |
1553 | 0 | } |
1554 | | /* -[HS]PVT */ |
1555 | 0 | if (err == 0) { |
1556 | 0 | err = mp_sub(¶ms->prime, res->y, res->y); |
1557 | 0 | } |
1558 | | /* [SSK]G + -[HS]PVT */ |
1559 | 0 | if (err == 0) { |
1560 | 0 | err = eccsi_mulmod_base_add(key, ssk, res, res, mp, 1); |
1561 | 0 | } |
1562 | 0 | if (valid != NULL) { |
1563 | 0 | *valid = (err == 0); |
1564 | 0 | if (err == 0) { |
1565 | 0 | ecc_point* kpak = &key->ecc.pubkey; |
1566 | | /* Compare KPAK and [SSK]G + -[HS]PVT */ |
1567 | 0 | *valid = (wc_ecc_cmp_point(res, kpak) == MP_EQ); |
1568 | 0 | } |
1569 | 0 | } |
1570 | |
|
1571 | 0 | RESTORE_VECTOR_REGISTERS(); |
1572 | |
|
1573 | 0 | return err; |
1574 | 0 | } |
1575 | | |
1576 | | /** |
1577 | | * Validate Public Validation Token (PVT) is on the curve. |
1578 | | * |
1579 | | * RFC 6507, Section 5.1.2, Step 1 |
1580 | | * |
1581 | | * A verifying client should validate the PVT before first use. |
1582 | | * |
1583 | | * @param [in] key ECCSI key. |
1584 | | * @param [in] pvt Public Validation Token (PVT) as an ECC point. |
1585 | | * @param [out] valid 1 when PVT is valid and 0 otherwise. |
1586 | | * @return 0 on success. |
1587 | | * @return BAD_FUNC_ARG when key, pvt or valid is NULL. |
1588 | | * @return BAD_STATE_E when curve not set (key not set). |
1589 | | * @return MP_MEM or MEMORY_E when dynamic memory allocation fails. |
1590 | | * @return Other -ve value when an internal operation fails. |
1591 | | */ |
1592 | | int wc_ValidateEccsiPvt(EccsiKey* key, const ecc_point* pvt, int* valid) |
1593 | 0 | { |
1594 | 0 | int err = 0; |
1595 | |
|
1596 | 0 | if ((key == NULL)| (pvt == NULL) || (valid == NULL)) { |
1597 | 0 | err = BAD_FUNC_ARG; |
1598 | 0 | } |
1599 | |
|
1600 | 0 | if (err == 0) { |
1601 | 0 | err = wc_ecc_set_curve(&key->pubkey, key->ecc.dp->size, |
1602 | 0 | key->ecc.dp->id); |
1603 | 0 | } |
1604 | 0 | if (err == 0) { |
1605 | 0 | err = wc_ecc_copy_point(pvt, &key->pubkey.pubkey); |
1606 | 0 | } |
1607 | 0 | if (err == 0) { |
1608 | 0 | *valid = (wc_ecc_check_key(&key->pubkey) == 0); |
1609 | 0 | } |
1610 | |
|
1611 | 0 | return err; |
1612 | 0 | } |
1613 | | |
1614 | | /** |
1615 | | * Creates the Hash of the ID and PVT with the ECCSI key. |
1616 | | * |
1617 | | * The hash ID is required as input to the sign and verify operations.\n |
1618 | | * Signing clients may cache this value. |
1619 | | * |
1620 | | * RFC 6507, Section 5.2.1, Step 3 |
1621 | | * |
1622 | | * Set the calculated hash internally for use. |
1623 | | * |
1624 | | * @param [in] key ECCSI key. |
1625 | | * @param [in] hashType Type of hash algorithm. e.g. WC_SHA256 |
1626 | | * @param [in] id Identity to create hash from. |
1627 | | * @param [in] idSz Length of identity in bytes. |
1628 | | * @param [in] pvt Public Validation Token (PVT) as an ECC point. |
1629 | | * @param [out] hash Buffer to hold hash result. |
1630 | | * @param [out] hashSz Length of hash data in bytes. |
1631 | | * @return 0 on success. |
1632 | | * @return BAD_FUNC_ARG when key, id, pvt, hash or hashSz is NULL. |
1633 | | * @return BAD_FUNC_ARG when hash size doesn't match curve size. |
1634 | | * @return BAD_STATE_E when public key not set. |
1635 | | * @return MEMORY_E when dynamic memory allocation fails. |
1636 | | * @return Other -ve value when an internal operation fails. |
1637 | | */ |
1638 | | int wc_HashEccsiId(EccsiKey* key, enum wc_HashType hashType, const byte* id, |
1639 | | word32 idSz, ecc_point* pvt, byte* hash, byte* hashSz) |
1640 | 0 | { |
1641 | 0 | int err = 0; |
1642 | 0 | int dgstSz = -1; |
1643 | 0 | int curveSz = -1; |
1644 | |
|
1645 | 0 | if ((key == NULL) || (id == NULL) || (pvt == NULL) || (hash == NULL) || |
1646 | 0 | (hashSz == NULL)) { |
1647 | 0 | err = BAD_FUNC_ARG; |
1648 | 0 | } |
1649 | 0 | if ((err == 0) && (key->ecc.type != ECC_PRIVATEKEY) && |
1650 | 0 | (key->ecc.type != ECC_PUBLICKEY)) { |
1651 | 0 | err = BAD_STATE_E; |
1652 | 0 | } |
1653 | | /* Ensure digest output size matches curve size (RFC 6507 4.1). */ |
1654 | 0 | if (err == 0) { |
1655 | 0 | dgstSz = wc_HashGetDigestSize(hashType); |
1656 | 0 | if (dgstSz < 0) { |
1657 | 0 | err = dgstSz; |
1658 | 0 | } |
1659 | 0 | } |
1660 | 0 | if (err == 0) { |
1661 | 0 | curveSz = wc_ecc_get_curve_size_from_id(key->ecc.dp->id); |
1662 | 0 | if (curveSz < 0) { |
1663 | 0 | err = curveSz; |
1664 | 0 | } |
1665 | 0 | } |
1666 | 0 | if ((err == 0) && (dgstSz != curveSz)) { |
1667 | 0 | err = BAD_FUNC_ARG; |
1668 | 0 | } |
1669 | | /* Load the curve parameters for operations */ |
1670 | 0 | if (err == 0) { |
1671 | 0 | err = eccsi_load_ecc_params(key); |
1672 | 0 | } |
1673 | 0 | if (err == 0) { |
1674 | 0 | err = eccsi_compute_hs(key, hashType, id, idSz, pvt, hash, hashSz); |
1675 | 0 | } |
1676 | 0 | if (err == 0) { |
1677 | 0 | XMEMCPY(key->idHash, hash, *hashSz); |
1678 | 0 | key->idHashSz = *hashSz; |
1679 | 0 | } |
1680 | |
|
1681 | 0 | return err; |
1682 | 0 | } |
1683 | | |
1684 | | /** |
1685 | | * Set the identity hash for use with signing/verification. |
1686 | | * |
1687 | | * @param [in] key ECCSI key. |
1688 | | * @param [in] hash Buffer with hash of identity. |
1689 | | * @param [in] hashSz Length of hash data in bytes. |
1690 | | * @return 0 on success. |
1691 | | * @return BAD_FUNC_ARG when key or hash is NULL, or hashSz is greater than |
1692 | | * WC_MAX_DIGEST_SIZE. |
1693 | | */ |
1694 | | int wc_SetEccsiHash(EccsiKey* key, const byte* hash, byte hashSz) |
1695 | 0 | { |
1696 | 0 | int err = 0; |
1697 | |
|
1698 | 0 | if ((key == NULL) || (hash == NULL) || (hashSz > WC_MAX_DIGEST_SIZE)) { |
1699 | 0 | err = BAD_FUNC_ARG; |
1700 | 0 | } |
1701 | 0 | if (err == 0) { |
1702 | 0 | XMEMCPY(key->idHash, hash, hashSz); |
1703 | 0 | key->idHashSz = hashSz; |
1704 | 0 | } |
1705 | |
|
1706 | 0 | return err; |
1707 | 0 | } |
1708 | | |
1709 | | /** |
1710 | | * Set an (SSV, PVT) Pair for signing. |
1711 | | * |
1712 | | * @param [in] key ECCSI key. |
1713 | | * @param [in] ssk Secret Signing Key as an MP integer. |
1714 | | * @param [in] pvt Public Validation Token (PVT) as an ECC point. |
1715 | | * @return 0 on success. |
1716 | | * @return BAD_FUNC_ARG when key, ssk or pvt is NULL. |
1717 | | * @return MP math errors when copy fails |
1718 | | */ |
1719 | | int wc_SetEccsiPair(EccsiKey* key, const mp_int* ssk, const ecc_point* pvt) |
1720 | 0 | { |
1721 | 0 | int err = 0; |
1722 | |
|
1723 | 0 | if ((key == NULL) || (ssk == NULL) || (pvt == NULL)) { |
1724 | 0 | err = BAD_FUNC_ARG; |
1725 | 0 | } |
1726 | |
|
1727 | 0 | if (err == 0) { |
1728 | 0 | err = mp_copy(ssk, &key->ssk); |
1729 | 0 | } |
1730 | |
|
1731 | 0 | if (err == 0) { |
1732 | 0 | err = wc_ecc_copy_point(pvt, key->pvt); |
1733 | 0 | } |
1734 | |
|
1735 | 0 | return err; |
1736 | 0 | } |
1737 | | |
1738 | | #ifdef ECCSI_ORDER_MORE_BITS_THAN_PRIME |
1739 | | /* |
1740 | | * Fit the number to the maximum number of bytes. |
1741 | | * |
1742 | | * If the number is too big then subtract from order. |
1743 | | * RFC 6507, Section 5.2.1, Note at end. |
1744 | | * This should only happen when order is larger than prime in bits. |
1745 | | * |
1746 | | * @param [in] a MP integer to fix. |
1747 | | * @param [in] order MP integer representing order of curve. |
1748 | | * @param [in] m Maximum number of bytes to encode into. |
1749 | | * @param [out] r MP integer that is the result after fixing. |
1750 | | * @return 0 on success. |
1751 | | * @return MEMORY_E when dynamic memory allocation fails. |
1752 | | */ |
1753 | | static int eccsi_fit_to_octets(const mp_int* a, mp_int* order, int m, |
1754 | | mp_int* r) |
1755 | | { |
1756 | | int err; |
1757 | | |
1758 | | if (mp_count_bits(a) > m * 8) { |
1759 | | err = mp_sub(order, (mp_int*)a, r); |
1760 | | } |
1761 | | else |
1762 | | { |
1763 | | err = mp_copy(a, r); |
1764 | | } |
1765 | | |
1766 | | return err; |
1767 | | } |
1768 | | #else |
1769 | | /* |
1770 | | * Fit the number to the maximum number of bytes. |
1771 | | * |
1772 | | * If the number is too big then subtract from order. |
1773 | | * RFC 6507, Section 5.2.1, Note at end. |
1774 | | * This should only happen when order is larger than prime in bits. |
1775 | | * |
1776 | | * @param [in] a MP integer to fix. |
1777 | | * @param [in] order MP integer representing order of curve. |
1778 | | * @param [in] m Maximum number of bytes to encode into. |
1779 | | * @param [out] r MP integer that is the result after fixing. |
1780 | | * @return 0 on success. |
1781 | | * @return MEMORY_E when dynamic memory allocation fails. |
1782 | | */ |
1783 | | static int eccsi_fit_to_octets(const mp_int* a, const mp_int* order, int m, |
1784 | | mp_int* r) |
1785 | 0 | { |
1786 | 0 | (void)order; |
1787 | 0 | (void)m; |
1788 | | |
1789 | | /* Duplicate line to stop static analyzer complaining. */ |
1790 | 0 | return mp_copy(a, r); |
1791 | 0 | } |
1792 | | #endif |
1793 | | |
1794 | | /* |
1795 | | * Compute the HE = hash( HS | r | M ), hash value of signature. |
1796 | | * |
1797 | | * Partial result required for signing and verification. |
1798 | | * |
1799 | | * @param [in] key ECCSI key. |
1800 | | * @param [in] hashType Type of hash algorithm. e.g. WC_SHA256 |
1801 | | * @param [in] r MP integer that is the first signature element. |
1802 | | * @param [in] msg Message of signature. |
1803 | | * @param [in] msgSz Length of message in bytes. |
1804 | | * @param [out] he Signature hash. |
1805 | | * @param [out] heSz Length of signature hash in bytes |
1806 | | * @return 0 on success. |
1807 | | * @return MEMORY_E when dynamic memory allocation fails. |
1808 | | * @return Other -ve value when an internal operation fails. |
1809 | | */ |
1810 | | static int eccsi_compute_he(EccsiKey* key, enum wc_HashType hashType, |
1811 | | mp_int* r, const byte* msg, word32 msgSz, byte* he, word32* heSz) |
1812 | 0 | { |
1813 | 0 | int err = 0; |
1814 | 0 | word32 dataSz = (word32)key->ecc.dp->size; |
1815 | 0 | int hash_inited = 0; |
1816 | | |
1817 | | /* HE = hash( HS | r | M ) */ |
1818 | 0 | err = wc_HashInit_ex(&key->hash, hashType, key->heap, INVALID_DEVID); |
1819 | 0 | if (err == 0) { |
1820 | 0 | hash_inited = 1; |
1821 | | /* HS */ |
1822 | 0 | err = wc_HashUpdate(&key->hash, hashType, key->idHash, key->idHashSz); |
1823 | 0 | } |
1824 | 0 | if (err == 0) { |
1825 | 0 | err = mp_to_unsigned_bin_len(r, key->data, (int)dataSz); |
1826 | 0 | } |
1827 | 0 | if (err == 0) { |
1828 | | /* r */ |
1829 | 0 | err = wc_HashUpdate(&key->hash, hashType, key->data, dataSz); |
1830 | 0 | } |
1831 | 0 | if (err == 0) { |
1832 | | /* M */ |
1833 | 0 | err = wc_HashUpdate(&key->hash, hashType, msg, msgSz); |
1834 | 0 | } |
1835 | 0 | if (err == 0) { |
1836 | 0 | err = wc_HashFinal(&key->hash, hashType, he); |
1837 | 0 | } |
1838 | 0 | if (err == 0) { |
1839 | 0 | *heSz = (word32)wc_HashGetDigestSize(hashType); |
1840 | 0 | } |
1841 | |
|
1842 | 0 | if (hash_inited) { |
1843 | 0 | (void)wc_HashFree(&key->hash, hashType); |
1844 | 0 | } |
1845 | |
|
1846 | 0 | return err; |
1847 | 0 | } |
1848 | | |
1849 | | /* |
1850 | | * Encode the signature = ( r | s | PVT ) |
1851 | | * |
1852 | | * @param [in] key ECCSI key. |
1853 | | * @param [in] r MP integer that is the first signature element. |
1854 | | * @param [in] s MP integer that is the second signature element. |
1855 | | * @param [in] pvt ECC point representing Public Validation Token. |
1856 | | * @param [out] sig Signature of message. |
1857 | | * @param [out] sigSz Length of signature in bytes. |
1858 | | */ |
1859 | | static int eccsi_encode_sig(const EccsiKey* key, mp_int* r, mp_int* s, |
1860 | | byte* sig, word32* sigSz) |
1861 | 0 | { |
1862 | 0 | int err; |
1863 | 0 | word32 sz = (word32)key->ecc.dp->size; |
1864 | |
|
1865 | 0 | err = mp_to_unsigned_bin_len(r, sig, (int)sz); |
1866 | 0 | if (err == 0) { |
1867 | 0 | err = mp_to_unsigned_bin_len(s, sig + sz, (int)sz); |
1868 | 0 | } |
1869 | 0 | if (err == 0) { |
1870 | 0 | *sigSz = (word32)(key->ecc.dp->size * 2 + 1); |
1871 | 0 | err = wc_ecc_export_point_der(wc_ecc_get_curve_idx(key->ecc.dp->id), |
1872 | 0 | key->pvt, sig + sz * 2, sigSz); |
1873 | 0 | } |
1874 | 0 | if (err == 0) { |
1875 | 0 | *sigSz = sz * 4 + 1; |
1876 | 0 | } |
1877 | |
|
1878 | 0 | return err; |
1879 | 0 | } |
1880 | | |
1881 | | /* |
1882 | | * Sign the ECCSI hash (of ID with the key) to two mp_int objects: r and s. |
1883 | | * |
1884 | | * RFC 6507, Section 5.2.1, Steps 1 to 4 |
1885 | | * |
1886 | | * @param [in] key ECCSI key. |
1887 | | * @param [in] rng Random number generator. |
1888 | | * @param [in] hashType Type of hash algorithm. e.g. WC_SHA256 |
1889 | | * @param [in] msg Message to sign. |
1890 | | * @param [in] msgSz Length of message in bytes. |
1891 | | * @param [out] r First big number integer part of signature. |
1892 | | * @param [out] s Second big number integer part of signature. |
1893 | | * @return 0 on success. |
1894 | | * @return MEMORY_E when dynamic memory allocation fails. |
1895 | | * @return Other -ve value when an internal operation fails. |
1896 | | */ |
1897 | | static int eccsi_gen_sig(EccsiKey* key, WC_RNG* rng, enum wc_HashType hashType, |
1898 | | const byte* msg, word32 msgSz, mp_int* r, mp_int* s) |
1899 | 0 | { |
1900 | 0 | int err = 0; |
1901 | 0 | int sz = key->ecc.dp->size; |
1902 | 0 | word32 heSz = 0; |
1903 | 0 | const mp_int* jx = NULL; |
1904 | 0 | mp_int* he = &key->tmp; |
1905 | 0 | int genTryCnt = 0; |
1906 | |
|
1907 | 0 | do { |
1908 | | /* Don't infinitely gen sigs when random number generator fails. */ |
1909 | 0 | if ((++genTryCnt) > ECCSI_MAX_GEN_COUNT) { |
1910 | 0 | err = RNG_FAILURE_E; |
1911 | 0 | } |
1912 | |
|
1913 | 0 | if (err == 0) { |
1914 | 0 | wc_ecc_free(&key->pubkey); |
1915 | | |
1916 | | /* Step 1 and 2: Generate ephemeral key - j, J = [j]G, r = Jx */ |
1917 | 0 | err = wc_ecc_make_key_ex(rng, sz, &key->pubkey, key->ecc.dp->id); |
1918 | 0 | } |
1919 | 0 | if (err == 0) { |
1920 | 0 | jx = key->pubkey.pubkey.x; |
1921 | 0 | err = eccsi_fit_to_octets(jx, &key->params.order, sz, r); |
1922 | 0 | } |
1923 | | |
1924 | | /* Step 3: Compute HE = hash( HS | r | M ) */ |
1925 | 0 | if (err == 0) { |
1926 | 0 | err = eccsi_compute_he(key, hashType, r, msg, msgSz, key->data, |
1927 | 0 | &heSz); |
1928 | 0 | } |
1929 | | |
1930 | | /* Step 4: Verify that HE + r * SSK is non-zero modulo q */ |
1931 | 0 | if (err == 0) { |
1932 | 0 | err = mp_read_unsigned_bin(he, key->data, heSz); |
1933 | 0 | } |
1934 | | /* s' = r * SSK */ |
1935 | 0 | if (err == 0) { |
1936 | 0 | err = mp_mulmod(r, &key->ssk, &key->params.order, s); |
1937 | 0 | } |
1938 | | /* s' = HE + r * SSK */ |
1939 | 0 | if (err == 0) { |
1940 | 0 | err = mp_addmod(he, s, &key->params.order, s); |
1941 | 0 | } |
1942 | 0 | } |
1943 | 0 | while ((err == 0) && (mp_iszero(s) || (mp_cmp(s, he) == MP_EQ))); |
1944 | |
|
1945 | 0 | return err; |
1946 | 0 | } |
1947 | | |
1948 | | |
1949 | | /** |
1950 | | * Sign the ECCSI hash (of ID with the key). |
1951 | | * |
1952 | | * RFC 6507, Section 5.2.1 |
1953 | | * |
1954 | | * Must have imported KPAK using wc_ImportEccsiPublicKey() before calling.\n |
1955 | | * Use wc_HashEccsiId() to calculate the hash and wc_SetEccsiHash() to set |
1956 | | * the identity hash to use. |
1957 | | * |
1958 | | * @param [in] key ECCSI key. |
1959 | | * @param [in] rng Random number generator. |
1960 | | * @param [in] hashType Type of hash algorithm. e.g. WC_SHA256 |
1961 | | * @param [in] msg Message to sign. |
1962 | | * @param [in] msgSz Length of message in bytes. |
1963 | | * @param [out] sig Signature of message. |
1964 | | * @param [out] sigSz Length of signature in bytes. |
1965 | | * @return 0 on success. |
1966 | | * @return BAD_FUNC_ARG when key, rng, msg or sigSz is NULL. |
1967 | | * @return BAD_STATE_E when the curve or id hash has not been set (no key set). |
1968 | | * @return LENGTH_ONLY_E when sig is NULL - sigSz is set. |
1969 | | * @return MEMORY_E when dynamic memory allocation fails. |
1970 | | * @return Other -ve value when an internal operation fails. |
1971 | | */ |
1972 | | int wc_SignEccsiHash(EccsiKey* key, WC_RNG* rng, enum wc_HashType hashType, |
1973 | | const byte* msg, word32 msgSz, byte* sig, word32* sigSz) |
1974 | 0 | { |
1975 | 0 | int err = 0; |
1976 | 0 | mp_int* r = NULL; |
1977 | 0 | mp_int* s = NULL; |
1978 | 0 | mp_int* j = NULL; |
1979 | 0 | word32 sz = 0; |
1980 | |
|
1981 | 0 | if ((key == NULL) || (rng == NULL) || (msg == NULL) || (sigSz == NULL)) { |
1982 | 0 | err = BAD_FUNC_ARG; |
1983 | 0 | } |
1984 | 0 | if ((err == 0) && (key->ecc.type != ECC_PUBLICKEY) && |
1985 | 0 | (key->ecc.type != ECC_PRIVATEKEY)) { |
1986 | 0 | err = BAD_STATE_E; |
1987 | 0 | } |
1988 | 0 | if ((err == 0) && (sig != NULL) && (key->idHashSz == 0)) { |
1989 | 0 | err = BAD_STATE_E; |
1990 | 0 | } |
1991 | |
|
1992 | 0 | if (err == 0) { |
1993 | 0 | sz = (word32)key->ecc.dp->size; |
1994 | 0 | if (sig == NULL) { |
1995 | 0 | *sigSz = sz * 4 + 1; |
1996 | 0 | err = WC_NO_ERR_TRACE(LENGTH_ONLY_E); |
1997 | 0 | } |
1998 | 0 | } |
1999 | 0 | if ((err == 0) && (*sigSz < sz * 4 + 1)) { |
2000 | 0 | err = BAD_FUNC_ARG; |
2001 | 0 | } |
2002 | |
|
2003 | 0 | if (err == 0) { |
2004 | 0 | r = key->pubkey.pubkey.y; |
2005 | 0 | s = key->pubkey.pubkey.z; |
2006 | |
|
2007 | 0 | err = eccsi_load_order(key); |
2008 | 0 | } |
2009 | |
|
2010 | 0 | if (err == 0) { |
2011 | | /* Steps 1 to 4. */ |
2012 | 0 | err = eccsi_gen_sig(key, rng, hashType, msg, msgSz, r, s); |
2013 | 0 | } |
2014 | | |
2015 | | /* Step 5: s' = ( (( HE + r * SSK )^-1) * j ) modulo q, erase j */ |
2016 | 0 | if (err == 0) { |
2017 | 0 | err = mp_invmod(s, &key->params.order, s); |
2018 | 0 | } |
2019 | 0 | if (err == 0) { |
2020 | 0 | j = wc_ecc_key_get_priv(&key->pubkey); |
2021 | 0 | err = mp_mulmod(s, j, &key->params.order, s); |
2022 | 0 | } |
2023 | 0 | if (err == 0) { |
2024 | 0 | mp_forcezero(j); |
2025 | | |
2026 | | /* Step 6: s = s' fitted */ |
2027 | 0 | err = eccsi_fit_to_octets(s, &key->params.order, (int)sz, s); |
2028 | 0 | } |
2029 | | |
2030 | | /* Step 7: Output Signature = ( r | s | PVT ) */ |
2031 | 0 | if (err == 0) { |
2032 | 0 | err = eccsi_encode_sig(key, r, s, sig, sigSz); |
2033 | 0 | } |
2034 | |
|
2035 | 0 | return err; |
2036 | 0 | } |
2037 | | |
2038 | | /* |
2039 | | * Decode the s part of the signature = ( r | s | PVT ) |
2040 | | * |
2041 | | * @param [in] key ECCSI key. |
2042 | | * @param [in] sig Signature of message. |
2043 | | * @param [in] sigSz Length of signature in bytes. |
2044 | | * @param [out] s MP integer that is the second signature element. |
2045 | | * @return 0 on success. |
2046 | | * @return MEMORY_E when dynamic memory allocation fails. |
2047 | | * @return Other -ve value when an internal operation fails. |
2048 | | */ |
2049 | | static int eccsi_decode_sig_s(const EccsiKey* key, const byte* sig, |
2050 | | word32 sigSz, mp_int* s) |
2051 | 0 | { |
2052 | 0 | int err = 0; |
2053 | 0 | word32 sz = (word32)key->ecc.dp->size; |
2054 | |
|
2055 | 0 | if (sigSz != sz * 4 + 1) { |
2056 | 0 | err = BAD_FUNC_ARG; |
2057 | 0 | } |
2058 | |
|
2059 | 0 | if (err == 0) { |
2060 | 0 | err = mp_read_unsigned_bin(s, sig + sz, sz); |
2061 | 0 | } |
2062 | |
|
2063 | 0 | return err; |
2064 | 0 | } |
2065 | | |
2066 | | /* |
2067 | | * Decode the r and pvt part of the signature = ( r | s | PVT ) |
2068 | | * |
2069 | | * @param [in] key ECCSI key. |
2070 | | * @param [in] sig Signature of message. |
2071 | | * @param [in] sigSz Length of signature in bytes. |
2072 | | * @param [out] r MP integer that is the first signature element. |
2073 | | * @param [out] pvt ECC point representing Public Validation Token. |
2074 | | * @return 0 on success. |
2075 | | * @return MEMORY_E when dynamic memory allocation fails. |
2076 | | * @return Other -ve value when an internal operation fails. |
2077 | | */ |
2078 | | static int eccsi_decode_sig_r_pvt(const EccsiKey* key, const byte* sig, |
2079 | | word32 sigSz, mp_int* r, ecc_point* pvt) |
2080 | 0 | { |
2081 | 0 | int err = 0; |
2082 | 0 | word32 sz = (word32)key->ecc.dp->size; |
2083 | |
|
2084 | 0 | if (sigSz != sz * 4 + 1) { |
2085 | 0 | err = BAD_FUNC_ARG; |
2086 | 0 | } |
2087 | |
|
2088 | 0 | if (err == 0) { |
2089 | 0 | err = mp_read_unsigned_bin(r, sig, sz); |
2090 | 0 | } |
2091 | 0 | if (err == 0) { |
2092 | | /* must free previous public point otherwise wc_ecc_import_point_der |
2093 | | * could leak memory */ |
2094 | 0 | mp_clear(pvt->x); |
2095 | 0 | mp_clear(pvt->y); |
2096 | 0 | mp_clear(pvt->z); |
2097 | |
|
2098 | 0 | err = wc_ecc_import_point_der(sig + sz * 2, sz * 2 + 1, |
2099 | 0 | wc_ecc_get_curve_idx(key->ecc.dp->id), pvt); |
2100 | 0 | } |
2101 | |
|
2102 | 0 | return err; |
2103 | 0 | } |
2104 | | |
2105 | | /* |
2106 | | * Calculate Y point as part of verification process. |
2107 | | * |
2108 | | * Y = [HS]PVT + KPAK |
2109 | | * |
2110 | | * @param [in] key ECCSI key. |
2111 | | * @param [in] pvt ECC point representing Public Validation Token. |
2112 | | * @param [in] mp Montgomery reduction multiplier. |
2113 | | * @param [out] y ECC point representing calculated value Y. |
2114 | | * @return 0 on success. |
2115 | | * @return MEMORY_E when dynamic memory allocation fails. |
2116 | | * @return Other value when an an internal operation fails. |
2117 | | */ |
2118 | | static int eccsi_calc_y(EccsiKey* key, ecc_point* pvt, mp_digit mp, |
2119 | | ecc_point* y) |
2120 | 0 | { |
2121 | 0 | int err; |
2122 | 0 | mp_int* hs = &key->ssk; |
2123 | |
|
2124 | 0 | err = mp_read_unsigned_bin(hs, key->idHash, key->idHashSz); |
2125 | 0 | #ifndef WOLFSSL_HAVE_SP_ECC |
2126 | | /* Need KPAK in montgomery form. */ |
2127 | 0 | if (err == 0) { |
2128 | 0 | err = eccsi_kpak_to_mont(key); |
2129 | 0 | } |
2130 | 0 | #endif |
2131 | | /* [HS]PVT + KPAK */ |
2132 | 0 | if (err == 0) { |
2133 | 0 | ecc_point* kpak = &key->ecc.pubkey; |
2134 | 0 | err = eccsi_mulmod_point_add(key, hs, pvt, kpak, y, mp, 1); |
2135 | 0 | } |
2136 | |
|
2137 | 0 | return err; |
2138 | 0 | } |
2139 | | |
2140 | | /* |
2141 | | * Calculate J point as part of verification process. |
2142 | | * |
2143 | | * J = [s]( [HE]G + [r]Y ) |
2144 | | * |
2145 | | * @param [in] key ECCSI key. |
2146 | | * @param [in] hem MP int representation of HE = Hash (hs, r and message). |
2147 | | * @param [in] sig Signature of message. |
2148 | | * @param [in] sigSz Length of signature in bytes. |
2149 | | * @param [in] y ECC point representing [r]Y. |
2150 | | * @param [in] mp Montgomery reduction multiplier. |
2151 | | * @param [out] j ECC point representing calculated value J. |
2152 | | * @return 0 on success. |
2153 | | * @return MEMORY_E when dynamic memory allocation fails. |
2154 | | * @return Other value when an an internal operation fails. |
2155 | | */ |
2156 | | static int eccsi_calc_j(EccsiKey* key, const mp_int* hem, const byte* sig, |
2157 | | word32 sigSz, ecc_point* y, mp_digit mp, ecc_point* j) |
2158 | 0 | { |
2159 | 0 | int err; |
2160 | 0 | mp_int* s = &key->tmp; |
2161 | | |
2162 | | /* [HE]G + [r]Y */ |
2163 | 0 | err = eccsi_mulmod_base_add(key, hem, y, j, mp, 1); |
2164 | 0 | if (err == 0) { |
2165 | 0 | err = eccsi_decode_sig_s(key, sig, sigSz, s); |
2166 | 0 | } |
2167 | | /* [s]( [HE]G + [r]Y ) */ |
2168 | 0 | if (err == 0) { |
2169 | 0 | err = eccsi_mulmod_point(key, s, j, j, 1); |
2170 | 0 | } |
2171 | |
|
2172 | 0 | return err; |
2173 | 0 | } |
2174 | | |
2175 | | /** |
2176 | | * Verify the ECCSI hash (of ID with the key). |
2177 | | * |
2178 | | * RFC 6507, Section 5.2.2 |
2179 | | * |
2180 | | * Must have imported KPAK using wc_ImportEccsiPublicKey() before calling.\n |
2181 | | * Use wc_HashEccsiId() to calculate the hash and wc_SetEccsiHash() to set |
2182 | | * the identity hash to use. |
2183 | | * |
2184 | | * @param [in] key ECCSI key. |
2185 | | * @param [in] hashType Type of hash algorithm. e.g. WC_SHA256 |
2186 | | * @param [in] msg Message to verify. |
2187 | | * @param [in] msgSz Length of message in bytes. |
2188 | | * @param [in] sig Signature of message. |
2189 | | * @param [in] sigSz Length of signature in bytes. |
2190 | | * @param [out] verified 1 when the signature was verified and 0 otherwise. |
2191 | | * @return 0 on success. |
2192 | | * @return BAD_FUNC_ARG when key, hash, msg, sig or ret is NULL. |
2193 | | * @return BAD_STATE_E when the curve or id hash has not been set (no key set). |
2194 | | * @return MEMORY_E when dynamic memory allocation fails. |
2195 | | * @return Other value when an an internal operation fails. |
2196 | | */ |
2197 | | int wc_VerifyEccsiHash(EccsiKey* key, enum wc_HashType hashType, |
2198 | | const byte* msg, word32 msgSz, const byte* sig, word32 sigSz, |
2199 | | int* verified) |
2200 | 0 | { |
2201 | 0 | int err = 0; |
2202 | 0 | byte* he = NULL; |
2203 | 0 | word32 heSz = 0; |
2204 | 0 | mp_int* r = NULL; |
2205 | 0 | mp_int* jx = NULL; |
2206 | 0 | mp_int* hem = NULL; |
2207 | 0 | ecc_point* pvt = NULL; |
2208 | 0 | ecc_point* y = NULL; |
2209 | 0 | ecc_point* j = NULL; |
2210 | 0 | mp_digit mp = 0; |
2211 | 0 | EccsiKeyParams* params = NULL; |
2212 | |
|
2213 | 0 | if ((key == NULL) || (msg == NULL) || (sig == NULL) || (verified == NULL)) { |
2214 | 0 | err = BAD_FUNC_ARG; |
2215 | 0 | } |
2216 | 0 | if ((err == 0) && (key->ecc.type != ECC_PRIVATEKEY) && |
2217 | 0 | (key->ecc.type != ECC_PUBLICKEY)) { |
2218 | 0 | err = BAD_STATE_E; |
2219 | 0 | } |
2220 | 0 | if ((err == 0) && (key->idHashSz == 0)) { |
2221 | 0 | err = BAD_STATE_E; |
2222 | 0 | } |
2223 | |
|
2224 | 0 | if (err != 0) |
2225 | 0 | return err; |
2226 | | |
2227 | 0 | SAVE_VECTOR_REGISTERS(return _svr_ret;); |
2228 | | |
2229 | | /* Decode the signature into components. */ |
2230 | 0 | r = wc_ecc_key_get_priv(&key->pubkey); |
2231 | 0 | pvt = &key->pubkey.pubkey; |
2232 | 0 | err = eccsi_decode_sig_r_pvt(key, sig, sigSz, r, pvt); |
2233 | | |
2234 | | /* Load the curve parameters for operations */ |
2235 | 0 | if (err == 0) { |
2236 | 0 | err = eccsi_load_base(key); |
2237 | 0 | } |
2238 | 0 | if (err == 0) { |
2239 | 0 | err = eccsi_load_ecc_params(key); |
2240 | 0 | } |
2241 | 0 | if (err == 0) { |
2242 | 0 | params = &key->params; |
2243 | 0 | err = mp_montgomery_setup(¶ms->prime, &mp); |
2244 | 0 | } |
2245 | | |
2246 | | /* Step 1: Validate PVT is on curve */ |
2247 | 0 | if (err == 0) { |
2248 | 0 | err = wc_ecc_is_point(pvt, ¶ms->a, ¶ms->b, ¶ms->prime); |
2249 | 0 | } |
2250 | | |
2251 | | /* Step 2: Compute HS = hash( G | KPAK | ID | PVT ) |
2252 | | * HS is key->idHash, key->idHashSz */ |
2253 | | |
2254 | | /* Step 3: Compute HE = hash( HS | r | M ) */ |
2255 | 0 | if (err == 0) { |
2256 | 0 | he = key->data; |
2257 | 0 | err = eccsi_compute_he(key, hashType, r, msg, msgSz, he, &heSz); |
2258 | 0 | } |
2259 | | |
2260 | | /* Step 4: Y = [HS]PVT + KPAK */ |
2261 | 0 | if (err == 0) { |
2262 | 0 | y = pvt; |
2263 | 0 | err = eccsi_calc_y(key, pvt, mp, y); |
2264 | 0 | } |
2265 | | |
2266 | | /* Step 5: Compute J = [s]( [HE]G + [r]Y ) */ |
2267 | | /* [r]Y */ |
2268 | 0 | if (err == 0) { |
2269 | 0 | hem = &key->tmp; |
2270 | 0 | err = mp_read_unsigned_bin(hem, he, heSz); |
2271 | 0 | } |
2272 | 0 | if (err == 0) { |
2273 | 0 | err = eccsi_mulmod_point(key, r, y, y, 0); |
2274 | 0 | } |
2275 | 0 | if (err == 0) { |
2276 | 0 | j = params->base; |
2277 | 0 | err = eccsi_calc_j(key, hem, sig, sigSz, y, mp, j); |
2278 | 0 | key->params.haveBase = 0; |
2279 | 0 | } |
2280 | | |
2281 | | /* Step 6: Jx fitting, compare with r */ |
2282 | 0 | if (err == 0) { |
2283 | 0 | jx = &key->tmp; |
2284 | 0 | err = eccsi_fit_to_octets(j->x, ¶ms->order, key->ecc.dp->size, jx); |
2285 | 0 | } |
2286 | |
|
2287 | 0 | if (verified != NULL) { |
2288 | 0 | *verified = ((err == 0) && (mp_cmp(jx, r) == MP_EQ)); |
2289 | 0 | } |
2290 | |
|
2291 | 0 | RESTORE_VECTOR_REGISTERS(); |
2292 | |
|
2293 | 0 | return err; |
2294 | 0 | } |
2295 | | #endif /* WOLFCRYPT_ECCSI_CLIENT */ |
2296 | | |
2297 | | #endif /* WOLFCRYPT_HAVE_ECCSI */ |
2298 | | |