/src/wolfssl-heapmath/wolfcrypt/src/pwdbased.c
Line | Count | Source |
1 | | /* pwdbased.c |
2 | | * |
3 | | * Copyright (C) 2006-2025 wolfSSL Inc. |
4 | | * |
5 | | * This file is part of wolfSSL. |
6 | | * |
7 | | * wolfSSL is free software; you can redistribute it and/or modify |
8 | | * it under the terms of the GNU General Public License as published by |
9 | | * the Free Software Foundation; either version 3 of the License, or |
10 | | * (at your option) any later version. |
11 | | * |
12 | | * wolfSSL is distributed in the hope that it will be useful, |
13 | | * but WITHOUT ANY WARRANTY; without even the implied warranty of |
14 | | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
15 | | * GNU General Public License for more details. |
16 | | * |
17 | | * You should have received a copy of the GNU General Public License |
18 | | * along with this program; if not, write to the Free Software |
19 | | * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1335, USA |
20 | | */ |
21 | | |
22 | | #include <wolfssl/wolfcrypt/libwolfssl_sources.h> |
23 | | |
24 | | #ifndef NO_PWDBASED |
25 | | |
26 | | #if FIPS_VERSION3_GE(6,0,0) |
27 | | /* set NO_WRAPPERS before headers, use direct internal f()s not wrappers */ |
28 | | #define FIPS_NO_WRAPPERS |
29 | | |
30 | | #ifdef USE_WINDOWS_API |
31 | | #pragma code_seg(".fipsA$h") |
32 | | #pragma const_seg(".fipsB$h") |
33 | | #endif |
34 | | #endif |
35 | | |
36 | | #include <wolfssl/wolfcrypt/pwdbased.h> |
37 | | #include <wolfssl/wolfcrypt/hmac.h> |
38 | | #include <wolfssl/wolfcrypt/hash.h> |
39 | | #include <wolfssl/wolfcrypt/wolfmath.h> |
40 | | |
41 | | #ifdef NO_INLINE |
42 | | #include <wolfssl/wolfcrypt/misc.h> |
43 | | #else |
44 | | #define WOLFSSL_MISC_INCLUDED |
45 | | #include <wolfcrypt/src/misc.c> |
46 | | #endif |
47 | | |
48 | | #if FIPS_VERSION3_GE(6,0,0) |
49 | | const unsigned int wolfCrypt_FIPS_pbkdf_ro_sanity[2] = |
50 | | { 0x1a2b3c4d, 0x00000010 }; |
51 | | int wolfCrypt_FIPS_PBKDF_sanity(void) |
52 | | { |
53 | | return 0; |
54 | | } |
55 | | #endif |
56 | | |
57 | | #ifdef HAVE_PBKDF1 |
58 | | |
59 | | /* PKCS#5 v1.5 with non standard extension to optionally derive the extra data (IV) */ |
60 | | int wc_PBKDF1_ex(byte* key, int keyLen, byte* iv, int ivLen, |
61 | | const byte* passwd, int passwdLen, const byte* salt, int saltLen, |
62 | | int iterations, int hashType, void* heap) |
63 | 0 | { |
64 | 0 | int err; |
65 | 0 | int keyLeft, ivLeft, i; |
66 | 0 | int store; |
67 | 0 | int keyOutput = 0; |
68 | 0 | int digestLen; |
69 | 0 | byte digest[WC_MAX_DIGEST_SIZE]; |
70 | 0 | WC_DECLARE_VAR(hash, wc_HashAlg, 1, 0); |
71 | 0 | enum wc_HashType hashT; |
72 | |
|
73 | 0 | (void)heap; |
74 | |
|
75 | 0 | if (key == NULL || keyLen < 0 || passwdLen < 0 || saltLen < 0 || ivLen < 0){ |
76 | 0 | return BAD_FUNC_ARG; |
77 | 0 | } |
78 | | |
79 | 0 | if (iterations <= 0) |
80 | 0 | iterations = 1; |
81 | |
|
82 | 0 | hashT = wc_HashTypeConvert(hashType); |
83 | 0 | err = wc_HashGetDigestSize(hashT); |
84 | 0 | if (err < 0) |
85 | 0 | return err; |
86 | 0 | digestLen = err; |
87 | | |
88 | | /* initialize hash */ |
89 | 0 | WC_ALLOC_VAR_EX(hash, wc_HashAlg, 1, heap, DYNAMIC_TYPE_HASHCTX, |
90 | 0 | return MEMORY_E); |
91 | | |
92 | 0 | err = wc_HashInit_ex(hash, hashT, heap, INVALID_DEVID); |
93 | 0 | if (err != 0) { |
94 | 0 | WC_FREE_VAR_EX(hash, heap, DYNAMIC_TYPE_HASHCTX); |
95 | 0 | return err; |
96 | 0 | } |
97 | | |
98 | 0 | keyLeft = keyLen; |
99 | 0 | ivLeft = ivLen; |
100 | 0 | while (keyOutput < (keyLen + ivLen)) { |
101 | 0 | int digestLeft = digestLen; |
102 | | /* D_(i - 1) */ |
103 | 0 | if (keyOutput) { /* first time D_0 is empty */ |
104 | 0 | err = wc_HashUpdate(hash, hashT, digest, (word32)digestLen); |
105 | 0 | if (err != 0) break; |
106 | 0 | } |
107 | | |
108 | | /* data */ |
109 | 0 | err = wc_HashUpdate(hash, hashT, passwd, (word32)passwdLen); |
110 | 0 | if (err != 0) break; |
111 | | |
112 | | /* salt */ |
113 | 0 | if (salt) { |
114 | 0 | err = wc_HashUpdate(hash, hashT, salt, (word32)saltLen); |
115 | 0 | if (err != 0) break; |
116 | 0 | } |
117 | | |
118 | 0 | err = wc_HashFinal(hash, hashT, digest); |
119 | 0 | if (err != 0) break; |
120 | | |
121 | | /* count */ |
122 | 0 | for (i = 1; i < iterations; i++) { |
123 | 0 | err = wc_HashUpdate(hash, hashT, digest, (word32)digestLen); |
124 | 0 | if (err != 0) break; |
125 | | |
126 | 0 | err = wc_HashFinal(hash, hashT, digest); |
127 | 0 | if (err != 0) break; |
128 | 0 | } |
129 | |
|
130 | 0 | if (err != 0) break; |
131 | | |
132 | 0 | if (keyLeft) { |
133 | 0 | store = (int)min((word32)keyLeft, (word32)digestLen); |
134 | 0 | XMEMCPY(&key[keyLen - keyLeft], digest, (size_t)store); |
135 | |
|
136 | 0 | keyOutput += store; |
137 | 0 | keyLeft -= store; |
138 | 0 | digestLeft -= store; |
139 | 0 | } |
140 | |
|
141 | 0 | if (ivLeft && digestLeft) { |
142 | 0 | store = (int)min((word32)ivLeft, (word32)digestLeft); |
143 | 0 | if (iv != NULL) |
144 | 0 | XMEMCPY(&iv[ivLen - ivLeft], |
145 | 0 | &digest[digestLen - digestLeft], (size_t)store); |
146 | 0 | keyOutput += store; |
147 | 0 | ivLeft -= store; |
148 | 0 | } |
149 | 0 | } |
150 | |
|
151 | 0 | wc_HashFree(hash, hashT); |
152 | |
|
153 | 0 | WC_FREE_VAR_EX(hash, heap, DYNAMIC_TYPE_HASHCTX); |
154 | |
|
155 | 0 | if (err != 0) |
156 | 0 | return err; |
157 | | |
158 | 0 | if (keyOutput != (keyLen + ivLen)) |
159 | 0 | return BUFFER_E; |
160 | | |
161 | 0 | return err; |
162 | 0 | } |
163 | | |
164 | | /* PKCS#5 v1.5 */ |
165 | | int wc_PBKDF1(byte* output, const byte* passwd, int pLen, const byte* salt, |
166 | | int sLen, int iterations, int kLen, int hashType) |
167 | 0 | { |
168 | |
|
169 | 0 | return wc_PBKDF1_ex(output, kLen, NULL, 0, |
170 | 0 | passwd, pLen, salt, sLen, iterations, hashType, NULL); |
171 | 0 | } |
172 | | |
173 | | #endif /* HAVE_PKCS5 */ |
174 | | |
175 | | #if defined(HAVE_PBKDF2) && !defined(NO_HMAC) |
176 | | |
177 | | int wc_PBKDF2_ex(byte* output, const byte* passwd, int pLen, const byte* salt, |
178 | | int sLen, int iterations, int kLen, int hashType, void* heap, int devId) |
179 | 432 | { |
180 | 432 | int hLen; |
181 | 432 | int ret; |
182 | 432 | #ifdef WOLFSSL_SMALL_STACK |
183 | 432 | byte* buffer; |
184 | 432 | Hmac* hmac; |
185 | | #else |
186 | | byte buffer[WC_MAX_DIGEST_SIZE]; |
187 | | Hmac hmac[1]; |
188 | | #endif |
189 | 432 | enum wc_HashType hashT; |
190 | | |
191 | 432 | if (output == NULL || pLen < 0 || sLen < 0 || kLen < 0) { |
192 | 34 | return BAD_FUNC_ARG; |
193 | 34 | } |
194 | | |
195 | | #if FIPS_VERSION3_GE(6,0,0) |
196 | | /* Per SP800-132 section 5 "The kLen value shall be at least 112 bits in |
197 | | * length", ensure the returned bits for the derived master key are at a |
198 | | * minimum 14-bytes or 112-bits after stretching and strengthening |
199 | | * (iterations) */ |
200 | | if (kLen < HMAC_FIPS_MIN_KEY) |
201 | | return BAD_LENGTH_E; |
202 | | #endif |
203 | | |
204 | | #if FIPS_VERSION3_GE(6,0,0) && defined(DEBUG_WOLFSSL) |
205 | | /* SP800-132 section 5.2 recommends an iteration count of 1000 but this is |
206 | | * not strictly enforceable and is listed in Appendix B Table 1 as a |
207 | | * non-testable requirement. wolfCrypt will log it when appropriate but |
208 | | * take no action */ |
209 | | if (iterations < 1000) { |
210 | | WOLFSSL_MSG("WARNING: Iteration < 1,000, see SP800-132 section 5.2"); |
211 | | } |
212 | | #endif |
213 | 398 | if (iterations <= 0) |
214 | 83 | iterations = 1; |
215 | | |
216 | 398 | hashT = wc_HashTypeConvert(hashType); |
217 | 398 | hLen = wc_HashGetDigestSize(hashT); |
218 | 398 | if (hLen < 0) |
219 | 0 | return BAD_FUNC_ARG; |
220 | | |
221 | 398 | #ifdef WOLFSSL_SMALL_STACK |
222 | 398 | buffer = (byte*)XMALLOC(WC_MAX_DIGEST_SIZE, heap, DYNAMIC_TYPE_TMP_BUFFER); |
223 | 398 | if (buffer == NULL) |
224 | 0 | return MEMORY_E; |
225 | 398 | hmac = (Hmac*)XMALLOC(sizeof(Hmac), heap, DYNAMIC_TYPE_HMAC); |
226 | 398 | if (hmac == NULL) { |
227 | 0 | XFREE(buffer, heap, DYNAMIC_TYPE_TMP_BUFFER); |
228 | 0 | return MEMORY_E; |
229 | 0 | } |
230 | 398 | #endif |
231 | | |
232 | 398 | ret = wc_HmacInit(hmac, heap, devId); |
233 | 398 | if (ret == 0) { |
234 | 398 | word32 i = 1; |
235 | | /* use int hashType here, since HMAC FIPS uses the old unique value */ |
236 | | #if FIPS_VERSION3_GE(6,0,0) |
237 | | { |
238 | | /* Allow passwords that are less than 14-bytes for compatibility |
239 | | * / interoperability, only since module v6.0.0 */ |
240 | | int allowShortPasswd = 1; |
241 | | ret = wc_HmacSetKey_ex(hmac, hashType, passwd, (word32)pLen, |
242 | | allowShortPasswd); |
243 | | } |
244 | | #else |
245 | 398 | ret = wc_HmacSetKey(hmac, hashType, passwd, (word32)pLen); |
246 | 398 | #endif |
247 | | |
248 | 7.59k | while (ret == 0 && kLen) { |
249 | 7.19k | int currentLen; |
250 | 7.19k | int j; |
251 | | |
252 | 7.19k | ret = wc_HmacUpdate(hmac, salt, (word32)sLen); |
253 | 7.19k | if (ret != 0) |
254 | 0 | break; |
255 | | |
256 | | /* encode i */ |
257 | 35.9k | for (j = 0; j < 4; j++) { |
258 | 28.7k | byte b = (byte)(i >> ((3-j) * 8)); |
259 | | |
260 | 28.7k | ret = wc_HmacUpdate(hmac, &b, 1); |
261 | 28.7k | if (ret != 0) |
262 | 0 | break; |
263 | 28.7k | } |
264 | | |
265 | | /* check ret from inside for loop */ |
266 | 7.19k | if (ret != 0) |
267 | 0 | break; |
268 | | |
269 | 7.19k | ret = wc_HmacFinal(hmac, buffer); |
270 | 7.19k | if (ret != 0) |
271 | 0 | break; |
272 | | |
273 | 7.19k | currentLen = (int)min((word32)kLen, (word32)hLen); |
274 | 7.19k | XMEMCPY(output, buffer, (size_t)currentLen); |
275 | | |
276 | 16.3k | for (j = 1; j < iterations; j++) { |
277 | 9.15k | ret = wc_HmacUpdate(hmac, buffer, (word32)hLen); |
278 | 9.15k | if (ret != 0) |
279 | 0 | break; |
280 | 9.15k | ret = wc_HmacFinal(hmac, buffer); |
281 | 9.15k | if (ret != 0) |
282 | 0 | break; |
283 | 9.15k | xorbuf(output, buffer, (word32)currentLen); |
284 | 9.15k | } |
285 | | |
286 | | /* check ret from inside for loop */ |
287 | 7.19k | if (ret != 0) |
288 | 0 | break; |
289 | | |
290 | 7.19k | output += currentLen; |
291 | 7.19k | kLen -= currentLen; |
292 | 7.19k | i++; |
293 | 7.19k | } |
294 | 398 | wc_HmacFree(hmac); |
295 | 398 | } |
296 | | |
297 | 398 | WC_FREE_VAR_EX(buffer, heap, DYNAMIC_TYPE_TMP_BUFFER); |
298 | 398 | WC_FREE_VAR_EX(hmac, heap, DYNAMIC_TYPE_HMAC); |
299 | | |
300 | 398 | return ret; |
301 | 398 | } |
302 | | |
303 | | int wc_PBKDF2(byte* output, const byte* passwd, int pLen, const byte* salt, |
304 | | int sLen, int iterations, int kLen, int hashType) |
305 | 432 | { |
306 | 432 | return wc_PBKDF2_ex(output, passwd, pLen, salt, sLen, iterations, kLen, |
307 | 432 | hashType, NULL, INVALID_DEVID); |
308 | 432 | } |
309 | | |
310 | | #endif /* HAVE_PBKDF2 && !NO_HMAC */ |
311 | | |
312 | | #ifdef HAVE_PKCS12 |
313 | | |
314 | | /* helper for PKCS12_PBKDF(), does hash operation */ |
315 | | static int DoPKCS12Hash(int hashType, byte* buffer, word32 totalLen, |
316 | | byte* Ai, word32 u, int iterations) |
317 | 0 | { |
318 | 0 | int i; |
319 | 0 | int ret = 0; |
320 | 0 | WC_DECLARE_VAR(hash, wc_HashAlg, 1, 0); |
321 | 0 | enum wc_HashType hashT; |
322 | |
|
323 | 0 | if (buffer == NULL || Ai == NULL) { |
324 | 0 | return BAD_FUNC_ARG; |
325 | 0 | } |
326 | | |
327 | 0 | hashT = wc_HashTypeConvert(hashType); |
328 | | |
329 | | /* initialize hash */ |
330 | 0 | WC_ALLOC_VAR_EX(hash, wc_HashAlg, 1, NULL, DYNAMIC_TYPE_HASHCTX, |
331 | 0 | return MEMORY_E); |
332 | | |
333 | 0 | ret = wc_HashInit(hash, hashT); |
334 | 0 | if (ret != 0) { |
335 | 0 | WC_FREE_VAR_EX(hash, NULL, DYNAMIC_TYPE_HASHCTX); |
336 | 0 | return ret; |
337 | 0 | } |
338 | | |
339 | 0 | ret = wc_HashUpdate(hash, hashT, buffer, totalLen); |
340 | |
|
341 | 0 | if (ret == 0) |
342 | 0 | ret = wc_HashFinal(hash, hashT, Ai); |
343 | |
|
344 | 0 | for (i = 1; i < iterations; i++) { |
345 | 0 | if (ret == 0) |
346 | 0 | ret = wc_HashUpdate(hash, hashT, Ai, u); |
347 | 0 | if (ret == 0) |
348 | 0 | ret = wc_HashFinal(hash, hashT, Ai); |
349 | 0 | } |
350 | |
|
351 | 0 | wc_HashFree(hash, hashT); |
352 | |
|
353 | 0 | WC_FREE_VAR_EX(hash, NULL, DYNAMIC_TYPE_HASHCTX); |
354 | |
|
355 | 0 | return ret; |
356 | 0 | } |
357 | | |
358 | | |
359 | | int wc_PKCS12_PBKDF(byte* output, const byte* passwd, int passLen, |
360 | | const byte* salt, int saltLen, int iterations, int kLen, int hashType, |
361 | | int id) |
362 | 0 | { |
363 | 0 | return wc_PKCS12_PBKDF_ex(output, passwd, passLen, salt, saltLen, |
364 | 0 | iterations, kLen, hashType, id, NULL); |
365 | 0 | } |
366 | | |
367 | | |
368 | | /* extended API that allows a heap hint to be used */ |
369 | | int wc_PKCS12_PBKDF_ex(byte* output, const byte* passwd, int passLen, |
370 | | const byte* salt, int saltLen, int iterations, int kLen, |
371 | | int hashType, int id, void* heap) |
372 | 0 | { |
373 | | /* all in bytes instead of bits */ |
374 | 0 | word32 u, v, dLen, pLen, iLen, sLen, totalLen; |
375 | 0 | int dynamic = 0; |
376 | 0 | int ret = 0; |
377 | 0 | word32 i; |
378 | 0 | byte *D, *S, *P, *I; |
379 | 0 | #ifdef WOLFSSL_SMALL_STACK |
380 | 0 | byte staticBuffer[1]; /* force dynamic usage */ |
381 | | #else |
382 | | byte staticBuffer[1024]; |
383 | | #endif |
384 | 0 | byte* buffer = staticBuffer; |
385 | |
|
386 | 0 | #ifdef WOLFSSL_SMALL_STACK |
387 | 0 | byte* Ai = NULL; |
388 | 0 | byte* B = NULL; |
389 | 0 | mp_int *B1 = NULL; |
390 | 0 | mp_int *i1 = NULL; |
391 | 0 | mp_int *res = NULL; |
392 | | #else |
393 | | byte Ai[WC_MAX_DIGEST_SIZE]; |
394 | | byte B[WC_MAX_BLOCK_SIZE]; |
395 | | mp_int B1[1]; |
396 | | mp_int i1[1]; |
397 | | mp_int res[1]; |
398 | | #endif |
399 | 0 | enum wc_HashType hashT; |
400 | |
|
401 | 0 | (void)heap; |
402 | |
|
403 | 0 | if (output == NULL || passLen <= 0 || saltLen <= 0 || kLen < 0) { |
404 | 0 | return BAD_FUNC_ARG; |
405 | 0 | } |
406 | | |
407 | 0 | if (iterations <= 0) |
408 | 0 | iterations = 1; |
409 | |
|
410 | 0 | hashT = wc_HashTypeConvert(hashType); |
411 | 0 | ret = wc_HashGetDigestSize(hashT); |
412 | 0 | if (ret < 0) |
413 | 0 | return ret; |
414 | 0 | if (ret == 0) |
415 | 0 | return BAD_STATE_E; |
416 | 0 | u = (word32)ret; |
417 | |
|
418 | 0 | ret = wc_HashGetBlockSize(hashT); |
419 | 0 | if (ret < 0) |
420 | 0 | return ret; |
421 | 0 | if (ret == 0) |
422 | 0 | return BAD_STATE_E; |
423 | 0 | v = (word32)ret; |
424 | |
|
425 | 0 | #ifdef WOLFSSL_SMALL_STACK |
426 | 0 | Ai = (byte*)XMALLOC(WC_MAX_DIGEST_SIZE, heap, DYNAMIC_TYPE_TMP_BUFFER); |
427 | 0 | if (Ai == NULL) |
428 | 0 | return MEMORY_E; |
429 | | |
430 | 0 | B = (byte*)XMALLOC(WC_MAX_BLOCK_SIZE, heap, DYNAMIC_TYPE_TMP_BUFFER); |
431 | 0 | if (B == NULL) { |
432 | 0 | XFREE(Ai, heap, DYNAMIC_TYPE_TMP_BUFFER); |
433 | 0 | return MEMORY_E; |
434 | 0 | } |
435 | 0 | #endif |
436 | | |
437 | 0 | XMEMSET(Ai, 0, WC_MAX_DIGEST_SIZE); |
438 | 0 | XMEMSET(B, 0, WC_MAX_BLOCK_SIZE); |
439 | |
|
440 | 0 | dLen = v; |
441 | 0 | sLen = v * (((word32)saltLen + v - 1) / v); |
442 | | |
443 | | /* with passLen checked at the top of the function for >= 0 then passLen |
444 | | * must be 1 or greater here and is always 'true' */ |
445 | 0 | pLen = v * (((word32)passLen + v - 1) / v); |
446 | 0 | iLen = sLen + pLen; |
447 | |
|
448 | 0 | totalLen = dLen + sLen + pLen; |
449 | |
|
450 | 0 | if (totalLen > sizeof(staticBuffer)) { |
451 | 0 | buffer = (byte*)XMALLOC(totalLen, heap, DYNAMIC_TYPE_KEY); |
452 | 0 | if (buffer == NULL) { |
453 | 0 | WC_FREE_VAR_EX(Ai, heap, DYNAMIC_TYPE_TMP_BUFFER); |
454 | 0 | WC_FREE_VAR_EX(B, heap, DYNAMIC_TYPE_TMP_BUFFER); |
455 | 0 | return MEMORY_E; |
456 | 0 | } |
457 | 0 | dynamic = 1; |
458 | 0 | } |
459 | | |
460 | 0 | D = buffer; |
461 | 0 | S = D + dLen; |
462 | 0 | P = S + sLen; |
463 | 0 | I = S; |
464 | |
|
465 | 0 | XMEMSET(D, id, dLen); |
466 | |
|
467 | 0 | for (i = 0; i < sLen; i++) |
468 | 0 | S[i] = salt[i % (word32)saltLen]; |
469 | 0 | for (i = 0; i < pLen; i++) |
470 | 0 | P[i] = passwd[i % (word32)passLen]; |
471 | |
|
472 | 0 | #ifdef WOLFSSL_SMALL_STACK |
473 | 0 | if (((B1 = (mp_int *)XMALLOC(sizeof(*B1), heap, DYNAMIC_TYPE_TMP_BUFFER)) |
474 | 0 | == NULL) || |
475 | 0 | ((i1 = (mp_int *)XMALLOC(sizeof(*i1), heap, DYNAMIC_TYPE_TMP_BUFFER)) |
476 | 0 | == NULL) || |
477 | 0 | ((res = (mp_int *)XMALLOC(sizeof(*res), heap, DYNAMIC_TYPE_TMP_BUFFER)) |
478 | 0 | == NULL)) { |
479 | 0 | ret = MEMORY_E; |
480 | 0 | goto out; |
481 | 0 | } |
482 | 0 | #endif |
483 | | |
484 | 0 | while (kLen > 0) { |
485 | 0 | word32 currentLen; |
486 | |
|
487 | 0 | ret = DoPKCS12Hash(hashType, buffer, totalLen, Ai, u, iterations); |
488 | 0 | if (ret < 0) |
489 | 0 | break; |
490 | | |
491 | 0 | for (i = 0; i < v; i++) |
492 | 0 | B[i] = Ai[(word32)i % u]; |
493 | |
|
494 | 0 | if (mp_init(B1) != MP_OKAY) |
495 | 0 | ret = MP_INIT_E; |
496 | 0 | else if (mp_read_unsigned_bin(B1, B, v) != MP_OKAY) |
497 | 0 | ret = MP_READ_E; |
498 | 0 | else if (mp_add_d(B1, (mp_digit)1, B1) != MP_OKAY) |
499 | 0 | ret = MP_ADD_E; |
500 | |
|
501 | 0 | if (ret != 0) { |
502 | 0 | mp_clear(B1); |
503 | 0 | break; |
504 | 0 | } |
505 | | |
506 | 0 | for (i = 0; i < iLen; i += v) { |
507 | 0 | int outSz; |
508 | |
|
509 | 0 | if (mp_init_multi(i1, res, NULL, NULL, NULL, NULL) != MP_OKAY) { |
510 | 0 | ret = MP_INIT_E; |
511 | 0 | break; |
512 | 0 | } |
513 | 0 | if (mp_read_unsigned_bin(i1, I + i, v) != MP_OKAY) |
514 | 0 | ret = MP_READ_E; |
515 | 0 | else if (mp_add(i1, B1, res) != MP_OKAY) |
516 | 0 | ret = MP_ADD_E; |
517 | 0 | else if ( (outSz = mp_unsigned_bin_size(res)) < 0) |
518 | 0 | ret = MP_TO_E; |
519 | 0 | else { |
520 | 0 | if (outSz > (int)v) { |
521 | | /* take off MSB */ |
522 | 0 | byte tmp[WC_MAX_BLOCK_SIZE + 1]; |
523 | 0 | ret = mp_to_unsigned_bin(res, tmp); |
524 | 0 | XMEMCPY(I + i, tmp + 1, v); |
525 | 0 | } |
526 | 0 | else if (outSz < (int)v) { |
527 | 0 | XMEMSET(I + i, 0, v - (word32)outSz); |
528 | 0 | ret = mp_to_unsigned_bin(res, I + i + v - (word32)outSz); |
529 | 0 | } |
530 | 0 | else |
531 | 0 | ret = mp_to_unsigned_bin(res, I + i); |
532 | 0 | } |
533 | |
|
534 | 0 | mp_clear(i1); |
535 | 0 | mp_clear(res); |
536 | 0 | if (ret < 0) break; |
537 | 0 | } |
538 | |
|
539 | 0 | if (ret < 0) { |
540 | 0 | mp_clear(B1); |
541 | 0 | break; |
542 | 0 | } |
543 | | |
544 | 0 | currentLen = min((word32)kLen, u); |
545 | 0 | XMEMCPY(output, Ai, currentLen); |
546 | 0 | output += currentLen; |
547 | 0 | kLen -= (int)currentLen; |
548 | 0 | mp_clear(B1); |
549 | 0 | } |
550 | |
|
551 | 0 | #ifdef WOLFSSL_SMALL_STACK |
552 | 0 | out: |
553 | |
|
554 | 0 | XFREE(Ai, heap, DYNAMIC_TYPE_TMP_BUFFER); |
555 | 0 | XFREE(B, heap, DYNAMIC_TYPE_TMP_BUFFER); |
556 | 0 | XFREE(B1, heap, DYNAMIC_TYPE_TMP_BUFFER); |
557 | 0 | XFREE(i1, heap, DYNAMIC_TYPE_TMP_BUFFER); |
558 | 0 | XFREE(res, heap, DYNAMIC_TYPE_TMP_BUFFER); |
559 | 0 | #endif |
560 | |
|
561 | 0 | if (dynamic) |
562 | 0 | XFREE(buffer, heap, DYNAMIC_TYPE_KEY); |
563 | |
|
564 | 0 | return ret; |
565 | 0 | } |
566 | | |
567 | | #endif /* HAVE_PKCS12 */ |
568 | | |
569 | | #ifdef HAVE_SCRYPT |
570 | | #ifdef NO_HMAC |
571 | | #error scrypt requires HMAC |
572 | | #endif |
573 | | |
574 | | /* Rotate the 32-bit value a by b bits to the left. |
575 | | * |
576 | | * a 32-bit value. |
577 | | * b Number of bits to rotate. |
578 | | * returns rotated value. |
579 | | */ |
580 | 0 | #define R(a, b) rotlFixed(a, b) |
581 | | |
582 | | /* (2^32 - 1) */ |
583 | 0 | #define SCRYPT_WORD32_MAX 4294967295U |
584 | | |
585 | | /* One round of Salsa20/8. |
586 | | * Code taken from RFC 7914: scrypt PBKDF. |
587 | | * |
588 | | * out Output buffer. |
589 | | * in Input data to hash. |
590 | | */ |
591 | | static void scryptSalsa(word32* out, word32* in) |
592 | 0 | { |
593 | 0 | int i; |
594 | 0 | word32 x[16]; |
595 | |
|
596 | 0 | #ifdef LITTLE_ENDIAN_ORDER |
597 | 0 | XMEMCPY(x, in, sizeof(x)); |
598 | | #else |
599 | | for (i = 0; i < 16; i++) |
600 | | x[i] = ByteReverseWord32(in[i]); |
601 | | #endif |
602 | 0 | for (i = 8; i > 0; i -= 2) { |
603 | 0 | x[ 4] ^= R(x[ 0] + x[12], 7); x[ 8] ^= R(x[ 4] + x[ 0], 9); |
604 | 0 | x[12] ^= R(x[ 8] + x[ 4], 13); x[ 0] ^= R(x[12] + x[ 8], 18); |
605 | 0 | x[ 9] ^= R(x[ 5] + x[ 1], 7); x[13] ^= R(x[ 9] + x[ 5], 9); |
606 | 0 | x[ 1] ^= R(x[13] + x[ 9], 13); x[ 5] ^= R(x[ 1] + x[13], 18); |
607 | 0 | x[14] ^= R(x[10] + x[ 6], 7); x[ 2] ^= R(x[14] + x[10], 9); |
608 | 0 | x[ 6] ^= R(x[ 2] + x[14], 13); x[10] ^= R(x[ 6] + x[ 2], 18); |
609 | 0 | x[ 3] ^= R(x[15] + x[11], 7); x[ 7] ^= R(x[ 3] + x[15], 9); |
610 | 0 | x[11] ^= R(x[ 7] + x[ 3], 13); x[15] ^= R(x[11] + x[ 7], 18); |
611 | 0 | x[ 1] ^= R(x[ 0] + x[ 3], 7); x[ 2] ^= R(x[ 1] + x[ 0], 9); |
612 | 0 | x[ 3] ^= R(x[ 2] + x[ 1], 13); x[ 0] ^= R(x[ 3] + x[ 2], 18); |
613 | 0 | x[ 6] ^= R(x[ 5] + x[ 4], 7); x[ 7] ^= R(x[ 6] + x[ 5], 9); |
614 | 0 | x[ 4] ^= R(x[ 7] + x[ 6], 13); x[ 5] ^= R(x[ 4] + x[ 7], 18); |
615 | 0 | x[11] ^= R(x[10] + x[ 9], 7); x[ 8] ^= R(x[11] + x[10], 9); |
616 | 0 | x[ 9] ^= R(x[ 8] + x[11], 13); x[10] ^= R(x[ 9] + x[ 8], 18); |
617 | 0 | x[12] ^= R(x[15] + x[14], 7); x[13] ^= R(x[12] + x[15], 9); |
618 | 0 | x[14] ^= R(x[13] + x[12], 13); x[15] ^= R(x[14] + x[13], 18); |
619 | 0 | } |
620 | 0 | #ifdef LITTLE_ENDIAN_ORDER |
621 | 0 | for (i = 0; i < 16; ++i) |
622 | 0 | out[i] = in[i] + x[i]; |
623 | | #else |
624 | | for (i = 0; i < 16; i++) |
625 | | out[i] = ByteReverseWord32(ByteReverseWord32(in[i]) + x[i]); |
626 | | #endif |
627 | 0 | } |
628 | | |
629 | | /* Mix a block using Salsa20/8. |
630 | | * Based on RFC 7914: scrypt PBKDF. |
631 | | * |
632 | | * b Blocks to mix. |
633 | | * y Temporary storage. |
634 | | * r Size of the block. |
635 | | */ |
636 | | static void scryptBlockMix(byte* b, byte* y, int r) |
637 | 0 | { |
638 | 0 | #ifdef WORD64_AVAILABLE |
639 | 0 | word64 x[8]; |
640 | 0 | word64* b64 = (word64*)b; |
641 | 0 | word64* y64 = (word64*)y; |
642 | | #else |
643 | | word32 x[16]; |
644 | | word32* b32 = (word32*)b; |
645 | | word32* y32 = (word32*)y; |
646 | | #endif |
647 | 0 | int i; |
648 | 0 | int j; |
649 | | |
650 | | /* Step 1. */ |
651 | 0 | XMEMCPY(x, b + (2 * r - 1) * 64, sizeof(x)); |
652 | | /* Step 2. */ |
653 | 0 | for (i = 0; i < 2 * r; i++) |
654 | 0 | { |
655 | 0 | #ifdef WORD64_AVAILABLE |
656 | 0 | for (j = 0; j < 8; j++) |
657 | 0 | x[j] ^= b64[i * 8 + j]; |
658 | |
|
659 | | #else |
660 | | for (j = 0; j < 16; j++) |
661 | | x[j] ^= b32[i * 16 + j]; |
662 | | #endif |
663 | 0 | scryptSalsa((word32*)x, (word32*)x); |
664 | 0 | XMEMCPY(y + i * 64, x, sizeof(x)); |
665 | 0 | } |
666 | | /* Step 3. */ |
667 | 0 | for (i = 0; i < r; i++) { |
668 | 0 | #ifdef WORD64_AVAILABLE |
669 | 0 | for (j = 0; j < 8; j++) { |
670 | 0 | b64[i * 8 + j] = y64[2 * i * 8 + j]; |
671 | 0 | b64[(r + i) * 8 + j] = y64[(2 * i + 1) * 8 + j]; |
672 | 0 | } |
673 | | #else |
674 | | for (j = 0; j < 16; j++) { |
675 | | b32[i * 16 + j] = y32[2 * i * 16 + j]; |
676 | | b32[(r + i) * 16 + j] = y32[(2 * i + 1) * 16 + j]; |
677 | | } |
678 | | #endif |
679 | 0 | } |
680 | 0 | } |
681 | | |
682 | | /* Random oracles mix. |
683 | | * Based on RFC 7914: scrypt PBKDF. |
684 | | * |
685 | | * x Data to mix. |
686 | | * v Temporary buffer. |
687 | | * y Temporary buffer for the block mix. |
688 | | * r Block size parameter. |
689 | | * n CPU/Memory cost parameter. |
690 | | */ |
691 | | static void scryptROMix(byte* x, byte* v, byte* y, int r, word32 n) |
692 | 0 | { |
693 | 0 | word32 i; |
694 | 0 | word32 j; |
695 | 0 | word32 k; |
696 | 0 | word32 bSz = (word32)(128 * r); |
697 | 0 | #ifdef WORD64_AVAILABLE |
698 | 0 | word64* x64 = (word64*)x; |
699 | 0 | word64* v64 = (word64*)v; |
700 | | #else |
701 | | word32* x32 = (word32*)x; |
702 | | word32* v32 = (word32*)v; |
703 | | #endif |
704 | | |
705 | | /* Step 1. X = B (B not needed therefore not implemented) */ |
706 | | /* Step 2. */ |
707 | 0 | for (i = 0; i < n; i++) |
708 | 0 | { |
709 | 0 | XMEMCPY(v + i * bSz, x, bSz); |
710 | 0 | scryptBlockMix(x, y, r); |
711 | 0 | } |
712 | | |
713 | | /* Step 3. */ |
714 | 0 | for (i = 0; i < n; i++) |
715 | 0 | { |
716 | 0 | #ifdef LITTLE_ENDIAN_ORDER |
717 | 0 | #ifdef WORD64_AVAILABLE |
718 | 0 | j = (word32)(*(word64*)(x + (2*r - 1) * 64) & (n-1)); |
719 | | #else |
720 | | j = *(word32*)(x + (2*r - 1) * 64) & (n-1); |
721 | | #endif |
722 | | #else |
723 | | byte* t = x + (2*r - 1) * 64; |
724 | | j = (t[0] | (t[1] << 8) | (t[2] << 16) | ((word32)t[3] << 24)) & (n-1); |
725 | | #endif |
726 | 0 | #ifdef WORD64_AVAILABLE |
727 | 0 | for (k = 0; k < bSz / 8; k++) |
728 | 0 | x64[k] ^= v64[j * bSz / 8 + k]; |
729 | | #else |
730 | | for (k = 0; k < bSz / 4; k++) |
731 | | x32[k] ^= v32[j * bSz / 4 + k]; |
732 | | #endif |
733 | 0 | scryptBlockMix(x, y, r); |
734 | 0 | } |
735 | | /* Step 4. B' = X (B = X = B' so not needed, therefore not implemented) */ |
736 | 0 | } |
737 | | |
738 | | /* Generates an key derived from a password and salt using a memory hard |
739 | | * algorithm. |
740 | | * Implements RFC 7914: scrypt PBKDF. |
741 | | * |
742 | | * output The derived key. |
743 | | * passwd The password to derive key from. |
744 | | * passLen The length of the password. |
745 | | * salt The key specific data. |
746 | | * saltLen The length of the salt data. |
747 | | * cost The CPU/memory cost parameter. Range: 1..(128*r/8-1) |
748 | | * (Iterations = 2^cost) |
749 | | * blockSize The number of 128 byte octets in a working block. |
750 | | * parallel The number of parallel mix operations to perform. |
751 | | * (Note: this implementation does not use threads.) |
752 | | * dkLen The length of the derived key in bytes. |
753 | | * returns BAD_FUNC_ARG when: blockSize is too large for cost. |
754 | | */ |
755 | | int wc_scrypt(byte* output, const byte* passwd, int passLen, |
756 | | const byte* salt, int saltLen, int cost, int blockSize, |
757 | | int parallel, int dkLen) |
758 | 0 | { |
759 | 0 | int ret = 0; |
760 | 0 | int i; |
761 | 0 | byte* v = NULL; |
762 | 0 | byte* y = NULL; |
763 | 0 | byte* blocks = NULL; |
764 | 0 | word32 blocksSz; |
765 | 0 | word32 bSz; |
766 | |
|
767 | 0 | if (blockSize > 8) |
768 | 0 | return BAD_FUNC_ARG; |
769 | | |
770 | 0 | if (cost < 1 || cost >= 128 * blockSize / 8 || parallel < 1 || dkLen < 1) |
771 | 0 | return BAD_FUNC_ARG; |
772 | | |
773 | | /* The following comparison used to be: |
774 | | * ((word32)parallel > (SCRYPT_MAX / (128 * blockSize))) |
775 | | * where SCRYPT_MAX is (2^32 - 1) * 32. For some compilers, the RHS of |
776 | | * the comparison is greater than parallel's type. It wouldn't promote |
777 | | * both sides to word64. What follows is just arithmetic simplification. |
778 | | */ |
779 | 0 | if (parallel > (int)((SCRYPT_WORD32_MAX / 4) / (word32)blockSize)) |
780 | 0 | return BAD_FUNC_ARG; |
781 | | |
782 | 0 | bSz = 128 * (word32)blockSize; |
783 | 0 | if (parallel > (int)(SCRYPT_WORD32_MAX / bSz)) |
784 | 0 | return BAD_FUNC_ARG; |
785 | 0 | blocksSz = bSz * (word32)parallel; |
786 | 0 | blocks = (byte*)XMALLOC((size_t)blocksSz, NULL, DYNAMIC_TYPE_TMP_BUFFER); |
787 | 0 | if (blocks == NULL) { |
788 | 0 | ret = MEMORY_E; |
789 | 0 | goto end; |
790 | 0 | } |
791 | | |
792 | | /* Check that (1 << cost) * bSz won't overflow or exceed allowed max */ |
793 | 0 | if (((size_t)1 << cost) * (size_t)bSz > SCRYPT_WORD32_MAX) { |
794 | 0 | ret = BAD_FUNC_ARG; |
795 | 0 | goto end; |
796 | 0 | } |
797 | | |
798 | | /* Temporary for scryptROMix. */ |
799 | 0 | v = (byte*)XMALLOC(((size_t)1 << cost) * (size_t)bSz, NULL, |
800 | 0 | DYNAMIC_TYPE_TMP_BUFFER); |
801 | 0 | if (v == NULL) { |
802 | 0 | ret = MEMORY_E; |
803 | 0 | goto end; |
804 | 0 | } |
805 | | /* Temporary for scryptBlockMix. */ |
806 | 0 | y = (byte*)XMALLOC((size_t)(blockSize * 128), NULL, |
807 | 0 | DYNAMIC_TYPE_TMP_BUFFER); |
808 | 0 | if (y == NULL) { |
809 | 0 | ret = MEMORY_E; |
810 | 0 | goto end; |
811 | 0 | } |
812 | | |
813 | 0 | XMEMSET(y, 0, (size_t)(blockSize * 128)); |
814 | | |
815 | | /* Step 1. */ |
816 | 0 | ret = wc_PBKDF2(blocks, passwd, passLen, salt, saltLen, 1, (int)blocksSz, |
817 | 0 | WC_SHA256); |
818 | 0 | if (ret != 0) |
819 | 0 | goto end; |
820 | | |
821 | | /* Step 2. */ |
822 | 0 | for (i = 0; i < parallel; i++) |
823 | 0 | scryptROMix(blocks + i * (int)bSz, v, y, (int)blockSize, |
824 | 0 | (word32)((size_t)1 << cost)); |
825 | | |
826 | | /* Step 3. */ |
827 | 0 | ret = wc_PBKDF2(output, passwd, passLen, blocks, (int)blocksSz, 1, dkLen, |
828 | 0 | WC_SHA256); |
829 | 0 | end: |
830 | 0 | XFREE(blocks, NULL, DYNAMIC_TYPE_TMP_BUFFER); |
831 | 0 | XFREE(v, NULL, DYNAMIC_TYPE_TMP_BUFFER); |
832 | 0 | XFREE(y, NULL, DYNAMIC_TYPE_TMP_BUFFER); |
833 | |
|
834 | 0 | return ret; |
835 | 0 | } |
836 | | |
837 | | /* Generates an key derived from a password and salt using a memory hard |
838 | | * algorithm. |
839 | | * Implements RFC 7914: scrypt PBKDF. |
840 | | * |
841 | | * output Derived key. |
842 | | * passwd Password to derive key from. |
843 | | * passLen Length of the password. |
844 | | * salt Key specific data. |
845 | | * saltLen Length of the salt data. |
846 | | * iterations Number of iterations to perform. Range: 1 << (1..(128*r/8-1)) |
847 | | * blockSize Number of 128 byte octets in a working block. |
848 | | * parallel Number of parallel mix operations to perform. |
849 | | * (Note: this implementation does not use threads.) |
850 | | * dkLen Length of the derived key in bytes. |
851 | | * returns BAD_FUNC_ARG when: iterations is not a power of 2 or blockSize is too |
852 | | * large for iterations. |
853 | | */ |
854 | | int wc_scrypt_ex(byte* output, const byte* passwd, int passLen, |
855 | | const byte* salt, int saltLen, word32 iterations, |
856 | | int blockSize, int parallel, int dkLen) |
857 | 0 | { |
858 | 0 | int cost; |
859 | | |
860 | | /* Iterations must be a power of 2. */ |
861 | 0 | if ((iterations & (iterations - 1)) != 0) |
862 | 0 | return BAD_FUNC_ARG; |
863 | | |
864 | 0 | for (cost = -1; iterations != 0; cost++) { |
865 | 0 | iterations >>= 1; |
866 | 0 | } |
867 | |
|
868 | 0 | return wc_scrypt(output, passwd, passLen, salt, saltLen, cost, blockSize, |
869 | 0 | parallel, dkLen); |
870 | 0 | } |
871 | | #endif /* HAVE_SCRYPT */ |
872 | | |
873 | | #endif /* NO_PWDBASED */ |