/src/wolfssl-openssl-api/wolfcrypt/src/sm2.c
Line | Count | Source |
1 | | /* sm2.c |
2 | | * |
3 | | * Copyright (C) 2006-2024 wolfSSL Inc. |
4 | | * |
5 | | * This file is part of wolfSSL. |
6 | | * |
7 | | * wolfSSL is free software; you can redistribute it and/or modify |
8 | | * it under the terms of the GNU General Public License as published by |
9 | | * the Free Software Foundation; either version 2 of the License, or |
10 | | * (at your option) any later version. |
11 | | * |
12 | | * wolfSSL is distributed in the hope that it will be useful, |
13 | | * but WITHOUT ANY WARRANTY; without even the implied warranty of |
14 | | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
15 | | * GNU General Public License for more details. |
16 | | * |
17 | | * You should have received a copy of the GNU General Public License |
18 | | * along with this program; if not, write to the Free Software |
19 | | * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1335, USA |
20 | | */ |
21 | | |
22 | | /* Based on 'SM2 Digital Signature Algorithm draft-shen-sm2-ecdsa-02' |
23 | | * https://datatracker.ietf.org/doc/html/draft-shen-sm2-ecdsa-02 |
24 | | */ |
25 | | |
26 | | #include <wolfssl/wolfcrypt/libwolfssl_sources.h> |
27 | | |
28 | | #if defined(WOLFSSL_SM2) && defined(HAVE_ECC) |
29 | | |
30 | | #include <wolfssl/wolfcrypt/sm2.h> |
31 | | #include <wolfssl/wolfcrypt/sp.h> |
32 | | #include <wolfssl/wolfcrypt/hash.h> |
33 | | #include <wolfssl/wolfcrypt/coding.h> |
34 | | #include <wolfssl/wolfcrypt/asn.h> |
35 | | #include <wolfssl/wolfcrypt/logging.h> |
36 | | #include <wolfssl/wolfcrypt/logging.h> |
37 | | |
38 | | #ifdef NO_INLINE |
39 | | #include <wolfssl/wolfcrypt/misc.h> |
40 | | #else |
41 | | #define WOLFSSL_MISC_INCLUDED |
42 | | #include <wolfcrypt/src/misc.c> |
43 | | #endif |
44 | | |
45 | | /* Maximum number of signature generations to attempt before giving up. */ |
46 | 0 | #define ECC_SM2_MAX_SIG_GEN 64 |
47 | | |
48 | | #ifndef NO_HASH_WRAPPER |
49 | | /* Convert hex string to binary and hash it. |
50 | | * |
51 | | * @param [in] hash Hash algorithm object. |
52 | | * @param [in] hashType Type of hash to perform. |
53 | | * @param [in] hexIn Hexadecimal string. |
54 | | * @param [in] hexSz Number of characters to hash. |
55 | | * @param [in] tmp Buffer to encode into. |
56 | | * @return 0 on success |
57 | | * @return MEMORY_E on dynamic memory allocation failure. |
58 | | */ |
59 | | static int ecc_sm2_digest_hashin(wc_HashAlg* hash, enum wc_HashType hashType, |
60 | | const char* hexIn, int hexSz, byte* tmp) |
61 | 0 | { |
62 | 0 | int err = 0; |
63 | 0 | word32 tmpSz; |
64 | | |
65 | | /* Number of bytes in binary as type word32. */ |
66 | 0 | tmpSz = (word32)hexSz; |
67 | 0 | if (err == 0) { |
68 | | /* Convert hexadecimal string to binary. */ |
69 | 0 | err = Base16_Decode((const byte*)hexIn, tmpSz, tmp, &tmpSz); |
70 | 0 | } |
71 | 0 | if (err == 0) { |
72 | | /* Update the hash with the binary data. */ |
73 | 0 | err = wc_HashUpdate(hash, hashType, tmp, tmpSz); |
74 | 0 | } |
75 | |
|
76 | 0 | return err; |
77 | 0 | } |
78 | | |
79 | | /* Calculate ZA with hash type specified for sign/verify. |
80 | | * |
81 | | * 5.1.4.4: |
82 | | * ZA=H256(ENTLA || IDA || a || b || xG || yG || xA || yA) |
83 | | * |
84 | | * @param [in] id ID of A to be hashed. |
85 | | * @param [in] idSz Size of ID of A in bytes. |
86 | | * @param [in] hash Hash algorithm object. |
87 | | * @param [in] hashType Hash type to use. |
88 | | * @param [in] key SM2 ECC key that has already been setup. |
89 | | * @param [out] out Buffer to hold final digest. |
90 | | * @return 0 on success. |
91 | | * @return Negative on failure. |
92 | | */ |
93 | | static int _ecc_sm2_calc_za(const byte *id, word16 idSz, |
94 | | wc_HashAlg* hash, enum wc_HashType hashType, ecc_key* key, byte* out) |
95 | 0 | { |
96 | 0 | int err = 0; |
97 | 0 | byte entla[2]; /* RFC draft states ID size is always encoded in 2 bytes. */ |
98 | 0 | word16 sz = 0; |
99 | 0 | #ifdef WOLFSSL_SMALL_STACK |
100 | 0 | byte* xA = NULL; |
101 | 0 | byte* yA = NULL; |
102 | | #else |
103 | | /* Modify if more than one SM2 curve. */ |
104 | | byte xA[33]; |
105 | | byte yA[33]; |
106 | | #endif |
107 | 0 | word32 xASz; |
108 | 0 | word32 yASz; |
109 | | |
110 | | /* Get ID of A size in bits. */ |
111 | 0 | sz = idSz * WOLFSSL_BIT_SIZE; |
112 | | /* Set big-endian 16-bit word. */ |
113 | 0 | entla[0] = (byte)(sz >> WOLFSSL_BIT_SIZE); |
114 | 0 | entla[1] = (byte)(sz & 0xFF); |
115 | |
|
116 | | #ifdef DEBUG_ECC_SM2 |
117 | | WOLFSSL_MSG("ENTLA"); |
118 | | WOLFSSL_BUFFER(entla, 2); |
119 | | #endif |
120 | | |
121 | | /* Get ordinate size. */ |
122 | 0 | xASz = yASz = (word32)wc_ecc_size(key); |
123 | 0 | #ifdef WOLFSSL_SMALL_STACK |
124 | | /* Allocate memory for the x-ordinate. */ |
125 | 0 | xA = (byte*)XMALLOC(xASz + 1, key->heap, DYNAMIC_TYPE_TMP_BUFFER); |
126 | 0 | if (xA == NULL) { |
127 | 0 | err = MEMORY_E; |
128 | 0 | } |
129 | 0 | if (err == 0) { |
130 | | /* Allocate memory for the y-ordinate. */ |
131 | 0 | yA = (byte*)XMALLOC(yASz + 1, key->heap, DYNAMIC_TYPE_TMP_BUFFER); |
132 | 0 | if (yA == NULL) { |
133 | 0 | err = MEMORY_E; |
134 | 0 | } |
135 | 0 | } |
136 | 0 | #endif |
137 | | |
138 | |
|
139 | 0 | if (err == 0) { |
140 | | /* Hash the ENTLA - length of ID of A. */ |
141 | 0 | err = wc_HashUpdate(hash, hashType, (byte*)&entla, 2); |
142 | 0 | } |
143 | 0 | if (err == 0) { |
144 | | /* Hash the ID of A. */ |
145 | 0 | err = wc_HashUpdate(hash, hashType, id, idSz); |
146 | 0 | } |
147 | |
|
148 | 0 | if (err == 0) { |
149 | | /* Hash the a coefficient of the curve. */ |
150 | 0 | err = ecc_sm2_digest_hashin(hash, hashType, key->dp->Af, |
151 | 0 | (int)XSTRLEN(key->dp->Af), xA); |
152 | 0 | } |
153 | 0 | if (err == 0) { |
154 | | /* Hash the b coefficient of the curve. */ |
155 | 0 | err = ecc_sm2_digest_hashin(hash, hashType, key->dp->Bf, |
156 | 0 | (int)XSTRLEN(key->dp->Bf), xA); |
157 | 0 | } |
158 | 0 | if (err == 0) { |
159 | | /* Hash the x-ordinate of the base point. */ |
160 | 0 | err = ecc_sm2_digest_hashin(hash, hashType, key->dp->Gx, |
161 | 0 | (int)XSTRLEN(key->dp->Gx), xA); |
162 | 0 | } |
163 | 0 | if (err == 0) { |
164 | | /* Hash the y-ordinate of the base point. */ |
165 | 0 | err = ecc_sm2_digest_hashin(hash, hashType, key->dp->Gy, |
166 | 0 | (int)XSTRLEN(key->dp->Gy), xA); |
167 | 0 | } |
168 | |
|
169 | 0 | if (err == 0) { |
170 | | /* Get the x and y ordinates. */ |
171 | 0 | err = wc_ecc_export_public_raw(key, xA, &xASz, yA, &yASz); |
172 | 0 | } |
173 | 0 | if (err == 0) { |
174 | | /* Hash the x-ordinate of the public key. */ |
175 | 0 | err = wc_HashUpdate(hash, hashType, xA, xASz); |
176 | 0 | } |
177 | 0 | #ifdef WOLFSSL_SMALL_STACK |
178 | 0 | XFREE(xA, key->heap, DYNAMIC_TYPE_TMP_BUFFER); |
179 | 0 | #endif |
180 | |
|
181 | 0 | if (err == 0) { |
182 | | /* Hash the y-ordinate of the public key. */ |
183 | 0 | err = wc_HashUpdate(hash, hashType, yA, yASz); |
184 | 0 | } |
185 | 0 | #ifdef WOLFSSL_SMALL_STACK |
186 | 0 | XFREE(yA, key->heap, DYNAMIC_TYPE_TMP_BUFFER); |
187 | 0 | #endif |
188 | |
|
189 | 0 | if (err == 0) { |
190 | | /* Output the hash - ZA. */ |
191 | 0 | err = wc_HashFinal(hash, hashType, out); |
192 | 0 | } |
193 | | #ifdef DEBUG_ECC_SM2 |
194 | | if (err == 0) { |
195 | | WOLFSSL_MSG("ZA"); |
196 | | WOLFSSL_BUFFER(out, wc_HashGetDigestSize(hashType)); |
197 | | } |
198 | | #endif |
199 | |
|
200 | 0 | return err; |
201 | 0 | } |
202 | | |
203 | | /* Calculate SM2 hash of the type specified for sign/verify. |
204 | | * |
205 | | * 5.2.1, A2: |
206 | | * Hash Out = Hash(ZA || M) |
207 | | * |
208 | | * @param [in] za ZA to be hashed. |
209 | | * @param [in] zaSz Size of ZA in bytes. |
210 | | * @param [in] msg Message to be signed. |
211 | | * @param [in] msgSz Size of message in bytes. |
212 | | * @param [in] hash Hash algorithm object. |
213 | | * @param [in] hashType Hash type to use. |
214 | | * @param [out] out Buffer to hold final digest. |
215 | | * @return 0 on success. |
216 | | * @return Negative on failure. |
217 | | */ |
218 | | static int _ecc_sm2_calc_msg_hash(const byte* za, int zaSz, const byte* msg, |
219 | | int msgSz, wc_HashAlg* hash, enum wc_HashType hashType, byte* out) |
220 | 0 | { |
221 | 0 | int err; |
222 | | |
223 | | /* Initialize the hash for new operation. */ |
224 | 0 | err = wc_HashInit_ex(hash, hashType, NULL, 0); |
225 | 0 | if (err == 0) { |
226 | | /* Hash ZA. */ |
227 | 0 | err = wc_HashUpdate(hash, hashType, za, (word32)zaSz); |
228 | 0 | } |
229 | 0 | if (err == 0) { |
230 | | /* Hash the message. */ |
231 | 0 | err = wc_HashUpdate(hash, hashType, msg, (word32)msgSz); |
232 | 0 | } |
233 | 0 | if (err == 0) { |
234 | | /* Output the hash. */ |
235 | 0 | err = wc_HashFinal(hash, hashType, out); |
236 | 0 | } |
237 | | #ifdef DEBUG_ECC_SM2 |
238 | | if (err == 0) { |
239 | | WOLFSSL_MSG("Hv(ZA || M)"); |
240 | | WOLFSSL_BUFFER(out, wc_HashGetDigestSize(hashType)); |
241 | | } |
242 | | #endif |
243 | |
|
244 | 0 | return err; |
245 | 0 | } |
246 | | |
247 | | /* Create SM2 hash of the type specified for sign/verify. |
248 | | * |
249 | | * 5.1.4.4: |
250 | | * ZA=H256(ENTLA || IDA || a || b || xG || yG || xA || yA) |
251 | | * 5.2.1: |
252 | | * A1: M~=ZA || M |
253 | | * A2: e=Hv(M~) |
254 | | * |
255 | | * @param [in] id ID of A to be hashed. |
256 | | * @param [in] idSz Size of ID of A in bytes. |
257 | | * @param [in] msg Message to be signed. |
258 | | * @param [in] msgSz Size of message in bytes. |
259 | | * @param [in] hashType Hash type to use. |
260 | | * @param [out] out Buffer to hold final digest. |
261 | | * @param [in] outSz Size of output buffer in bytes. |
262 | | * @param [in] key SM2 ECC key that has already been setup. |
263 | | * @return 0 on success. |
264 | | * @return BAD_FUNC_ARG when key, out, msg or id is NULL. |
265 | | * @return BAD_FUNC_ARG when hash type is not supported. |
266 | | * @return BUFFER_E when hash size is larger than output size. |
267 | | * @return MEMORY_E on dynamic memory allocation failure. |
268 | | */ |
269 | | int wc_ecc_sm2_create_digest(const byte *id, word16 idSz, |
270 | | const byte* msg, int msgSz, enum wc_HashType hashType, byte* out, int outSz, |
271 | | ecc_key* key) |
272 | 0 | { |
273 | 0 | int err = 0; |
274 | 0 | int hashSz = 0; |
275 | 0 | #ifdef WOLFSSL_SMALL_STACK |
276 | 0 | wc_HashAlg* hash = NULL; |
277 | | #else |
278 | | wc_HashAlg hash[1]; |
279 | | #endif |
280 | 0 | int hash_inited = 0; |
281 | | |
282 | | /* Validate parameters. */ |
283 | 0 | if ((key == NULL) || (key->dp == NULL) || (out == NULL) || (msg == NULL) || |
284 | 0 | (id == NULL)) { |
285 | 0 | err = BAD_FUNC_ARG; |
286 | 0 | } |
287 | | /* Get hash size. */ |
288 | 0 | if ((err == 0) && ((hashSz = wc_HashGetDigestSize(hashType)) < 0)) { |
289 | 0 | err = BAD_FUNC_ARG; |
290 | 0 | } |
291 | | /* Check hash size fits in output. */ |
292 | 0 | if ((err == 0) && (hashSz > outSz)) { |
293 | 0 | err = BUFFER_E; |
294 | 0 | } |
295 | |
|
296 | 0 | #ifdef WOLFSSL_SMALL_STACK |
297 | 0 | if (err == 0) { |
298 | 0 | hash = (wc_HashAlg*)XMALLOC(sizeof(wc_HashAlg), key->heap, |
299 | 0 | DYNAMIC_TYPE_HASHES); |
300 | 0 | if (hash == NULL) { |
301 | 0 | err = MEMORY_E; |
302 | 0 | } |
303 | 0 | } |
304 | 0 | #endif |
305 | |
|
306 | 0 | if (err == 0) { |
307 | | /* Initialize hash algorithm object. */ |
308 | 0 | err = wc_HashInit_ex(hash, hashType, key->heap, 0); |
309 | 0 | } |
310 | |
|
311 | 0 | if (err == 0) { |
312 | 0 | hash_inited = 1; |
313 | 0 | } |
314 | | |
315 | | /* Calculate ZA. */ |
316 | 0 | if (err == 0) { |
317 | 0 | err = _ecc_sm2_calc_za(id, idSz, hash, hashType, key, out); |
318 | 0 | } |
319 | | /* Calculate message hash. */ |
320 | 0 | if (err == 0) { |
321 | 0 | err = _ecc_sm2_calc_msg_hash(out, hashSz, msg, msgSz, hash, hashType, |
322 | 0 | out); |
323 | 0 | } |
324 | | |
325 | | /* Dispose of allocated data. */ |
326 | 0 | if (hash_inited) { |
327 | 0 | (void)wc_HashFree(hash, hashType); |
328 | 0 | } |
329 | 0 | #ifdef WOLFSSL_SMALL_STACK |
330 | 0 | XFREE(hash, key->heap, DYNAMIC_TYPE_HASHES); |
331 | 0 | #endif |
332 | 0 | return err; |
333 | 0 | } |
334 | | #endif /* NO_HASH_WRAPPER */ |
335 | | |
336 | | /* Make a key on the SM2 curve. |
337 | | * |
338 | | * @param [in] rng Random number generator. |
339 | | * @param [out] key ECC key to hold generated key. |
340 | | * @param [in] flags Flags to set against ECC key. |
341 | | * @return 0 on success. |
342 | | */ |
343 | | int wc_ecc_sm2_make_key(WC_RNG* rng, ecc_key* key, int flags) |
344 | 0 | { |
345 | 0 | return wc_ecc_make_key_ex2(rng, 32, key, ECC_SM2P256V1, flags); |
346 | 0 | } |
347 | | |
348 | | /* Create a shared secret from the private key and peer's public key. |
349 | | * |
350 | | * @param [in] priv Private key. |
351 | | * @param [in] pub Peer's public key. |
352 | | * @param [out] out Array containing secret. |
353 | | * @param [in, out] outLen On in, length of array in bytes. |
354 | | * On out, number of bytes in secret. |
355 | | */ |
356 | | int wc_ecc_sm2_shared_secret(ecc_key* priv, ecc_key* pub, byte* out, |
357 | | word32* outLen) |
358 | 0 | { |
359 | 0 | return wc_ecc_shared_secret(priv, pub, out, outLen); |
360 | 0 | } |
361 | | |
362 | | #ifdef HAVE_ECC_SIGN |
363 | | #ifndef WOLFSSL_SP_MATH |
364 | | /* Calculate r and s of signature. |
365 | | * |
366 | | * @param [in] x Private key. |
367 | | * @param [in] px Ephemeral point's x-ordinate. |
368 | | * @param [in] k Ephemeral private key. |
369 | | * @param [in] e Hash of message. |
370 | | * @param [in] order Order of curve. |
371 | | * @param [in] b Blinding value. |
372 | | * @param [out] r 'r' value of signature. |
373 | | * @param [out] s 's' value of signature. |
374 | | * @return MP_OKAY on success. |
375 | | * @return MP_MEM when dynamic memory allocation fails. |
376 | | */ |
377 | | static int _ecc_sm2_calc_r_s(mp_int* x, mp_int* px, mp_int* k, mp_int* e, |
378 | | mp_int* order, mp_int* b, mp_int* r, mp_int* s) |
379 | 0 | { |
380 | 0 | int err; |
381 | | |
382 | | /* r = p->x + e */ |
383 | 0 | err = mp_addmod_ct(px, e, order, r); |
384 | | /* Check r != 0 */ |
385 | 0 | if ((err == MP_OKAY) && mp_iszero(r)) { |
386 | 0 | err = MP_ZERO_E; |
387 | 0 | } |
388 | | /* Calc r + k */ |
389 | 0 | if (err == MP_OKAY) { |
390 | 0 | err = mp_addmod_ct(r, k, order, s); |
391 | 0 | } |
392 | | /* Check r + k != 0 */ |
393 | 0 | if ((err == MP_OKAY) && mp_iszero(s)) { |
394 | 0 | err = MP_ZERO_E; |
395 | 0 | } |
396 | | |
397 | | /* s = x.r */ |
398 | 0 | if (err == MP_OKAY) { |
399 | 0 | err = mp_mulmod(r, x, order, s); |
400 | 0 | } |
401 | | |
402 | | /* x' = x + 1 */ |
403 | 0 | if (err == MP_OKAY) { |
404 | 0 | err = mp_add_d(x, 1, x); |
405 | 0 | } |
406 | | /* x'' = x'.b = (x+1).b */ |
407 | 0 | if (err == MP_OKAY) { |
408 | 0 | err = mp_mulmod(x, b, order, x); |
409 | 0 | } |
410 | | /* x''' = 1/x'' = 1/((x+1).b) */ |
411 | 0 | if (err == MP_OKAY) { |
412 | 0 | err = mp_invmod(x, order, x); |
413 | 0 | } |
414 | | |
415 | | /* k' = k * x''' = k / ((x+1).b) */ |
416 | 0 | if (err == MP_OKAY) { |
417 | 0 | err = mp_mulmod(k, x, order, k); |
418 | 0 | } |
419 | | |
420 | | /* s' = s * x''' = x.r / ((x+1).b) */ |
421 | 0 | if (err == MP_OKAY) { |
422 | 0 | err = mp_mulmod(s, x, order, s); |
423 | 0 | } |
424 | | /* s'' = k' - s' = (k - x.r) / ((x+1).b) */ |
425 | 0 | if (err == MP_OKAY) { |
426 | 0 | err = mp_submod_ct(k, s, order, s); |
427 | 0 | } |
428 | | /* s''' = s'' * b = (k - x.r) / (x+1) */ |
429 | 0 | if (err == MP_OKAY) { |
430 | 0 | err = mp_mulmod(s, b, order, s); |
431 | 0 | } |
432 | |
|
433 | 0 | return err; |
434 | 0 | } |
435 | | #endif |
436 | | |
437 | | /* Calculate the signature from the hash with a key on the SM2 curve. |
438 | | * |
439 | | * Use wc_ecc_sm2_create_digest to calculate the digest. |
440 | | * |
441 | | * @param [in] hash Array of bytes holding hash value. |
442 | | * @param [in] hashSz Size of hash in bytes. |
443 | | * @param [in] rng Random number generator. |
444 | | * @param [in] key ECC private key. |
445 | | * @param [out] r 'r' part of signature as an MP integer. |
446 | | * @param [out] s 's' part of signature as an MP integer. |
447 | | * @return MP_OKAY on success. |
448 | | * @return ECC_BAD_ARGE_E when hash, r, s, key or rng is NULL. |
449 | | * @return ECC_BAD_ARGE_E when key is not on SM2 curve. |
450 | | */ |
451 | | int wc_ecc_sm2_sign_hash_ex(const byte* hash, word32 hashSz, WC_RNG* rng, |
452 | | ecc_key* key, mp_int* r, mp_int* s) |
453 | 0 | { |
454 | 0 | int err = MP_OKAY; |
455 | 0 | #ifndef WOLFSSL_SP_MATH |
456 | 0 | mp_int* x = NULL; |
457 | 0 | mp_int* e = NULL; |
458 | 0 | mp_int* b = NULL; |
459 | 0 | mp_int* order = NULL; |
460 | 0 | #ifdef WOLFSSL_SMALL_STACK |
461 | 0 | ecc_key* pub = NULL; |
462 | 0 | mp_int* data = NULL; |
463 | | #else |
464 | | ecc_key pub[1]; |
465 | | mp_int data[4]; |
466 | | #endif |
467 | 0 | int i; |
468 | 0 | #endif |
469 | | |
470 | | /* Validate parameters. */ |
471 | 0 | if ((hash == NULL) || (r == NULL) || (s == NULL) || (key == NULL) || |
472 | 0 | (key->dp == NULL) || (rng == NULL)) { |
473 | 0 | err = BAD_FUNC_ARG; |
474 | 0 | } |
475 | | /* SM2 signature must be with a key on the SM2 curve. */ |
476 | 0 | if ((err == MP_OKAY) && (key->dp->id != ECC_SM2P256V1) && |
477 | 0 | (key->idx != ECC_CUSTOM_IDX)) { |
478 | 0 | err = BAD_FUNC_ARG; |
479 | 0 | } |
480 | |
|
481 | | #if defined(WOLFSSL_HAVE_SP_ECC) && defined(WOLFSSL_SP_SM2) |
482 | | if ((err == MP_OKAY) && (key->dp->id == ECC_SM2P256V1)) { |
483 | | /* Use optimized code in SP to perform signing. */ |
484 | | SAVE_VECTOR_REGISTERS(return _svr_ret;); |
485 | | err = sp_ecc_sign_sm2_256(hash, hashSz, rng, key->k, r, s, NULL, |
486 | | key->heap); |
487 | | RESTORE_VECTOR_REGISTERS(); |
488 | | return err; |
489 | | } |
490 | | #endif |
491 | |
|
492 | 0 | #ifndef WOLFSSL_SP_MATH |
493 | 0 | #ifdef WOLFSSL_SMALL_STACK |
494 | 0 | if (err == MP_OKAY) { |
495 | | /* Allocate ECC key. */ |
496 | 0 | pub = (ecc_key*)XMALLOC(sizeof(ecc_key), key->heap, DYNAMIC_TYPE_ECC); |
497 | 0 | if (pub == NULL) { |
498 | 0 | err = MEMORY_E; |
499 | 0 | } |
500 | 0 | } |
501 | 0 | if (err == MP_OKAY) { |
502 | | /* Allocate MP integers. */ |
503 | 0 | data = (mp_int*)XMALLOC(sizeof(mp_int) * 4, key->heap, |
504 | 0 | DYNAMIC_TYPE_ECC); |
505 | 0 | if (data == NULL) { |
506 | 0 | err = MEMORY_E; |
507 | 0 | } |
508 | 0 | } |
509 | 0 | #endif |
510 | 0 | if (err == MP_OKAY) { |
511 | 0 | x = data; |
512 | 0 | e = data + 1; |
513 | 0 | b = data + 2; |
514 | 0 | order = data + 3; |
515 | 0 | } |
516 | | |
517 | | /* Initialize MP integers needed. */ |
518 | 0 | if (err == MP_OKAY) { |
519 | 0 | err = mp_init_multi(x, e, b, order, NULL, NULL); |
520 | 0 | } |
521 | 0 | if (err == MP_OKAY) { |
522 | | /* Initialize ephemeral key. */ |
523 | 0 | err = wc_ecc_init_ex(pub, key->heap, INVALID_DEVID); |
524 | 0 | if (err == MP_OKAY) { |
525 | | /* Load the order into an MP integer for generating blinding value. |
526 | | */ |
527 | 0 | err = mp_read_radix(order, key->dp->order, MP_RADIX_HEX); |
528 | 0 | } |
529 | 0 | if (err == MP_OKAY) { |
530 | | /* Convert hash to a number. */ |
531 | 0 | err = mp_read_unsigned_bin(e, hash, hashSz); |
532 | 0 | } |
533 | 0 | if (err == MP_OKAY) { |
534 | | /* Reduce the hash value to that of the order once. */ |
535 | 0 | err = mp_mod(e, order, e); |
536 | 0 | } |
537 | 0 | if (err == MP_OKAY) { |
538 | 0 | do { |
539 | | /* Generate blinding value. */ |
540 | 0 | err = wc_ecc_gen_k(rng, 32, b, order); |
541 | 0 | } |
542 | 0 | while (err == MP_ZERO_E); |
543 | | |
544 | | /* Try generating a signature a number of times. */ |
545 | 0 | for (i = 0; (err == MP_OKAY) && (i < ECC_SM2_MAX_SIG_GEN); i++) { |
546 | | /* Make a new ephemeral key. */ |
547 | 0 | err = wc_ecc_sm2_make_key(rng, pub, WC_ECC_FLAG_NONE); |
548 | 0 | if (err == MP_OKAY) { |
549 | | /* Copy the private key into temporary. */ |
550 | 0 | err = mp_copy(wc_ecc_key_get_priv(key), x); |
551 | 0 | } |
552 | 0 | if (err == MP_OKAY) { |
553 | | /* Calculate R and S. */ |
554 | 0 | err = _ecc_sm2_calc_r_s(x, pub->pubkey.x, |
555 | 0 | wc_ecc_key_get_priv(pub), e, order, b, r, s); |
556 | 0 | } |
557 | | /* Done if it worked. */ |
558 | 0 | if (err == MP_OKAY) { |
559 | 0 | break; |
560 | 0 | } |
561 | | /* Try again if random values not usable. */ |
562 | 0 | if (err == MP_ZERO_E) { |
563 | 0 | err = MP_OKAY; |
564 | 0 | } |
565 | 0 | } |
566 | | |
567 | | /* Dispose of emphemeral key. */ |
568 | 0 | wc_ecc_free(pub); |
569 | 0 | } |
570 | | |
571 | | /* Dispose of temproraries - x and b are sensitive data. */ |
572 | 0 | mp_forcezero(x); |
573 | 0 | mp_forcezero(b); |
574 | 0 | mp_free(e); |
575 | 0 | mp_free(order); |
576 | 0 | } |
577 | |
|
578 | 0 | #ifdef WOLFSSL_SMALL_STACK |
579 | 0 | XFREE(pub, key->heap, DYNAMIC_TYPE_ECC); |
580 | 0 | XFREE(data, key->heap, DYNAMIC_TYPE_ECC); |
581 | 0 | #endif |
582 | | #else |
583 | | (void)hashSz; |
584 | | |
585 | | err = NOT_COMPILED_IN; |
586 | | #endif |
587 | |
|
588 | 0 | return err; |
589 | 0 | } |
590 | | |
591 | | /* Calculate the signature from the hash with a key on the SM2 curve. |
592 | | * |
593 | | * Use wc_ecc_sm2_create_digest to calculate the digest. |
594 | | * |
595 | | * @param [in] hash Array of bytes holding hash value. |
596 | | * @param [in] hashSz Size of hash in bytes. |
597 | | * @param [in] rng Random number generator. |
598 | | * @param [in] key ECC private key. |
599 | | * @param [out] sig DER encoded DSA signature. |
600 | | * @param [out] sigSz On in, size of signature buffer in bytes. |
601 | | * On out, length of signature in bytes. |
602 | | * @return MP_OKAY on success. |
603 | | * @return ECC_BAD_ARGE_E when hash, r, s, key or rng is NULL. |
604 | | * @return ECC_BAD_ARGE_E when key is not on SM2 curve. |
605 | | */ |
606 | | int wc_ecc_sm2_sign_hash(const byte* hash, word32 hashSz, byte* sig, |
607 | | word32 *sigSz, WC_RNG* rng, ecc_key* key) |
608 | 0 | { |
609 | 0 | int err = MP_OKAY; |
610 | 0 | #if !defined(WOLFSSL_ASYNC_CRYPT) || !defined(WC_ASYNC_ENABLE_ECC) |
611 | 0 | #ifdef WOLFSSL_SMALL_STACK |
612 | 0 | mp_int *r = NULL, *s = NULL; |
613 | | #else |
614 | | mp_int r[1], s[1]; |
615 | | #endif |
616 | 0 | #endif |
617 | | |
618 | | /* Validate parameters. */ |
619 | 0 | if ((hash == NULL) || (sig == NULL) || (sigSz == NULL) || (key == NULL) || |
620 | 0 | (key->dp == NULL) || (rng == NULL)) { |
621 | 0 | err = BAD_FUNC_ARG; |
622 | 0 | } |
623 | | /* SM2 signature must be with a key on the SM2 curve. */ |
624 | 0 | if ((err == MP_OKAY) && (key->dp->id != ECC_SM2P256V1) && |
625 | 0 | (key->idx != ECC_CUSTOM_IDX)) { |
626 | 0 | err = BAD_FUNC_ARG; |
627 | 0 | } |
628 | |
|
629 | 0 | #ifdef WOLFSSL_SMALL_STACK |
630 | 0 | if (err == MP_OKAY) { |
631 | | /* Allocate MP integers. */ |
632 | 0 | r = (mp_int*)XMALLOC(sizeof(mp_int), key->heap, DYNAMIC_TYPE_ECC); |
633 | 0 | if (r == NULL) |
634 | 0 | err = MEMORY_E; |
635 | 0 | } |
636 | 0 | if (err == MP_OKAY) { |
637 | 0 | s = (mp_int*)XMALLOC(sizeof(mp_int), key->heap, DYNAMIC_TYPE_ECC); |
638 | 0 | if (s == NULL) { |
639 | 0 | err = MEMORY_E; |
640 | 0 | } |
641 | 0 | } |
642 | 0 | #endif |
643 | | /* Clear out MP integers. */ |
644 | 0 | #ifdef WOLFSSL_SMALL_STACK |
645 | 0 | if (r != NULL) |
646 | 0 | #endif |
647 | 0 | XMEMSET(r, 0, sizeof(mp_int)); |
648 | 0 | #ifdef WOLFSSL_SMALL_STACK |
649 | 0 | if (s != NULL) |
650 | 0 | #endif |
651 | 0 | XMEMSET(s, 0, sizeof(mp_int)); |
652 | | |
653 | | /* Initialize MP integers. */ |
654 | 0 | if (err == MP_OKAY) |
655 | 0 | err = mp_init_multi(r, s, NULL, NULL, NULL, NULL); |
656 | | /* Generate signature into numbers. */ |
657 | 0 | if (err == MP_OKAY) |
658 | 0 | err = wc_ecc_sm2_sign_hash_ex(hash, hashSz, rng, key, r, s); |
659 | | |
660 | | /* Encode r and s in DER DSA signature format. */ |
661 | 0 | if (err == MP_OKAY) |
662 | 0 | err = StoreECC_DSA_Sig(sig, sigSz, r, s); |
663 | | |
664 | | /* Dispose of temporaries. */ |
665 | 0 | mp_clear(r); |
666 | 0 | mp_clear(s); |
667 | |
|
668 | 0 | #ifdef WOLFSSL_SMALL_STACK |
669 | | /* Free allocated data. */ |
670 | 0 | XFREE(s, key->heap, DYNAMIC_TYPE_ECC); |
671 | 0 | XFREE(r, key->heap, DYNAMIC_TYPE_ECC); |
672 | 0 | #endif |
673 | |
|
674 | 0 | return err; |
675 | 0 | } |
676 | | #endif |
677 | | |
678 | | #ifdef HAVE_ECC_VERIFY |
679 | | #ifndef WOLFSSL_SP_MATH |
680 | | /* Scalar multiply two scalars against respective points and add result. |
681 | | * |
682 | | * @param [in] mG First point to multiply. |
683 | | * @param [in] u1 First scalar. |
684 | | * @param [in] mQ Second point to multiply. |
685 | | * @param [in] u2 Second scalar. |
686 | | * @param [out] mR Point to store result in. |
687 | | * @param [in] a Coefficient a of the curve. |
688 | | * @param [in] modulus Modulus of curve. |
689 | | * @param [in] heap Dynamic memory allocation hint. |
690 | | * @return MP_OKAY on success. |
691 | | * @return MP_VAL when a parameter is invalid. |
692 | | * @return MP_MEM when dynamic memory allocation fails. |
693 | | */ |
694 | | static int ecc_sm2_mul2add(ecc_point* mG, mp_int* u1, ecc_point* mQ, mp_int* u2, |
695 | | ecc_point* mR, mp_int* a, mp_int* modulus, void* heap) |
696 | 0 | { |
697 | 0 | int err; |
698 | | #ifndef ECC_SHAMIR |
699 | | mp_digit mp = 0; |
700 | | |
701 | | /* Calculate the Montgomery multiplier. */ |
702 | | err = mp_montgomery_setup(modulus, &mp); |
703 | | if ((err == 0) && (!mp_iszero(u1))) { |
704 | | /* Compute mR = u1 * mG + u2 * mQ */ |
705 | | |
706 | | /* mG = u1 * mG */ |
707 | | err = wc_ecc_mulmod_ex(u1, mG, mG, a, modulus, 0, heap); |
708 | | if (err == MP_OKAY) { |
709 | | /* mQ = u2 * mQ */ |
710 | | err = wc_ecc_mulmod_ex(u2, mQ, mR, a, modulus, 0, heap); |
711 | | } |
712 | | |
713 | | if (err == MP_OKAY) { |
714 | | /* mR = mQ + mG */ |
715 | | err = ecc_projective_add_point(mR, mG, mR, a, modulus, mp); |
716 | | } |
717 | | if (err == MP_OKAY && mp_iszero(mR->z)) { |
718 | | /* When all zero then should have done a double instead. */ |
719 | | if (mp_iszero(mR->x) && mp_iszero(mR->y)) { |
720 | | /* mR = mQ * 2 (mG = mQ) */ |
721 | | err = ecc_projective_dbl_point(mQ, mR, a, modulus, mp); |
722 | | } |
723 | | else { |
724 | | /* When only Z zero then result is infinity. */ |
725 | | err = mp_set(mR->x, 0); |
726 | | if (err == MP_OKAY) |
727 | | err = mp_set(mR->y, 0); |
728 | | if (err == MP_OKAY) |
729 | | err = mp_set(mR->z, 1); |
730 | | } |
731 | | } |
732 | | } |
733 | | else if (err == 0) { |
734 | | /* Compute mR = 0 * mG + u2 * mQ => mR = u2 * mQ */ |
735 | | err = wc_ecc_mulmod_ex(u2, mQ, mR, a, modulus, 0, heap); |
736 | | } |
737 | | |
738 | | /* Convert from Jacobian to affine. */ |
739 | | if (err == MP_OKAY) { |
740 | | err = ecc_map(mR, modulus, mp); |
741 | | } |
742 | | #else |
743 | | /* Use Shamir's trick to compute u1 * mG + u2 * mQ using half the doubles. |
744 | | */ |
745 | 0 | err = ecc_mul2add(mG, u1, mQ, u2, mR, a, modulus, heap); |
746 | 0 | #endif /* ECC_SHAMIR */ |
747 | |
|
748 | 0 | return err; |
749 | 0 | } |
750 | | #endif /* !WOLFSSL_SP_MATH */ |
751 | | |
752 | | /* Verify digest of hash(ZA || M) using key on SM2 curve and R and S. |
753 | | * |
754 | | * res gets set to 1 on successful verify and 0 on failure |
755 | | * |
756 | | * Use wc_ecc_sm2_create_digest to calculate the digest. |
757 | | * |
758 | | * @param [in] r MP integer holding r part of signature. |
759 | | * @param [in] s MP integer holding s part of signature. |
760 | | * @param [in] hash Array of bytes holding hash value. |
761 | | * @param [in] hashSz Size of hash in bytes. |
762 | | * @param [out] res 1 on successful verify and 0 on failure. |
763 | | * @param [in] key Public key on SM2 curve. |
764 | | * @return 0 on success (note this is even when successfully finding verify is |
765 | | * incorrect) |
766 | | * @return BAD_FUNC_ARG when key, res, r, s or hash is NULL. |
767 | | * @return MP_VAL when r + s = 0. |
768 | | * @return MEMORY_E on dynamic memory allocation failure. |
769 | | * @return MP_MEM when dynamic memory allocation fails. |
770 | | */ |
771 | | int wc_ecc_sm2_verify_hash_ex(mp_int *r, mp_int *s, const byte *hash, |
772 | | word32 hashSz, int *res, ecc_key *key) |
773 | 0 | { |
774 | 0 | int err = MP_OKAY; |
775 | 0 | #ifndef WOLFSSL_SP_MATH |
776 | 0 | ecc_point* PO = NULL; |
777 | 0 | ecc_point* G = NULL; |
778 | 0 | mp_int* t = NULL; |
779 | 0 | mp_int* e = NULL; |
780 | 0 | mp_int* prime = NULL; |
781 | 0 | mp_int* Af = NULL; |
782 | 0 | mp_int* order = NULL; |
783 | 0 | #ifdef WOLFSSL_SMALL_STACK |
784 | 0 | mp_int* data = NULL; |
785 | | #else |
786 | | mp_int data[5]; |
787 | | #endif |
788 | 0 | #endif |
789 | | |
790 | | /* Validate parameters. */ |
791 | 0 | if ((key == NULL) || (key->dp == NULL) || (res == NULL) || (r == NULL) || |
792 | 0 | (s == NULL) || (hash == NULL)) { |
793 | 0 | err = BAD_FUNC_ARG; |
794 | 0 | } |
795 | | /* SM2 signature must be with a key on the SM2 curve. */ |
796 | 0 | if ((err == MP_OKAY) && (key->dp->id != ECC_SM2P256V1) && |
797 | 0 | (key->idx != ECC_CUSTOM_IDX)) { |
798 | 0 | err = BAD_FUNC_ARG; |
799 | 0 | } |
800 | |
|
801 | | #if defined(WOLFSSL_HAVE_SP_ECC) && defined(WOLFSSL_SP_SM2) |
802 | | if ((err == MP_OKAY) && (key->dp->id == ECC_SM2P256V1)) { |
803 | | /* Use optimized code in SP to perform verification. */ |
804 | | SAVE_VECTOR_REGISTERS(return _svr_ret;); |
805 | | err = sp_ecc_verify_sm2_256(hash, hashSz, key->pubkey.x, |
806 | | key->pubkey.y, key->pubkey.z, r, s, res, key->heap); |
807 | | RESTORE_VECTOR_REGISTERS(); |
808 | | return err; |
809 | | } |
810 | | #endif |
811 | |
|
812 | 0 | #ifndef WOLFSSL_SP_MATH |
813 | 0 | if (res != NULL) { |
814 | | /* Assume failure. */ |
815 | 0 | *res = 0; |
816 | 0 | } |
817 | |
|
818 | 0 | #ifdef WOLFSSL_SMALL_STACK |
819 | 0 | if (err == MP_OKAY) { |
820 | | /* Allocate temporary MP integer. */ |
821 | 0 | data = (mp_int*)XMALLOC(sizeof(mp_int) * 5, key->heap, |
822 | 0 | DYNAMIC_TYPE_ECC); |
823 | 0 | if (data == NULL) { |
824 | 0 | err = MEMORY_E; |
825 | 0 | } |
826 | 0 | } |
827 | 0 | #endif |
828 | 0 | if (err == MP_OKAY) { |
829 | 0 | t = data; |
830 | 0 | e = data + 1; |
831 | 0 | prime = data + 2; |
832 | 0 | Af = data + 3; |
833 | 0 | order = data + 4; |
834 | 0 | } |
835 | |
|
836 | 0 | if (err == MP_OKAY) { |
837 | | /* Initialize temporary MP integers. */ |
838 | 0 | err = mp_init_multi(e, t, prime, Af, order, NULL); |
839 | 0 | } |
840 | 0 | if (err == MP_OKAY) { |
841 | | /* Get order. */ |
842 | 0 | err = mp_read_radix(order, key->dp->order, MP_RADIX_HEX); |
843 | 0 | } |
844 | | /* B5: calculate t = (r' + s') modn -- if t is 0 then failed */ |
845 | 0 | if (err == MP_OKAY) { |
846 | | /* t = r + s */ |
847 | 0 | err = mp_addmod(r, s, order, t); |
848 | 0 | } |
849 | 0 | if (err == MP_OKAY) { |
850 | | /* Check sum is valid. */ |
851 | 0 | if (mp_iszero(t) == MP_YES) |
852 | 0 | err = MP_VAL; |
853 | 0 | } |
854 | | #ifdef DEBUG_ECC_SM2 |
855 | | mp_dump("t = ", t, 0); |
856 | | #endif |
857 | | |
858 | | /* B6: calculate the point (x1', y1')=[s']G + [t]PA */ |
859 | 0 | if (err == MP_OKAY) { |
860 | | /* Create two new points. */ |
861 | 0 | PO = wc_ecc_new_point_h(key->heap); |
862 | 0 | if (PO == NULL) { |
863 | 0 | err = MEMORY_E; |
864 | 0 | } |
865 | 0 | } |
866 | 0 | if (err == MP_OKAY) { |
867 | 0 | G = wc_ecc_new_point_h(key->heap); |
868 | 0 | if (G == NULL) { |
869 | 0 | err = MEMORY_E; |
870 | 0 | } |
871 | 0 | } |
872 | |
|
873 | 0 | if (err == MP_OKAY) { |
874 | | /* Get the base point x-ordinate for SM2 curve. */ |
875 | 0 | err = mp_read_radix(G->x, key->dp->Gx, MP_RADIX_HEX); |
876 | 0 | } |
877 | 0 | if (err == MP_OKAY) { |
878 | | /* Get the base point y-ordinate for SM2 curve. */ |
879 | 0 | err = mp_read_radix(G->y, key->dp->Gy, MP_RADIX_HEX); |
880 | 0 | } |
881 | 0 | if (err == MP_OKAY) { |
882 | | /* Base point is in affine so z-ordinate is one. */ |
883 | 0 | err = mp_set(G->z, 1); |
884 | 0 | } |
885 | 0 | if (err == MP_OKAY) { |
886 | | /* Get a coefficient of SM2 curve. */ |
887 | 0 | err = mp_read_radix(Af, key->dp->Af, MP_RADIX_HEX); |
888 | 0 | } |
889 | 0 | if (err == MP_OKAY) { |
890 | | /* Get a prime of SM2 curve. */ |
891 | 0 | err = mp_read_radix(prime, key->dp->prime, MP_RADIX_HEX); |
892 | 0 | } |
893 | | #ifdef DEBUG_ECC_SM2 |
894 | | printf("\n"); |
895 | | mp_dump("G->x = ", G->x, 0); |
896 | | mp_dump("G->y = ", G->y, 0); |
897 | | mp_dump("s = ", s, 0); |
898 | | mp_dump("P->x = ", key->pubkey.x, 0); |
899 | | mp_dump("P->y = ", key->pubkey.y, 0); |
900 | | mp_dump("t = ", t, 0); |
901 | | mp_dump("Af = ", Af, 0); |
902 | | mp_dump("prime= ", prime, 0); |
903 | | #endif |
904 | 0 | if (err == MP_OKAY) { |
905 | | /* [s']G + [t]PA */ |
906 | 0 | err = ecc_sm2_mul2add(G, s, &(key->pubkey), t, PO, Af, prime, |
907 | 0 | key->heap); |
908 | 0 | } |
909 | | #ifdef DEBUG_ECC_SM2 |
910 | | mp_dump("PO->x = ", PO->x, 0); |
911 | | mp_dump("PO->y = ", PO->y, 0); |
912 | | printf("\n\n"); |
913 | | #endif |
914 | | |
915 | | |
916 | | /* B7: calculate R=(e'+x1') modn, if R=r then passed */ |
917 | 0 | if (err == MP_OKAY) { |
918 | | /* Convert hash to an MP integer. */ |
919 | 0 | err = mp_read_unsigned_bin(e, hash, hashSz); |
920 | 0 | } |
921 | 0 | if (err == MP_OKAY) { |
922 | | /* e' + x1' */ |
923 | 0 | err = mp_addmod(e, PO->x, order, t); |
924 | 0 | } |
925 | | /* Calculated value must be same as r. */ |
926 | 0 | if (err == MP_OKAY && mp_cmp(t, r) == MP_EQ) { |
927 | 0 | *res = 1; |
928 | 0 | } |
929 | | |
930 | | /* Dispose of allocated points. */ |
931 | 0 | if (PO != NULL) { |
932 | 0 | wc_ecc_del_point_h(PO, key->heap); |
933 | 0 | } |
934 | 0 | if (G != NULL) { |
935 | 0 | wc_ecc_del_point_h(G, key->heap); |
936 | 0 | } |
937 | | |
938 | | /* Dispose of allocated MP integers. */ |
939 | 0 | if (e != NULL) { |
940 | 0 | mp_free(e); |
941 | 0 | } |
942 | 0 | if (t != NULL) { |
943 | 0 | mp_free(t); |
944 | 0 | } |
945 | 0 | if (prime != NULL) { |
946 | 0 | mp_free(prime); |
947 | 0 | } |
948 | 0 | if (Af != NULL) { |
949 | 0 | mp_free(Af); |
950 | 0 | } |
951 | 0 | if (order != NULL) { |
952 | 0 | mp_free(order); |
953 | 0 | } |
954 | |
|
955 | 0 | #ifdef WOLFSSL_SMALL_STACK |
956 | | /* Free allocated data. */ |
957 | 0 | XFREE(data, key->heap, DYNAMIC_TYPE_ECC); |
958 | 0 | #endif |
959 | | #else |
960 | | (void)hashSz; |
961 | | |
962 | | err = NOT_COMPILED_IN; |
963 | | #endif |
964 | |
|
965 | 0 | return err; |
966 | 0 | } |
967 | | |
968 | | |
969 | | #ifndef NO_ASN |
970 | | /* Verify digest of hash(ZA || M) using key on SM2 curve and encoded signature. |
971 | | * |
972 | | * res gets set to 1 on successful verify and 0 on failure |
973 | | * |
974 | | * Use wc_ecc_sm2_create_digest to calculate the digest. |
975 | | * |
976 | | * @param [in] sig DER encoded DSA signature. |
977 | | * @param [in] sigSz Length of signature in bytes. |
978 | | * @param [in] hash Array of bytes holding hash value. |
979 | | * @param [in] hashSz Size of hash in bytes. |
980 | | * @param [out] res 1 on successful verify and 0 on failure. |
981 | | * @param [in] key Public key on SM2 curve. |
982 | | * @return 0 on success (note this is even when successfully finding verify is |
983 | | * incorrect) |
984 | | * @return BAD_FUNC_ARG when key, res, sig or hash is NULL. |
985 | | * @return MP_VAL when r + s = 0. |
986 | | * @return MEMORY_E on dynamic memory allocation failure. |
987 | | * @return MP_MEM when dynamic memory allocation fails. |
988 | | */ |
989 | | int wc_ecc_sm2_verify_hash(const byte* sig, word32 sigSz, const byte* hash, |
990 | | word32 hashSz, int* res, ecc_key* key) |
991 | 0 | { |
992 | 0 | int err = 0; |
993 | 0 | #ifdef WOLFSSL_SMALL_STACK |
994 | 0 | mp_int* r = NULL; |
995 | 0 | mp_int* s = NULL; |
996 | | #else |
997 | | mp_int r[1]; |
998 | | mp_int s[1]; |
999 | | #endif |
1000 | | |
1001 | | /* Validate parameters. */ |
1002 | 0 | if ((sig == NULL) || (hash == NULL) || (res == NULL) || (key == NULL) || |
1003 | 0 | (key->dp == NULL)) { |
1004 | 0 | err = BAD_FUNC_ARG; |
1005 | 0 | } |
1006 | | /* SM2 signature must be with a key on the SM2 curve. */ |
1007 | 0 | if ((err == MP_OKAY) && (key->dp->id != ECC_SM2P256V1) && |
1008 | 0 | (key->idx != ECC_CUSTOM_IDX)) { |
1009 | 0 | err = BAD_FUNC_ARG; |
1010 | 0 | } |
1011 | |
|
1012 | 0 | #ifdef WOLFSSL_SMALL_STACK |
1013 | 0 | if (err == 0) { |
1014 | | /* Allocate MP integers. */ |
1015 | 0 | r = (mp_int*)XMALLOC(sizeof(mp_int), key->heap, DYNAMIC_TYPE_ECC); |
1016 | 0 | if (r == NULL) { |
1017 | 0 | err = MEMORY_E; |
1018 | 0 | } |
1019 | 0 | else { |
1020 | 0 | XMEMSET(r, 0, sizeof(*r)); |
1021 | 0 | } |
1022 | 0 | } |
1023 | 0 | if (err == MP_OKAY) { |
1024 | 0 | s = (mp_int*)XMALLOC(sizeof(mp_int), key->heap, DYNAMIC_TYPE_ECC); |
1025 | 0 | if (s == NULL) { |
1026 | 0 | err = MEMORY_E; |
1027 | 0 | } |
1028 | 0 | else { |
1029 | 0 | XMEMSET(s, 0, sizeof(*s)); |
1030 | 0 | } |
1031 | 0 | } |
1032 | | #else |
1033 | | XMEMSET(r, 0, sizeof(*r)); |
1034 | | XMEMSET(s, 0, sizeof(*s)); |
1035 | | #endif |
1036 | |
|
1037 | 0 | if (err == 0) { |
1038 | | /* Decode the signature into R and S. */ |
1039 | 0 | err = DecodeECC_DSA_Sig(sig, sigSz, r, s); |
1040 | 0 | } |
1041 | 0 | if (err == 0) { |
1042 | | /* Verify the signature with hash, key, R and S. */ |
1043 | 0 | err = wc_ecc_sm2_verify_hash_ex(r, s, hash, hashSz, res, key); |
1044 | 0 | } |
1045 | | |
1046 | | /* Dispose of allocated data. */ |
1047 | 0 | #ifdef WOLFSSL_SMALL_STACK |
1048 | 0 | if (r != NULL) |
1049 | 0 | #endif |
1050 | 0 | { |
1051 | 0 | mp_free(r); |
1052 | 0 | } |
1053 | 0 | #ifdef WOLFSSL_SMALL_STACK |
1054 | 0 | if (s != NULL) |
1055 | 0 | #endif |
1056 | 0 | { |
1057 | 0 | mp_free(s); |
1058 | 0 | } |
1059 | |
|
1060 | 0 | #ifdef WOLFSSL_SMALL_STACK |
1061 | | /* Free allocated data. */ |
1062 | 0 | XFREE(s, key->heap, DYNAMIC_TYPE_ECC); |
1063 | 0 | XFREE(r, key->heap, DYNAMIC_TYPE_ECC); |
1064 | 0 | #endif |
1065 | |
|
1066 | 0 | return err; |
1067 | 0 | } |
1068 | | #endif /* NO_ASN */ |
1069 | | #endif /* HAVE_ECC_VERIFY */ |
1070 | | |
1071 | | #endif /* WOLFSSL_SM2 && HAVE_ECC */ |